博碩士論文 105887602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.129.69.151
姓名 范明新(Pham Minh Tan)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 有益微生物的真菌學和細菌學研究: 在農業和人類健康中的應用
(Mycological and bacteriological studies of beneficial microbes: Applications for Agriculture and Human Health)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近來從研究發現微生物可以進行改造,以調節植物抵抗禦環境的防禦機制,並強烈增強植物的生長和健康。木腐蘑菇在木質纖維素培養基中可促進植物生長並有提高農業生產力的潛力,杏鮑菇是存在於自然界的白色腐生性的真菌菌株,研究發現其可持續的在30oC和pH 5的環境下將10 mM L-色氨酸(TRP)轉化為酪氨酸-3-乙酸(IAA),跟其它的杏鮑菇種相比,杏鮑菇更適合在更適合於亞熱帶和熱帶氣候生長。真菌在纖維素存在會使用IPA途徑合成IAA,但是環境中高濃度的外源IAA(10 µg / mL)可能會抑制真菌的生長,IAA在單子葉植物(大米)中,發現會增加側根的數量,而在雙子葉植物(番茄)中,根的長度會增長,通過實驗證明了對線蟲有吸引力和毒性。杏鮑菇有較佳的草酸溶解在菌絲體的區域有氧化物修飾的基質(CaO和ZnO)。
在體外試管雙重培養實驗中發現肺假單尖孢鐮刀菌和霍亂單胞菌有拮抗作用,這些新發現及影響可能為在農業中的應用帶來新的見解。相反,Marasmius palmivorus在台灣的福爾摩沙棕櫚(Arenga engleri)樹木上產生症狀,從而使棕櫚樹分枝桿菌在棕櫚種植園中的危害比以往預期的要大。
近來研究發現人體腸道細菌中檢測到電子產生可能與人體健康密切相關,腸系膜十二指腸菌Leuconostoc mesenteroides可促使亞油酸發酵來當作電子抗氧化機制,連續6週攝入高脂飲食(HFD)會誘導的ROS(活性氧)的產生,脂肪細胞3T3-L1分化過程中,脂質積累的增加與ROS的釋放同時發生,這些可能都與腸系膜十二指腸菌誘導的亞油酸發酵產生的電子有關,提供對脂肪形成過程中脂質積累和ROS產生以及高脂飲食誘導的ROS的抑製作用,此外Cyclophilin A蛋白在腸道中可抑制電子產生的產生,我們的研究結果表明,腸系膜十二指腸菌藉由亞油酸的發酵的通過電子產生抑制ROS和脂質的產生,而電子產生受Cyclophilin A蛋白調節。
膜糖蛋白是嚴重急性呼吸系統綜合症冠狀病毒2(SARS-CoV-2)的最豐富蛋白質,但其在2019年冠狀病毒病(COVID-19)中的作用機制尚未完全。與綠色熒光蛋白 (GFP)的小鼠相比,鼻內接種膜糖蛋白的小鼠在支氣管肺泡灌洗液(BALF)白細胞介素-6增加,白細胞介素-6是細胞因子風暴的標誌。膜糖蛋白誘導的高水平的白細胞介素-6在磷酸二酯酶4(PDE4B)敲除小鼠中顯著降低,證明了PDE4B在白細胞介素-6信號傳導中的重要作用。鼠李糖乳桿菌EH8菌株的菌絲體發酵產生了丁酸,它可以下調巨噬細胞中PDE4B的表達和IL-6的分泌。用菌絲體餵養小鼠可增加鼠李糖乳桿菌的相對豐度。鼠李糖乳桿菌和菌絲體補充兩週後,可大大降低膜糖蛋白誘導的PDE4B表達和IL-6分泌。鼠李糖乳桿菌和菌絲體對膜糖蛋白的益生菌活性在用游離脂肪酸受體2 (Ffar2) 拮抗劑GLPG-0974處理的小鼠中被取消。 Ffar2在腸肺軸中的激活以下調PDE4B-IL-6信號傳導可能為開發包括益生菌在內的治療包括COVID-19中細胞因子風暴的治療方法提供靶點。
摘要(英) Microorganisms have recently been engineered to modulate plant defense mechanisms against environmental stress and strongly enhance plant growth and health. The promising plant-growth promoting capability of a wood-decay mushroom in lignocellulosic media indicates the potential to enhance the agricultural productivity in a sustainable way. A wild native strain of a white rot fungus identified as Pleurotus pulmonarius was found to convert 10 mM L-tryptophan (TRP) to indole-3-acetic acid (IAA) under the optimal growth conditions of 30oC and pH 5. The higher temperature optimum of P. pulmonarius isolated from subtropical environment compared to other Pleurotus species from temperate regions makes it more suitable for application in subtropical/tropical regions. Results of gas chromatography-mass spectrometry indicated IAA synthesis through the IPA pathway when using cellulose as a sole carbon source. However, high concentration of exogenous IAA (10 µg/mL) in the environment could inhibit the fungal growth. The mycelium as well as the culture filtrate promoted the growth and chlorophyll content of seedlings. In a monocotyledonous plant (rice), the number of lateral roots was increased experimentally, whereas in a dicotyledonous plant (tomato), the fungus led to an increased length of shoots and roots. Moreover, the attraction and toxicity against the nematode Caenorhabditis elegans was proven experimentally. Solubilized oxalates activity of P. pulmonarius on oxide-amended substrates (CaO and ZnO) showed clear zones under the mycelium. A weak antifungal ability against Fusarium oxysporum and Lasiodiplodia hormozganensis was observed in vitro dual cultures. The combination of these capabilities of P. pulmonarius may provide new opportunities for application in agriculture. By contrast, Marasmius palmivorus produced symptoms on Formosa palm (Arenga engleri) seedlings in Taiwan, causing a greater risk by M. palmivorus in palm plantations than hitherto anticipated.
Although several electrogenic bacteria have been identified, the physiological effect of electricity generated by bacteria on host health remains elusive. We found that probiotic Leuconostoc mesenteroides can metabolize linoleic acid to yield electricity via an intracellular cyclophilin A-dependent pathway. Inhibition of cyclophilin A significantly abolished bacterial electricity and the suppressive effect of Leuconostoc mesenteroides on the accumulation of reactive oxygen species (ROS) and lipids during 3T3-L1 adipocyte differentiation. Oral administration of Leuconostoc mesenteroides plus linoleic acid remarkably reduced high-fat-diet (HFD)-induced formation of 4-hydroxy-2-nonenal (4-HNE), a ROS biomarker, and decreased abdominal fat mass in mice. The reduction of 4-HNE and abdominal fat mass was reversed when cyclophilin A inhibitor-pretreated bacteria were administered to mice. Our studies present a novel mechanism of reducing abdominal fat mass by limiting adipogenesis-induced ROS using electricity produced by probiotic bacteria.
