博碩士論文 107827003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:73 、訪客IP:18.217.208.72
姓名 吳泰里(Tai-Li Wu)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 針對體表燒燙傷傷口癒合研製具備抗菌及增強細胞生長功能之殼聚醣水凝膠---材料開發與功能性驗證
(Design and Fabrication of an Antimicrobial Cell Growth Enhanced Chitosan Hydrogel for Burn Wound Healing --- Material Development and Function Validation)
相關論文
★ 研究探討層流剪應力於高糖環境下對膀胱癌細胞遷移與侵襲行為之影響★ 研究探討層流剪應力對泌尿上皮細胞癌於細胞週期運作之影響與機轉
★ 設計並建構一全氟碳光生物反應器組用於分離混合氣體中之二氧化碳並同時提升微藻養殖及其經濟產物生成之效能★ Synthesis, Spectral Characterization and Evaluation of Quercetin-Zinc Complex for Tumoricidal and Anti-metastasis of Human Bladder Cancer Cell
★ 包覆靛氰綠與喜樹鹼之標靶全氟碳奈米乳劑 研製於強化乳癌螢光擴散光學影像暨 光/化學治療之研究★ 研製包覆靛氰綠與絲裂黴素C之標靶全氟碳奈米乳劑應用於膀胱癌光-化學治療之研究
★ 研製包覆靛氰綠及利福平之聚乳酸-聚甘醇酸奈米粒子用於破壞生物膜之抗菌治療★ Deposition of Photoactive Layer on Thermoplastic Polyurethane Tubes for Photo-grafting poly(2-methacryloyloxyethyl phosphorylcholine)
★ Preparation of lubricant and antifouling medical coating on thermalplastic polyurethane★ 開發可生物降解的完全磷酸膽鹼水凝膠
★ Development of Functional Biointerface by Mixed Oligomeric Silatranes★ Biodegradable and pH-Responsive Nanoparticles for the Triggered Release of Antibiotics to Infected Wounds
★ In situ gelation using amine-containing copolymer and dialkyne crosslinker via amino-yne click chemistry★ Disulfide-based cross-linkers for functional polymeric networks
★ 建立雙離子高分子修飾蛋白質技術與分析★ DEVELOPMENT AND APPLICATIONS OF CATECHOL-FUNCTIONALIZED ZWITTERIONIC POLYMER
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-11-22以後開放)
摘要(中) 燒燙傷的傷口伴隨著形成水泡和腫脹的發生導致極度疼痛,傷口也很容易受到細菌感染,引發敗血症、蜂窩性組織炎…等,需要立即就醫。在這項研究中,我們主要是通過設計和製造含銀離子和表皮生長因子奈米粒子(Chitosan-Sodium Triphosphate encapsulated EGF,CTENPs)的合成殼聚醣水凝膠(Chitosan-PVA including CTENPs and Silver ions Hydrogel,SCPEHG)),設計和製造一種改善燒燙傷創面癒合水凝膠,這是一種有效率的策略,可以同時提供抗菌和加速治癒功能。EGF的殼聚醣奈米粒子是通過使用正負離子作交聯凝聚製成的。透過DLS分析,EGF的奈米顆粒的大小和表面電荷分別為352 ± 16 nm。根據抗菌、細胞毒性和細胞生長檢測效果,確定SCPEHG最佳濃度是24 mM〖 Ag〗^+和60 μg/mL EGF是很有效的。在體外實驗中可發現仍有96%以上的細胞存活率,我們還可以注意到該細胞的生長隨著EGF奈米粒子濃度越高生長越快。我們對SCPEHG進行了釋放測試,EGF水凝膠在PBS中在48小時內釋放為187 ng/mL,發現複合水凝膠能夠提供持續釋放的〖" Ag" 〗^"+" 和EGF,表明開發的SCPEHG非常適合在富含離子環境下治療燒燙傷。總結,開發出來水凝膠在治療傷口和增強細胞生長方面具有很高優勢。
摘要(英) The wound region of second degree burn involves epidermis and portions of upper dermis and lower dermis. It is formed with blistered and swollen, and is easily infected with microbiomes, result in extremely painful. The clinical syndromes include fever, erythema, edema, suppuration. That require immediate medical treatment to avoid further complications. In this study, we aim to provide an effective strategy for an improved burn wound healing efficiency through design and fabrication of a synthetic chitosan-based hydrogel containing silver ions and