Membrane glycoprotein is the most abundant protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but its role in coronavirus disease 2019 (COVID-19) has not been fully characterized. Mice intranasally inoculated with membrane glycoprotein substantially increased the interleukin (IL)-6, a hallmark of the cytokine storm, in bronchoalveolar lavage fluid (BALF), compared to mice inoculated with green fluorescent protein (GFP). The high level of IL-6 induced by membrane glycoprotein was significantly diminished in phosphodiesterase 4 (PDE4B) knockout mice, demonstrating the essential role of PDE4B in IL-6 signaling. Mycelium fermentation of Lactobacillus rhamnosus (L. rhamnosus) EH8 strain yielded butyric acid, which can down-regulate the PDE4B expression and IL-6 secretion in macrophages. Feeding mice with mycelia increased the relative abundance of commensal L. rhamnosus. Two-week supplementation of mice with L. rhamnosus plus mycelia considerably decreased membrane glycoprotein-induced PDE4B expression and IL-6 secretion. The probiotic activity of L. rhamnosus plus mycelia against membrane glycoprotein was abolished in mice treated with GLPG-0974, an antagonist of free fatty acid receptor 2 (Ffar2). Activation of Ffar2 in the gut-lung axis for down-regulation of the PDE4B-IL-6 signalling may provide targets for development of modalities including probiotics for treatment of the cytokine storm in COVID-19.
關鍵字(中) ★ 微生物
★ L-色氨酸
★ 3-乙酸
★ 福爾摩沙棕櫚
★ 現人體腸道細菌
關鍵字(英) ★ Microorganism
★ L-tryptophan
★ 3-acetic acid
★ Formosa Palm
★ Human intestinal bacteria
論文目次 TABLE OF CONTENTS

CHINESE ABSTRACT i
ENGLISH ABSTRACT iii
ACKNOWLEDGEMENTS v
TABLE OF CONTENTS vii
LIST OF FIGURES xii
LIST OF TABLES xx
CHAPTER I INTRODUCTION 1
1.1 Plant biotic and abiotic stress 1
1.2 White rot fungi 1
1.2.1 Pleurotus pulmonarius 2
1.2.2 Marasmius palmivorus 2
1.3 Effect of ligninolytic mushroom on plant growth and health 3
1.3.1 Plant probiotic 3
1.3.2 Pathogenic Marasmiaceae on Formosa palm (Arenga engleri) 3
1.3 Human gut prebiotic from mushroom 4
1.4 Oxidative stress-related obesity 4
1.5 Leuconostoc mesenteroides 5
1.6 Cyclophilin A (CypA) 6
1.7 Electron production by bacteria 6
1.8 Coronavirus disease 2019 (Covid-19) 7
1.9 Cytokine storm in COVID-19 pneumonia 7
2.0 Gut microbiota treatment in COVID-19 pneumonia 8
CHAPTER II THE PLANT GROWTH-PROMOTING POTENTIAL OF THE MESOPHILIC WOOD-ROT MUSHROOM PLEUROTUS PULMONARIUS 9
2.1 Introduction 9
2.2 Materials and methods 10
2.2.1 Fungal strains 10
2.2.2 DNA isolation and amplification of 5.8S-ITS rDNA regions 10
2.2.3 Phylogenetic analysis 11
2.2.4 Fungal growth in lignocellulosic medium 11
2.2.5 IAA production by P. pulmonarius in CMC medium 12
2.2.6 IAA estimation 12
2.2.7 Gas chromatography–mass spectrometry analysis of IAA produced by P. pulmonarius 13
2.2.8 Effects of exogenously tested IAA on P. pulmonarius growth 13
2.2.9 The effect of culture crude extract on rice coleoptile elongation 13
2.2.10 The effect of growing mycelium and culture crude extract on rice and tomato seedlings 14
2.2.11 Measuring chlorophyll content 14
2.2.12 Statistical analysis 14
2.3 Results 15
2.3.1 Identification and phylogenetic analyses of the test fungi 15
2.3.2 Lignocellulosic substrate utilization test 16
2.3.3 Triggered-IAA production by TRP in P. pulmonarius 18
2.3.4 Effects of exogenously tested IAA on P. pulmonarius growth 20
2.3.5 Tryptophan-dependent auxin production by P. pulmonarius 20
2.4 Discussion 25
CHAPTER III ANTAGONISM AGAINST SOIL NEMATODES AND PLANT PATHOGENS AND TEST OF OXIDE SOLUBILIZATION IN A SUBTROPICAL WOOD-DECAY MUSHROOM 29
3.1 Introduction 29
3.2 Materials and methods 30
3.2.1 Strains 30
3.2.2 Chemotaxis and nematicidal assay 30
3.2.3 In vitro antagonism of P. pulmonarius against potential plant pathogens 31
3.2.4 Oxide solubilization 31
3.2.5 Statistical data analysis 32
3.3 Results 32
3.3.1 Attraction and toxicity of P. pulmonarius to C. elegans 32
3.3.2 In vitro antagonism of P. pulmonarius against potential plant pathogens 33
3.3.3 Oxide solubilization 34
3.4 Discussion 34
CHAPTER IV FIRST REPORT OF THE OIL PALM DISEASE FUNGUS MARASMIUS PALMIVORUS FROM TAIWAN CAUSING STEM ROT DISEASE ON NATIVE FORMOSA PALM ARENGA ENGLERI AS NEW HOST 37
4.1 Introduction 37
4.2 Materials and methods 38
4.2.1 Collection and morphology 38
4.2.2 DNA isolation and amplification of 5.8S-ITS rDNA region 39
4.2.3 Phylogenetic analysis 39
4.2.4 Pathogenicity tests on palm seedlings 39
4.3 Results 40
4.3.1 Molecular identification 40
4.3.2 Morphology 42
4.3.3 Pathogenicity tests on palm seedlings 43
4.4 Discussion 45
CHAPTER V LEUCONOSTOC MESENTEROIDES MEDIATES AN ELECTROGENIC PATHWAY TO ATTENUATE THE ACCUMULATION OF ABDOMINAL FAT MASS INDUCED BY HIGH FAT DIET 47
5.1 Introduction 47
5.2 Materials and methods 48
5.2.1 Ethics statement 48
5.2.2 Bacterial culture 49
5.2.3 Electricity detection 49
5.2.4 Real-time polymerase chain reaction (PCR) 49
5.2.5 Ferrozine assays 50
5.2.6 Gas chromatography mass spectrometry (GC-MS) analysis 50
5.2.7 Bacterial adhesion assay 50
5.2.8 Cell culture and differentiation 51
5.2.9 Oil red O staining 51
5.2.10 Measurement of intracellular ROS 52
5.2.11 High-fat-diet (HFD) fed mice 52
5.2.12 Western blotting 52
5.2.13 Statistical analysis 53
5.3 Results 53
5.3.1 Electricity and SCFAs were produced by L. mesenteroides EH-1 plus linoleic acid 53
5.3.2 Adipocyte differentiation was attenuated by fermentation media of L. mesenteroides and butyrate 55