epidermal growth factor (EGF) nanoparticles named as (SCPEHG) chitosan nanoparticle EGF hydrogel that may provide both antibacterial and would healing-enhanced functionalities. The EGF encapsulated chitosan nanoparticles were fabricated by using polyanionic as the coacervation crosslink agent. Through the DLS analysis, the size and surface charge of the EGF-loaded nanoparticles are 352 ± 16 nm and 20.5 ± 2.3 mV, respectively. The encapsulation efficiency and the loading rate of the EGF in the nanoparticles were 93.13% and 0.044%. The optimal effective dosages of 24 mM Ag+ and 60 ug/mL EGF for the SCPEHG manufacture were first determined based on the results of antibacterial, cytotoxicity, and cell growth examinations. When the silver ions released in 48 hours, the SCPEHG release were 6.70 mg/L and we can find over 96% cells survival in vitro experiments. The EGF hydrogel release were 1.3 ng/mL in PBS in 48 hours, we also can notice that the cell grow up more fast than in water. We characterized the optimized SCPEHG and found that the composite hydrogel was able to provide sustained release of Ag+ and EGF, and exhibited a significantly higher hydration capacities, including the swelling degree and equilibrium water content, in PBS than those in deionized water, showing that the developed SCPEHG is highly applicable in the ion-rich environment such as burns wound site. In summary, we develop the hydrogel is highly advantageous for curing burns wound and enhancing cell growth.
關鍵字(中) ★ 銀離子抗菌
★ 水凝膠
★ 傷口癒合
★ 殼聚醣
★ 表皮生長因子
關鍵字(英) ★ Silver ions
★ hydrogel
★ wound healing
★ Chitosan
★ EGF
論文目次 第一章 緒論……………....……………………………1
第二章 研究背景……………………………..….……3
2.1燒燙傷介紹………………………………………………3
2.1.1第一度燒燙傷……………...…...……………..………3
2.1.2第二度燒燙傷……………....…………………...…….3
2.1.3第三度燒燙傷………………………………......…….4
2.1.4第四度燒燙傷……….…....…..………………...……4
2.2 Wallace九則計算法……….…….…......….…...……5
2.3燒燙傷主要併發症…………..………………………..6
2.4治療燒燙傷方式……………………………………….8
2.4.1水療療法(Hydrotherapy)….……………………8
2.4.2清創(Debridement) ………….………….……..8
2.4.3外科手術(Surgical Debridement)………….…9
2.4.4植皮重建手術(Graft Surgery)………….……..10
2.4.5藥物治療(Drug Therapy)…….…….…………10
2.4.6生物性清創(Biological Debridement)………10
2.4.7高壓氧治療(Hyperbaric Oxygen Therapy)..11
2.4.8傷口敷料(Wound Dressing) ………...………11
2.5燒燙傷敷料治療…………….……………………...12
2.5.1傳統傷口敷料(Traditional Wound Dressing).....12
2.5.2現代敷料(Modern Wound Dressing)……..…...….12
2.5.2.1水凝膠(Hydrogels)…………………….….13
2.5.2.2水膠體(Hydrocolloids)…………………...13
2.5.2.3藻酸鹽敷料(Alginates)……….………...…14
2.5.2.4泡沫敷料(Foams)……………………………15
2.5.2.5聚氨酯薄膜敷料(Polyurethane Films)…..16
2.5.2.6生物性敷料……….……...….…………….…16
2.5.2.7抗菌性敷料……….....……………………….17
2.6含銀離子敷料……………….…….………….….....…...18
2.7傷口癒合機制……………….…………...………………19