5.3.3 The formation of ROS and 4-HNE was suppressed by L. mesenteroides EH-1 57
5.3.4 Cyclophilin A mediated electricity production of L. mesenteroides EH-1 59
5.3.5 Cyclophilin A was essential for bacterial adhesion and reduction of the formation of 4-HNE and abdominal fat depots 61
5.4 Discussion 63
CHAPTER VI GUT PROBIOTIC LACTOBACILLUS RHAMNOSUS ATTENUATES PDE4B-MEDIATED INTERLEUKIN-6 INDUCED BY SARS-COV-2 MEMBRANE GLYCOPROTEIN 68
6.1 Introduction 68
6.2 Materials and Methods 69
6.2.1 Ethics statement 69
6.2.2 Cloning, expression and purification of SARS-CoV-2 membrane glycoprotein 69
6.2.3 Detection of IL-6 in BALF 70
6.2.4 Real-time polymerase chain reaction (RT PCR) 70
6.2.5 Mycelium preparation 70
6.2.6 Mycelium fermentation of L. rhamnosus EH8 71
6.2.7 Quantification of L. rhamnosus 71
6.2.8 Cell culture 71
6.2.9 Detection of butyric acid by high performance liquid chromatography (HPLC) 72
6.2.10 Inhibition of Ffar2 72
6.2.11 Statistical analysis 72
6.3 Results 72
6.3.1 PDE4B is essential for induction of IL-6 by SARS-CoV-2 membrane glycoprotein 72
6.3.2 Mycelium fermentation of L. rhamnosus EH8 mitigates SARS-CoV-2 membrane glycoprotein-induced IL-6 74
6.3.3 Butyric acid was produced by mycelium fermentation of L. rhamnosus EH8 and reduced IL-6 secretion and PDE4B expression in macrophages 75
6.3.4 Ffar2 mediates the effect of mycelium fermentation of L. rhamnosus EH8 on reduction of PDE4B and IL-6 77
6.4 Discussion 78
CHAPTER VII CONCLUSION 81
CHAPTER VIII OUTLOOK 84
BIBLIOGRAPHY 86
APPENDIX 1 LIST OF CONFERENCES 115
APPENDIX 2 LIST OF PUBLICATIONS 116
Appendix 2.1 Journal papers 116
Appendix 2.2 Manuscript in preparation 116
參考文獻 BIBLIOGRAPHY

1. Rockström, J. & Falkenmark, M. Semiarid crop production from a hydrological perspective: gap between potential and actual yields. Critical reviews in plant sciences 19, 319-346 (2000)
2. Hammond-Kosack, K. Responses to plant pathogens. Biochemistry and molecular biology of plants, 1102-1109 (2000)
3. Wang, W., Vinocur, B. & Altman, A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218, 1-14 (2003)
4. Atkinson, N. J. & Urwin, P. E. The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of experimental botany 63, 3523-3543 (2012)
5. Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S. & Mittler, R. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant physiology 134, 1683-1696 (2004)
6. Roberts, D. P. & Mattoo, A. K. Sustainable agriculture—Enhancing environmental benefits, food nutritional quality and building crop resilience to abiotic and biotic stresses. Agriculture 8, 8 (2018)
7. Dessaux, Y., Grandclément, C. & Faure, D. Engineering the rhizosphere. Trends in plant science 21, 266-278 (2016)
8. Aust, S. D. Mechanisms of degradation by white rot fungi. Environmental health perspectives 103, 59-61 (1995)
9. Chandra, P., Arora, D. S., Pal, M. & Sharma, R. K. Antioxidant potential and extracellular auxin production by white rot fungi. Applied Biochemistry and Biotechnology, 1-9 (2018)
10. Sánchez, C. Cultivation of Pleurotus ostreatus and other edible mushrooms. Applied microbiology and biotechnology 85, 1321-1337 (2010)
11. Mane, V. P., Patil, S. S., Syed, A. A. & Baig, M. M. V. Bioconversion of low quality lignocellulosic agricultural waste into edible protein by Pleurotus sajor-caju (Fr.) Singer. Journal of Zhejiang University Science B 8, 745 (2007)
12. Cohen, R., Persky, L. & Hadar, Y. Biotechnological applications and potential of wood-degrading mushrooms of the genus Pleurotus. Appl. Microbiol. Biotechnol. 58, 582-594 (2002)
13. Yürekli, F., Yesilada, O., Yürekli, M. & Topcuoglu, S. Plant growth hormone production from olive oil mill and alcohol factory wastewaters by white rot fungi. World Journal of Microbiology and Biotechnology 15, 503-505 (1999)
14. Fu, S.-F., Wei, J.-Y., Chen, H.-W., Liu, Y.-Y., Lu, H.-Y. & Chou, J.-Y. Indole-3-acetic acid: A widespread physiological code in interactions of fungi with other organisms. Plant Signaling & Behavior 10, e1048052 (2015)
15. Ünyayar, S., Ünal, E. & Ünyayar, A. Production of auxin and abscisic acid by Phanerochaete chrysosporiumme446 immobilized on polyurethane foam. Turkish Journal of Biology 24, 769-774 (2000)
16. Yurekli, F., Geckil, H. & Topcuoglu, F. The synthesis of indole-3-acetic acid by the industrially important white-rot fungus Lentinus sajor-caju under different culture conditions. Mycological research 107, 305-309 (2003)
17. Ünyayar, S. Changes in abscisic acid and indole-3-acetic acid concentrations in Funalia trogii (Berk.) Bondartsev & Singer and Phanerochaete chrysosporium Burds. ME446 subjected to salt stress. Turkish Journal of Biology 26, 1-4 (2002)
18. Milagres, A. M., Machuca, A. & Napoleao, D. Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. Journal of Microbiological Methods 37, 1-6 (1999)
19. Bettin, F., Cousseau, F., Martins, K., Boff, N. A., Zaccaria, S., Moura da Silveira, M. & Pinheiro Dillon, A. J. Phenol removal by laccases and other phenol oxidases of Pleurotus sajor-caju PS-2001 in submerged cultivations and aqueous mixtures. J. Environ. Manage. 236, 581-590 (2019)
20. Cilerdzic, J., Stajic, M., Vukojevic, J., Milovanovic, I. & Muzgonja, N. Antioxidant and antifungal potential of Pleurotus ostreatus and Agrocybe cylindracea basidiocarps and mycelia. Current Pharmaceutical Biotechnology 16, 179-186 (2015)
21. Bose, A., Shah, D. & Keharia, H. Production of indole-3-acetic-acid (IAA) by the white rot fungus Pleurotus ostreatus under submerged condition of Jatropha seedcake. Mycology 4, 103-111 (2013)
22. Pham, M. T., Huang, C. M. & Kirschner, R. The plant growth‐promoting potential of the mesophilic wood‐rot mushroom Pleurotus pulmonarius. Journal of applied microbiology 127, 1157-1171 (2019)
23. Silva, S. O., Costa, S. M. G. d. & Clemente, E. Chemical composition of Pleurotus pulmonarius (Fr.) Quél., substrates and residue after cultivation. Brazilian Archives of Biology and Technology 45, 531-535 (2002)
24. Desjardin, D., Wannathes, N., Hyde, K., Perry, B. & Lumyong, S. A monograph of Marasmius (Basidiomycota) from Northern Thailand based on morphological and molecular (ITS sequences) data. Fungal Divers 37, 209-306 (2009)
25. Miyamoto, T., Igarashi, T. & Takahashi, K. Lignin-degrading ability of litter-decomposing basidiomycetes from Picea forests of Hokkaido. Mycoscience 41, 105-110 (2000)
26. Tagger, S., Périssol, C., Gil, G., Vogt, G. & Le Petit, J. Phenoloxidases of the white-rot fungus Marasmius quercophilus isolated from an evergreen oak litter (Quercus ilex L.). Enzyme and Microbial Technology 23, 372-379 (1998)
27. Su, H., Thseng, F., Chen, J. & Ko, W.-H. Production of volatile substances by rhizomorphs of Marasmius crinisequi and its significance in nature. Fungal Diversity 49, 199-202 (2011)
28. Desjardin, D. & Perry, B. The gymnopoid fungi (Basidiomycota, Agaricales) from the Republic of São Tomé and Príncipe, West Africa. Mycosphere 8, 1317-1391 (2017)
29. Kirschner, R., Lee, I.-S. & Chen, C.-J. Ovularia puerariae Sawada is the hyphomycetous anamorph of a new Marasmius species on living leaves of kudzu (Pueraria montana, Fabaceae). Mycologia 105, 781-792 (2013)
30. Evans, H., Holmes, K. & Reid, A. Phylogeny of the frosty pod rot pathogen of cocoa. Plant Pathology 52, 476-485 (2003)
31. Schneider, W. D. H., Fontana, R. C., Mendonça, S., de Siqueira, F. G., Dillon, A. J. P. & Camassola, M. High level production of laccases and peroxidases from the newly isolated white-rot basidiomycete Marasmiellus palmivorus VE111 in a stirred-tank bioreactor in response to different carbon and nitrogen sources. Process Biochemistry 69, 1-11 (2018)
32. Haas, D. & Keel, C. Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annual review of phytopathology 41, 117-153 (2003)
33. Bosco, M., Baruffa, E. & Picard, C. (2006) Organic breeding should select for plant genotypes able to efficiently exploit indigenous Probiotic Rhizobacteria. In Organic farming and European rural development-proceedings of the european joint organic congress (Andreasen, C. B., Elsgaard, L., Sondegaard Sorensen, L., and Hansen, G., eds) pp. 376-377, DARCOF
34. Singh, K., Kallali, B., Kumar, A. & Thaker, V. Probiotics: A review. Asian Pacific Journal of Tropical Biomedicine 1, S287-S290 (2011)
35. Fu, S.-F., Sun, P.-F., Lu, H.-Y., Wei, J.-Y., Xiao, H.-S., Fang, W.-T., Cheng, B.-Y. & Chou, J.-Y. Plant growth-promoting traits of yeasts isolated from the phyllosphere and rhizosphere of Drosera spatulata Lab. Fungal biology 120, 433-448 (2016)
36. Picard, C., Baruffa, E. & Bosco, M. Enrichment and diversity of plant-probiotic microorganisms in the rhizosphere of hybrid maize during four growth cycles. Soil Biology & Biochemistry 40, 106-115 (2008)
37. Picard, C. & Bosco, M. Genotypic and phenotypic diversity in populations of plant-probiotic Pseudomonas spp. colonizing roots. Naturwissenschaften 95, 1-16 (2008)
38. Hossain, M. M., Sultana, F., Miyazawa, M. & Hyakumachi, M. The plant growth-promoting fungus Penicillium spp. GP15-1 enhances growth and confers protection against damping-off and anthracnose in the cucumber. Journal of oleo science 63, 391-400 (2014)
39. Hossain, M. M., Sultana, F. & Islam, S. Plant growth-promoting fungi (PGPF): phytostimulation and induced systemic resistance. In Plant-microbe interactions in agro-ecological perspectives, (Springer2017)
40. Shoresh, M., Harman, G. E. & Mastouri, F. Induced systemic resistance and plant responses to fungal biocontrol agents. Annual review of phytopathology 48, 21-43 (2010)
41. Jiang, R. Plant resources with economical value-Formosa palm, winged bean, qinoa (Council of Agriculture, Executive Yuan, Taitung, Taiwan, ISBN 978-986-01-4986-9 (in Chinese), 2018)
42. Facciola, S. Cornucopia II: A source book of edible plants 2nd edn, (Vista, CA, Kampong Publications1998)
43. Reddy, O., Nair, R. & Majumdar, A. Outbreaks and new records. India. Marasmius bunch rot in an oil-palm plantation in the Andaman and Nicobar Islands. FAO Plant Protection Bulletin 35, 33-34 (1987)
44. Singh, K. G. (1973) A check-list of host and diseases in peninsular Malaysia. p. 189, Bulletin, Ministry of Agriculture and Fisheries, Malaysia
45. Turner, P. D. Oil palm diseases and disorders (Oxford Univ. Press1981)
46. Singdevsachan, S. K., Auroshree, P., Mishra, J., Baliyarsingh, B., Tayung, K. & Thatoi, H. Mushroom polysaccharides as potential prebiotics with their antitumor and immunomodulating properties: A review. Bioactive carbohydrates and dietary fibre 7, 1-14 (2016)
47. Synytsya, A., Míčková, K., Synytsya, A., Jablonský, I., Spěváček, J., Erban, V., Kováříková, E. & Čopíková, J. Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: Structure and potential prebiotic activity. Carbohydrate polymers 76, 548-556 (2009)
48. Bobek, P. & Galbavy, S. Effect of pleuran (beta-glucan from Pleurotus ostreatus) on the antioxidant status of the organism and on dimethylhydrazine-induced precancerous lesions in rat colon. British journal of biomedical science 58, 164 (2001)