2.8傷口感染…….……………….…………..……………...21
2.9殼聚醣(Chitosan)…………………….…..………….….22
2.10聚乙烯醇………………………………………….…..…23
2.11表皮生長因子…………………...…………………….…23
2.12表皮葡萄球菌……………………………………….…24
第三章 實驗部分………………………..……………….25
3.1實驗藥品、材料、儀器設備……………….…...………25
3.1.1材料及藥品……………………………….…………25
3.1.2儀器…………………………………………………26
3.2檢量線……………….…………….…….…………...28
3.3實驗整體流程……….…………………….………...…30
3.4製備包覆EGF之殼聚醣奈米粒子……….…….….....30
3.5 CTENPs物理&化學特性分析…………………………32
3.5.1粒徑分析………………….…………………………32
3.5.2表面電位分析………………..……………………32
3.5.3超高真空場發射掃描式電子顯微鏡拍攝………..32
3.5.4包覆率分析…………………….……………………33
3.5.5負載率分析…………………………………………33
3.5.6釋放分析……………..……………………………33
3.6製備含銀離子殼聚醣水凝膠(SCPEHG)..………….....34
3.6.1超高真空場發射掃描式電子顯微鏡拍攝………….35
3.6.2熱重分析儀(TGA)…………………………………..35
3.6.3 SCPEHG體外釋放EGF……….………………….35
3.6.4 SCPEHG體外釋放銀離子…….………………….36
3.7抗菌試驗抑制圈…………………..……..……………...37
3.8 點盤實驗………………………………………..….……38
3.9細胞培養…………………..………………………...40
3.10細胞毒性測試…………….………………..………….…40
3.11 EGF細胞生長試驗……………………….………….…41
3.12機械性質測試延伸率與抗拉強度試驗….………….…43
3.13水膠膨潤率與含水率試驗……..……….………….….43
3.14統計與分析…………………………….……………….44
第四章 結果與討論………………………………....45
4.1 CTENPs物性及化性分析………….…………...………45
4.2 CTENPs之表面形態分析………………..……………46
4.3 EGF包覆CTENPs之釋放試驗………...….………….47
4.4 SCPEHG之表面形態分析…………………………...48
4.5 SCPEHG對表皮葡萄球菌抗菌試驗………………..….49
4.5.1抑制圈……………………………...……………….49
4.5.2點盤試驗…………………….……………………....50
4.6 SCPEHG銀離子毒性體外實驗分析…………...……...52
4.7 SCPEHG對人類角質形成細胞生長實驗分析….......…..54
4.8最終產品點盤抗菌實驗…………………………………57
4.9 SCPEHG 體外EGF釋放分析………………….……....58
4.10 SCPEHG 銀離子釋放分析………………….....…..…59
4.11 TGA結構分析………………….……........................60
4.12機械性質試驗延伸率及抗拉強度…………….…….…61
4.13 Chitosan Hydrogel膨潤率及含水率……………………62
第五章 結論…………………………………………64
第六章 未來展望…………………………………………65
參考文獻…………………………………………………66
參考文獻 1. Mayhall, C.G., The epidemiology of burn wound infections: then and now. Clin Infect Dis, 2003. 37(4): p. 543-50.
2. Robins, E.V., Immunosuppression of the burned patient. Crit Care Nurs Clin North Am, 1989. 1(4): p. 767-74.
3. Cohen, J., The immunopathogenesis of sepsis. Nature, 2002. 420(6917): p. 885-91.
4. Gan, Q. and T. Wang, Chitosan nanoparticle as protein delivery carrier--systematic examination of fabrication conditions for efficient loading and release. Colloids Surf B Biointerfaces, 2007. 59(1): p. 24-34.
5. Johnson, R.M. and R. Richard, Partial-thickness burns: identification and management. Advances in skin & wound care, 2003. 16(4): p. 178-187.
6. Grade, S., et al., Serum albumin reduces the antibacterial and cytotoxic effects of hydrogel-embedded colloidal silver nanoparticles. Rsc Advances, 2012. 2(18): p. 7190-7196.
7. Shlash, S.O., et al., Demographic characteristics and outcome of burn patients requiring skin grafts: a tertiary hospital experience. Int J Burns Trauma, 2016. 6(2): p. 30-6.