49. Pedneault, K., Angers, P., Avis, T. J., Gosselin, A. & Tweddell, R. J. Fatty acid profiles of polar and non-polar lipids of Pleurotus ostreatus and P. cornucopiae var.‘citrino-pileatus’ grown at different temperatures. mycological research 111, 1228-1234 (2007)
50. Hossain, M. S., Alam, N., Amin, S. R., Basunia, M. & Rahman, A. Essential fatty acid contents of Pleurotus ostreatus, Ganoderma lucidum and Agaricus bisporus. Bangladesh J Mushroom 1, 1-7 (2007)
51. Wellen, K. E. & Hotamisligil, G. S. Obesity-induced inflammatory changes in adipose tissue. The Journal of Clinical Investigation 112, 1785-1788 (2003)
52. Weisberg, S. P., McCann, D., Desai, M., Rosenbaum, M., Leibel, R. L. & Ferrante, A. W. Obesity is associated with macrophage accumulation in adipose tissue. The Journal of Clinical Investigation 112, 1796-1808 (2003)
53. Walker, E. & Wolfe, B. M. Obesity prevention. In The ASMBS Textbook of Bariatric Surgery, (Springer2020)
54. Hajer, G. R., van Haeften, T. W. & Visseren, F. L. J. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. European Heart Journal 29, 2959-2971 (2008)
55. Castro, J. P., Grune, T. & Speckmann, B. The two faces of reactive oxygen species (ROS) in adipocyte function and dysfunction. Biological Chemistry 397, 709-724 (2016)
56. Lau, D. C., Dhillon, B., Yan, H., Szmitko, P. E. & Verma, S. Adipokines: molecular links between obesity and atheroslcerosis. American Journal of Physiology-Heart and Circulatory Physiology 288, H2031-H2041 (2005)
57. Kusminski, C. M., Bickel, P. E. & Scherer, P. E. Targeting adipose tissue in the treatment of obesity-associated diabetes. Nature reviews Drug discovery 15, 639 (2016)
58. Houstis, N., Rosen, E. D. & Lander, E. S. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440, 944-948 (2006)
59. Furukawa, S., Fujita, T., Shimabukuro, M., Iwaki, M., Yamada, Y., Nakajima, Y., Nakayama, O., Makishima, M., Matsuda, M. & Shimomura, I. Increased oxidative stress in obesity and its impact on metabolic syndrome. The Journal of Clinical Investigation 114, 1752-1761 (2017)
60. Lee, H., Lee, Y. J., Choi, H., Ko, E. H. & Kim, J.-w. Reactive oxygen species facilitate adipocyte differentiation by accelerating mitotic clonal expansion. Journal of Biological Chemistry 284, 10601-10609 (2009)
61. Halliwell, B. & Whiteman, M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? British Journal of Pharmacology 142, 231-255 (2004)
62. Akbar, S., Bellary, S. & Griffiths, H. R. Dietary antioxidant interventions in type 2 diabetes patients: a meta-analysis. The British Journal of Diabetes & Vascular Disease 11, 62-68 (2011)
63. Czernichow, S., Vergnaud, A.-C., Galan, P., Arnaud, J., Favier, A., Faure, H., Huxley, R., Hercberg, S. & Ahluwalia, N. Effects of long-term antioxidant supplementation and association of serum antioxidant concentrations with risk of metabolic syndrome in adults. The American Journal of Clinical Nutrition 90, 329-335 (2009)
64. Bjelakovic, G., Nikolova, D. & Gluud, C. Antioxidant supplements to prevent mortality. Jama 310, 1178-1179 (2013)
65. Huang, A., Vita, J. A., Venema, R. C. & Keaney, J. F. Ascorbic acid enhances endothelial nitric-oxide synthase activity by increasing intracellular tetrahydrobiopterin. Journal of Biological Chemistry 275, 17399-17406 (2000)
66. d’Uscio, L. V., Milstien, S., Richardson, D., Smith, L. & Katusic, Z. S. Long-term vitamin C treatment increases vascular tetrahydrobiopterin levels and nitric oxide synthase activity. Circulation Research 92, 88-95 (2003)
67. Kashmiri, Z. & Mankar, S. Free radicals and oxidative stress in bacteria. Int J Curr Microbiol App Sci 3, 34-40 (2014)
68. Barzegar, A. The role of electron-transfer and H-atom donation on the superb antioxidant activity and free radical reaction of curcumin. Food Chemistry 135, 1369-1376 (2012)
69. Lee, J., Ozcelik, B. & Min, D. Electron donation mechanisms of β‐carotene as a free radical scavenger. Journal of Food Science 68, 861-865 (2003)
70. Reiter, R. J. The indoleamine melatonin as a free radical scavenger, electron donor, and antioxidant. In Recent Advances in Tryptophan Research, (Springer1996)
71. Shi, L., Dong, H., Reguera, G., Beyenal, H., Lu, A., Liu, J., Yu, H.-Q. & Fredrickson, J. K. Extracellular electron transfer mechanisms between microorganisms and minerals. Nature Reviews Microbiology 14, 651 (2016)
72. Fleury, Y., Dayem, M. A., Montagne, J. J., Chaboisseau, E., Le Caer, J. P., Nicolas, P. & Delfour, A. Covalent structure, synthesis, and structure-function studies of mesentericin Y 10537, a defensive peptide from Gram-positive bacteria Leuconostoc mesenteroides. Journal of Biological Chemistry 271, 14421-14429 (1996)
73. Jung, J. Y., Lee, S. H., Lee, H. J., Seo, H.-Y., Park, W.-S. & Jeon, C. O. Effects of Leuconostoc mesenteroides starter cultures on microbial communities and metabolites during kimchi fermentation. International Journal of Food Microbiology 153, 378-387 (2012)
74. Bastrzyk, J. & Gryta, M. Separation of post-fermentation glycerol solution by nanofiltration membrane distillation system. Desalination and Water Treatment 53, 319-329 (2015)
75. Abubakr, M. A., Hassan, Z. & Salem, G. Antioxidant activity of milk fermented with Lactobacillus plantarum and Leuconostoc mesenteroides isolated from non-dairy sources. Asian Journal of Pharmaceutical Research and Development 1, 71-83 (2013)
76. Kuda, T., Noguchi, Y., Ono, M., Takahashi, H., Kimura, B., Kamita, R., Eto, T., Kato, M. & Kawahara, M. In vitro evaluation of the fermentative, antioxidant, and anti-inflammation properties of Lactococcus lactis subsp. lactis BF3 and Leuconostoc mesenteroides subsp. mesenteroides BF7 isolated from Oncorhynchus keta intestines in Rausu, Japan. Journal of Functional Foods 11, 269-277 (2014)
77. Lee, Y.-J., Yu, S.-Y., Lee, J. S., Kim, M.-D., Lee, D.-W., Kim, K.-J. & Lee, O.-H. Anti-adipogenic and anti-oxidant activities of mugwort and pine needles fermented using Leuconostoc mesenteroides 1076. Food Biotechnology 28, 79-95 (2014)
78. Lu, Y., Fan, C., Li, P., Lu, Y., Chang, X. & Qi, K. Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota. Scientific reports 6, 1-13 (2016)
79. Lee, S. P., Hwang, Y. S., Kim, Y. J., Kwon, K.-S., Kim, H. J., Kim, K. & Chae, H. Z. Cyclophilin a binds to peroxiredoxins and activates its peroxidase activity. Journal of Biological Chemistry 276, 29826-29832 (2001)
80. Shiro, K. & Tadao, O. Genome sequence of Leuconostoc mesenteroides LK-151 isolated from a Japanese sake cellar as a high producer of d-amino acids. Genome Announcements 5(2017)
81. Trémillon, N., Morello, E., Llull, D., Mazmouz, R., Gratadoux, J.-J., Guillot, A., Chapot-Chartier, M.-P., Monlezun, L., Sole, V. & Ginisty, H. PpiA, a surface PPIase of the cyclophilin family in Lactococcus lactis. PLoS One 7(2012)
82. Kumari, S., Roy, S., Singh, P., Singla-Pareek, S. & Pareek, A. Cyclophilins: proteins in search of function. Plant Signaling & Behavior 8, e22734 (2013)
83. Göthel, S. F., Herrler, M. & Marahiel, M. A. Peptidyl-prolyl cis-trans isomerase of Bacillus subtilis: Identification of residues involved in cyclosporin a affinity and catalytic efficiency. Biochemistry 35, 3636-3640 (1996)
84. Dolinski, K., Muir, S., Cardenas, M. & Heitman, J. All cyclophilins and FK506 binding proteins are, individually and collectively, dispensable for viability in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences 94, 13093-13098 (1997)
85. Matouschek, A., Rospert, S., Schmid, K., Glick, B. S. & Schatz, G. Cyclophilin catalyzes protein folding in yeast mitochondria. Proceedings of the National Academy of Sciences 92, 6319-6323 (1995)
86. Shapiguzov, A., Edvardsson, A. & Vener, A. V. Profound redox sensitivity of peptidyl-prolyl isomerase activity in Arabidopsis thylakoid lumen. FEBS letters 580, 3671-3676 (2006)
87. Sekhar, K., Priyanka, B., Reddy, V. D. & Rao, K. V. Isolation and characterization of a pigeonpea cyclophilin (CcCYP) gene, and its over‐expression in Arabidopsis confers multiple abiotic stress tolerance. Plant, cell & environment 33, 1324-1338 (2010)
88. Lin, D.-T. & Lechleiter, J. D. Mitochondrial targeted cyclophilin D protects cells from cell death by peptidyl prolyl isomerization. Journal of Biological Chemistry 277, 31134-31141 (2002)
89. Kumari, S., Singh, P., Singla-Pareek, S. L. & Pareek, A. Heterologous expression of a salinity and developmentally regulated rice cyclophilin gene (OsCyp2) in E. coli and S. cerevisiae confers tolerance towards multiple abiotic stresses. Molecular biotechnology 42, 195-204 (2009)
90. Rawlings, D. E., Dew, D. & du Plessis, C. Biomineralization of metal-containing ores and concentrates. TRENDS in Biotechnology 21, 38-44 (2003)
91. Light, S. H., Su, L., Rivera-Lugo, R., Cornejo, J. A., Louie, A., Iavarone, A. T., Ajo-Franklin, C. M. & Portnoy, D. A. A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria. Nature 562, 140 (2018)
92. Wang, W., Du, Y., Yang, S., Du, X., Li, M., Lin, B., Zhou, J., Lin, L., Song, Y. & Li, J. Bacterial extracellular electron transfer occurs in mammalian gut. Analytical Chemistry 91, 12138-12141 (2019)
93. Levin, M. (2009) Bioelectric mechanisms in regeneration: unique aspects and future perspectives. In Seminars in cell & developmental biology Vol. 20 pp. 543-556, Elsevier
94. Zhao, M., Song, B., Pu, J., Wada, T., Reid, B., Tai, G., Wang, F., Guo, A., Walczysko, P. & Gu, Y. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-γ and PTEN. Nature 442, 457-460 (2006)
95. Ericsson, A. C., Davis, D. J., Franklin, C. L. & Hagan, C. E. Exoelectrogenic capacity of host microbiota predicts lymphocyte recruitment to the gut. Physiological genomics 47, 243-252 (2015)
96. Mattar, A., Teitelbaum, D. H., Drongowski, R., Yongyi, F., Harmon, C. & Coran, A. Probiotics up-regulate MUC-2 mucin gene expression in a Caco-2 cell-culture model. Pediatric surgery international 18, 586-590 (2002)
97. Kotloski, N. J. & Gralnick, J. A. Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. MBio 4, e00553-00512 (2013)
98. Von Canstein, H., Ogawa, J., Shimizu, S. & Lloyd, J. R. Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl. Environ. Microbiol. 74, 615-623 (2008)
99. Chan, J. F.-W., Yuan, S., Kok, K.-H., To, K. K.-W., Chu, H., Yang, J., Xing, F., Liu, J., Yip, C. C.-Y. & Poon, R. W.-S. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. The Lancet 395, 514-523 (2020)
100. Liu, B., Li, M., Zhou, Z., Guan, X. & Xiang, Y. Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)? J. Autoimmun., 102452 (2020)
101. Yuen, K.-S., Ye, Z.-W., Fung, S.-Y., Chan, C.-P. & Jin, D.-Y. SARS-CoV-2 and COVID-19: The most important research questions. Cell Biosci. 10, 1-5 (2020)
102. Dhar, D. & Mohanty, A. Gut microbiota and Covid-19-possible link and implications. Virus Res., 198018 (2020)
103. Song, P., Li, W., Xie, J., Hou, Y. & You, C. Cytokine Storm Induced by SARS-CoV-2. Clinica Chimica Acta (2020)
104. Liu, T., Zhang, J., Yang, Y., Zhang, L., Ma, H., Li, Z., Zhang, J., Cheng, J., Zhang, X. & Wu, G. The potential role of IL-6 in monitoring coronavirus disease 2019. Available at SSRN 3548761 (2020)