8. Foley, F.D., The burn autopsy. Fatal complications of burns. Am J Clin Pathol, 1969. 52(1): p. 1-13.
9. Pencle, F.J., H. Zulfiqar, and M. Waseem, First Degree Burn. 2017.
10. Parrett, B.M., et al., Fourth-degree burns to the lower extremity with exposed tendon and bone: a ten-year experience. Journal of burn care & research, 2006. 27(1): p. 34-39.
11. Church, D., et al., Burn wound infections. Clinical microbiology reviews, 2006. 19(2): p. 403-434.
12. Hettiaratchy, S. and R. Papini, Initial management of a major burn: II—assessment and resuscitation. Bmj, 2004. 329(7457): p. 101-103.
13. Pallua, N., Methods of burn treatment. Part I: general aspects. Der Chirurg; Zeitschrift fur alle Gebiete der operativen Medizen, 2006. 77(1): p. 81-92; quiz 93-4.
14. Robins, E.V., Burn shock. Critical care nursing clinics of North America, 1990. 2(2): p. 299-307.
15. Rowan, M.P., et al., Burn wound healing and treatment: review and advancements. Critical care, 2015. 19(1): p. 243.
16. Williams, F.N., et al., The leading causes of death after burn injury in a single pediatric burn center. Critical care, 2009. 13(6): p. 1-7.
17. Atiyeh, B.S., S.N. Hayek, and S.W. Gunn, New technologies for burn wound closure and healing—review of the literature. Burns, 2005. 31(8): p. 944-956.
18. Tarnowski, K.J., et al., Pediatric burn injury: Self-versus therapist-mediated debridement. Journal of pediatric psychology, 1987. 12(4): p. 567-579.
19. McCulloch, J., Physical modalities in wound management: Ultrasound, vasopneumatic devices and hydrotherapy. Ostomy/wound management, 1995. 41(5): p. 30-2, 34, 36-7.
20. Paquette, D. and V. Falanga, Leg ulcers. Clinics in geriatric medicine, 2002. 18(1): p. 77-88.
21. Manna, B. and C.A. Morrison, Wound debridement, in StatPearls [Internet]. 2020, StatPearls Publishing.
22. Granick, M., et al., Toward a common language: surgical wound bed preparation and debridement. Wound repair and regeneration, 2006. 14: p. S1-S10.
23. Vaghardoost, R., et al., Effect of low-level laser therapy on the healing process of donor site in patients with grade 3 burn ulcer after skin graft surgery (a randomized clinical trial). Lasers in medical science, 2018. 33(3): p. 603-607.
24. Condé-Green, A., et al., Fat grafting and adipose-derived regenerative cells in burn wound healing and scarring: a systematic review of the literature. Plastic and reconstructive surgery, 2016. 137(1): p. 302-312.
25. Arnold, C., New Science Shows How Maggots Heal Wounds. Scientific American, 2013. 308(4).
26. Dauwe, P.B., et al., Does hyperbaric oxygen therapy work in facilitating acute wound healing: a systematic review. Plastic and reconstructive surgery, 2014. 133(2): p. 208e-215e.
27. Myers, R.A., Hyperbaric oxygen therapy for trauma: crush injury, compartment syndrome, and other acute traumatic peripheral ischemias. International anesthesiology clinics, 2000. 38(1): p. 139-151.
28. Zamierowski, D.S., Wound dressing and treatment method. 1990, Google Patents.
29. Lock, P.M. and D.R. Webb, Wound dressing materials. 1980, Google Patents.
30. Dzurická, B.L., P. Matoušková, and M. Weiter, Zadání diplomové práce.
31. Chern, P.L., C.L. Baum, and C.J. Arpey, Biologic dressings: current applications and limitations in dermatologic surgery. Dermatologic surgery, 2009. 35(6): p. 891-906.
32. Dhivya, S., V.V. Padma, and E. Santhini, Wound dressings–a review. BioMedicine, 2015. 5(4).
33. Donati, I. and S. Paoletti, Material properties of alginates, in Alginates: Biology and applications. 2009, Springer. p. 1-53.