105. Zhang, X., Wu, K., Wang, D., Yue, X., Song, D., Zhu, Y. & Wu, J. Nucleocapsid protein of SARS-CoV activates interleukin-6 expression through cellular transcription factor NF-κB. Virol. 365, 324-335 (2007)
106. Dalamaga, M., Karampela, I. & Mantzoros, C. S. Commentary: Phosphodiesterase 4 inhibitors as potential adjunct treatment targeting the cytokine storm in COVID-19. Metabolism, 154282 (2020)
107. Mostafa, T. Could oral PDE-5 inhibitors have a potential adjuvant role in combating COVID-19 infection? Sex. Med. Rev. (2020)
108. Shin, M. D., Shukla, S., Chung, Y. H., Beiss, V., Chan, S. K., Ortega-Rivera, O. A., Wirth, D. M., Chen, A., Sack, M. & Pokorski, J. K. COVID-19 vaccine development and a potential nanomaterial path forward. Nat. Nanotechnol. 15, 646-655 (2020)
109. Chai, W., Burwinkel, M., Wang, Z., Palissa, C., Esch, B., Twardziok, S., Rieger, J., Wrede, P. & Schmidt, M. F. Antiviral effects of a probiotic Enterococcus faecium strain against transmissible gastroenteritis coronavirus. Arch. Virol. 158, 799-807 (2013)
110. Dumas, A., Bernard, L., Poquet, Y., Lugo‐Villarino, G. & Neyrolles, O. The role of the lung microbiota and the gut-lung axis in respiratory infectious diseases. Cell. Microbiol. 20, e12966 (2018)
111. Dickson, R. P. The microbiome and critical illness. Lancet Respir. Med. 4, 59-72 (2016)
112. Rooks, M. G. & Garrett, W. S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 16, 341-352 (2016)
113. Jia, W., Xie, G. & Jia, W. Bile acid–microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat. Rev. Gastroenterol. Hepatol. 15, 111 (2018)
114. Satokari, R., Grönroos, T., Laitinen, K., Salminen, S. & Isolauri, E. Bifidobacterium and Lactobacillus DNA in the human placenta. Lett. Appl. Microbiol. 48, 8-12 (2009)
115. Akour, A. Probiotics and COVID‐19: is there any link? Lett. Appl. Microbiol. 71, 229-234 (2020)
116. Schmitter, T., Fiebich, B. L., Fischer, J. T., Gajfulin, M., Larsson, N., Rose, T. & Goetz, M. R. Ex vivo anti-inflammatory effects of probiotics for periodontal health. J. Oral Microbiol. 10, 1502027 (2018)
117. Kim, S. O., Sheikh, H. I., Ha, S. D., Martins, A. & Reid, G. G‐CSF‐mediated inhibition of JNK is a key mechanism for Lactobacillus rhamnosus‐induced suppression of TNF production in macrophages. Cell. Microbiol. 8, 1958-1971 (2006)
118. Oh, N. S., Joung, J. Y., Lee, J. Y. & Kim, Y. Probiotic and anti-inflammatory potential of Lactobacillus rhamnosus 4B15 and Lactobacillus gasseri 4M13 isolated from infant feces. PloS one 13, e0192021 (2018)
119. Ayyanna, R., Ankaiah, D. & Arul, V. Anti-inflammatory and antioxidant properties of probiotic bacterium Lactobacillus mucosae AN1 and Lactobacillus fermentum SNR1 in Wistar albino rats. Front. Microbiol. 9, 3063 (2018)
120. Gopinathan, S. & Raman, N. Indole 3-acetic acid production by ectomycorrhizal fungi. Indian journal of experimental biology 30, 142-143 (1992)
121. Jameson, P. Cytokinins and auxins in plant-pathogen interactions-An overview. Plant Growth Regulation 32, 369-380 (2000)
122. Spaepen, S., Vanderleyden, J. & Remans, R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS microbiology reviews 31, 425-448 (2007)
123. Asaf, S., Khan, A. L., Waqas, M., Kang, S.-M., Hamayun, M., Lee, I.-J. & Hussain, A. Growth-promoting bioactivities of Bipolaris sp. CSL-1 isolated from Cannabis sativa suggest a distinctive role in modifying host plant phenotypic plasticity and functions. Acta Physiologiae Plantarum 41, 65 (2019)
124. Mehmood, A., Hussain, A., Irshad, M., Hamayun, M., Iqbal, A. & Khan, N. In vitro production of IAA by endophytic fungus Aspergillus awamori and its growth promoting activities in Zea mays. Symbiosis 77, 225-235 (2019)
125. Morris, R. O. Genes specifying auxin and cytokinin biosynthesis in phytopathogens. Annual Review of Plant Physiology 37, 509-538 (1986)
126. Klee, H. J., Horsch, R. B., Hinchee, M. A., Hein, M. B. & Hoffmann, N. L. Agrobacterium tumefaciens T-DNA. Genes Development 1, 86-96 (1987)
127. Camilleri, C. & Jouanin, L. The TR-DNA region carrying the auxin synthesis genes of the Agrobacterium rhizogenes agropine-type plasmid pRiA4: nucleotide sequence analysis and introduction into tobacco plants. Molecular plant-microbe interactions: MPMI 4, 155-162 (1991)
128. Ek, M., Ljungquist, P. O. & Stenström, E. Indole‐3‐acetic acid production by mycorrhizal fungi determined by gas chromatography‐mass spectrometry. New Phytologist 94, 401-407 (1983)
129. Basse, C. W., Lottspeich, F., Steglich, W. & Kahmann, R. Two potential indole‐3‐acetaldehyde dehydrogenases in the phytopathogenic fungus Ustilago maydis. European journal of biochemistry 242, 648-656 (1996)
130. Sharon, A., Elad, Y., Barakat, R. & Tudzynski, P. Phytohormones in Botrytis-plant interactions. In Botrytis: biology, pathology and control, Elad, Y., Williamson, B., Tudzynski, P., and Delen, N.) (Springer2007)
131. Tsavkelova, E. A., Cherdyntseva, T. A., Klimova, S. Y., Shestakov, A. I., Botina, S. G. & Netrusov, A. I. Orchid-associated bacteria produce indole-3-acetic acid, promote seed germination, and increase their microbial yield in response to exogenous auxin. Archives of Microbiology 188, 655-664 (2007)
132. Celenza, J., Grisafi, P. L. & Fink, G. R. A pathway for lateral root formation in Arabidopsis thaliana. Genes & development 9, 2131-2142 (1995)
133. Tanaka, M., Takei, K., Kojima, M., Sakakibara, H. & Mori, H. Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. The Plant Journal 45, 1028-1036 (2006)