34. Batdorf, D. and M.-C. Yun, Compressible foam wound dressing. 2002, Google Patents.
35. Brown, G.L., et al., Enhancement of wound healing by topical treatment with epidermal growth factor. New England Journal of Medicine, 1989. 321(2): p. 76-79.
36. Moulin, V., Growth factors in skin wound healing. European journal of cell biology, 1995. 68(1): p. 1-7.
37. Boateng, J. and O. Catanzano, Advanced therapeutic dressings for effective wound healing—a review. Journal of pharmaceutical sciences, 2015. 104(11): p. 3653-3680.
38. Fong, J. and F. Wood, Nanocrystalline silver dressings in wound management: a review. international Journal of Nanomedicine, 2006. 1(4): p. 441.
39. Feng, Q.L., et al., A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of biomedical materials research, 2000. 52(4): p. 662-668.
40. Eming, S.A., T. Krieg, and J.M. Davidson, Inflammation in wound repair: molecular and cellular mechanisms. Journal of Investigative Dermatology, 2007. 127(3): p. 514-525.
41. Gurtner, G.C., et al., Wound repair and regeneration. Nature, 2008. 453(7193): p. 314-321.
42. Wang, L., et al., Drug resistance analysis of bacterial strains isolated from burn patients. Genet. Mol. Res, 2014. 13(9727): p. 34.
43. Bhattarai, N., J. Gunn, and M. Zhang, Chitosan-based hydrogels for controlled, localized drug delivery. Advanced drug delivery reviews, 2010. 62(1): p. 83-99.
44. Jin, L. and R. Bai, Mechanisms of lead adsorption on chitosan/PVA hydrogel beads. Langmuir, 2002. 18(25): p. 9765-9770.
45. Muratoglu, O.K., et al., PVA hydrogel. 2007, Google Patents.
46. Jiang, S., S. Liu, and W. Feng, PVA hydrogel properties for biomedical application. Journal of the mechanical behavior of biomedical materials, 2011. 4(7): p. 1228-1233.
47. Salman, S., N. Bakr, and H. Humad, Section C: physical sciences DSC and TGA properties of PVA films filled with Na2S2O35H2O salt. J. Chem. Biol. Phys. Sci., 2018. 8: p. 001-011.
48. Shirakata, Y., et al., Heparin-binding EGF-like growth factor accelerates keratinocyte migration and skin wound healing. Journal of cell science, 2005. 118(11): p. 2363-2370.
49. Barrientos, S., et al., Growth factors and cytokines in wound healing. Wound repair and regeneration, 2008. 16(5): p. 585-601.
50. Méric, G., et al., Disease-associated genotypes of the commensal skin bacterium Staphylococcus epidermidis. Nature communications, 2018. 9(1): p. 1-11.
51. Tripathi, S., G. Mehrotra, and P. Dutta, Physicochemical and bioactivity of cross-linked chitosan–PVA film for food packaging applications. International journal of biological macromolecules, 2009. 45(4): p. 372-376.
52. https://www.roosinmedical.com/first-aid-products/burn-gel-dressing/hydrogel-burn-plaster.html.
53. https://www.acelity.com/healthcare-professionals/global-product-catalog/catalog/nu-derm-hydrocolloid-wound-dressing.
54. https://www.fvdvooren.nl/alginaat-kompres-melgisorb-cavity-streng-32cm/itm/13164.
55. https://indonesian.alibaba.com/product-detail/hot-selling-gel-foam-dressing-to-stop-bleeding-for-wholesales-60369888288.html.
56. https://www.santinel.com/fr/produits/pansement/pansement-tegaderm-6-x-7-cm-seconde-peau-brulure-et-coupure/.

57. http://www.acrobiomedical.com/index.php?option=product&lang=cht&task=pageinfo&id=146&belongid=37&index=1.
58 .
https://www.molnlycke.cn/products-solutions/mepilex-ag/.
59. https ://en.wikipedia.org/w/index.php?title=Staphylococcus&oldid=9712336.
指導教授 李宇翔(Yu-Hsiang Lee) 審核日期 2020-12-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明