134. Lambrecht, M., Okon, Y., Broek, A. V. & Vanderleyden, J. Indole-3-acetic acid: a reciprocal signalling molecule in bacteria–plant interactions. Trends in Microbiology 8, 298-300 (2000)
135. Spaepen, S. & Vanderleyden, J. Auxin and plant-microbe interactions. Cold Spring Harbor perspectives in biology 3, a001438 (2011)
136. Bari, R. & Jones, J. D. Role of plant hormones in plant defence responses. Plant molecular biology 69, 473-488 (2009)
137. Yamada, T. The role of auxin in plant-disease development. Annual review of phytopathology 31, 253-273 (1993)
138. Chen, Z., Agnew, J. L., Cohen, J. D., He, P., Shan, L., Sheen, J. & Kunkel, B. N. Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. Proceedings of the National Academy of Sciences 104, 20131-20136 (2007)
139. Mole, B. M., Baltrus, D. A., Dangl, J. L. & Grant, S. R. Global virulence regulation networks in phytopathogenic bacteria. Trends in Microbiology 15, 363-371 (2007)
140. Subramoni, S., Nathoo, N., Klimov, E. & Yuan, Z.-C. Agrobacterium tumefaciens responses to plant-derived signaling molecules. Frontiers in plant science 5, 322 (2014)
141. Bianco, C. & Defez, R. Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. Journal of experimental botany 60, 3097-3107 (2009)
142. Radhakrishnan, R., Shim, K.-B., Lee, B.-W., Hwang, C.-D., Pae, S.-B., Park, C.-H., Kim, S.-U., Lee, C.-K. & Baek, I.-Y. IAA-producing Penicillium sp. NICS01 triggers plant growth and suppresses Fusarium sp.-induced oxidative stress in sesame (Sesamum indicum L.). Journal of Microbiology and Biotechnology 23, 856-863 (2013)
143. Prusty, R., Grisafi, P. & Fink, G. R. The plant hormone indoleacetic acid induces invasive growth in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences 101, 4153-4157 (2004)
144. Matsukawa, E., Nakagawa, Y., Iimura, Y. & Hayakawa, M. Stimulatory effect of indole-3-acetic acid on aerial mycelium formation and antibiotic production in Streptomyces spp. Actinomycetologica 21, 32-39 (2007)
145. Yuan, Z.-C., Liu, P., Saenkham, P., Kerr, K. & Nester, E. W. Transcriptome profiling and functional analysis of Agrobacterium tumefaciens reveals a general conserved response to acidic conditions (pH 5.5) and a complex acid-mediated signaling involved in Agrobacterium-plant interactions. Journal of Bacteriology 190, 494-507 (2008)
146. Rao, R. P., Hunter, A., Kashpur, O. & Normanly, J. Aberrant synthesis of indole-3-acetic acid in Saccharomyces cerevisiae triggers morphogenic transition, a virulence trait of dimorphic pathogenic fungi. Genetics (2010)
147. Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes‐application to the identification of mycorrhizae and rusts. Molecular ecology 2, 113-118 (1993)
148. White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18, 315-322 (1990)
149. Bao, D., Aimi, T. & Kitamoto, Y. Cladistic relationships among the Pleurotus ostreatus complex, the Pleurotus pulmonarius complex, and Pleurotus eryngii based on the mitochondrial small subunit ribosomal DNA sequence analysis. Journal of Wood Science 51, 77-82 (2005)
150. Li, J., He, X., Liu, X.-B., Yang, Z. L. & Zhao, Z.-W. Species clarification of oyster mushrooms in China and their DNA barcoding. Mycological Progress 16, 191-203 (2017)
151. Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular biology and evolution 33, 1870-1874 (2016)
152. Akinyele, J. B., Fakoya, S. & Adetuyi, C. F. Anti-growth factors associated with Pleurotus ostreatus in a submerged liquid fermentation. Malaysian Journal of Microbiology 8, 135-140 (2012)
153. Gordon, S. A. & Weber, R. P. Colorimetric estimation of indoleacetic acid. Plant Physiology 26, 192-195 (1951)
154. Hajirezaei, M. R., Peisker, M., Tschiersch, H., Palatnik, J. F., Valle, E. M., Carrillo, N. & Sonnewald, U. Small changes in the activity of chloroplastic NADP+‐dependent ferredoxin oxidoreductase lead to impaired plant growth and restrict photosynthetic activity of transgenic tobacco plants. The Plant Journal 29, 281-293 (2002)
155. Bric, J. M., Bostock, R. M. & Silverstone, S. E. Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Applied Environmental Microbiology 57, 535-538 (1991)
156. Normanly, J., Cohen, J. D. & Fink, G. R. Arabidopsis thaliana auxotrophs reveal a tryptophan-independent biosynthetic pathway for indole-3-acetic acid. Proceedings of the National Academy of Sciences 90, 10355-10359 (1993)
157. Jogaiah, S., Abdelrahman, M., Tran, L.-S. P. & Shin-ichi, I. Characterization of rhizosphere fungi that mediate resistance in tomato against bacterial wilt disease. Journal of experimental botany 64, 3829-3842 (2013)
158. Sarwar, M., Arshad, M., Martens, D. A. & Frankenberger, W. Tryptophan-dependent biosynthesis of auxins in soil. Plant and Soil 147, 207-215 (1992)
159. Nitsch, J. & Nitsch, C. Studies on the growth of coleoptile and first internode sections. A new, sensitive, straight-growth test for auxins. Plant Physiology 31, 94 (1956)
160. Park, W. J., Schäfer, A., Prinsen, E., van Onckelen, H., Kang, B. G. & Hertel, R. Auxin-induced elongation of short maize coleoptile segments is supported by 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one. Planta 213, 92-100 (2001)
161. Sirois, J. C. Studies on growth regulators. I. Improved Avena coleoptile elongation test for auxin. Plant physiology 41, 1308-1312 (1966)
162. Stajić, M., Persky, L., Friesem, D., Hadar, Y., Wasser, S. P., Nevo, E. & Vukojević, J. Effect of different carbon and nitrogen sources on laccase and peroxidases production by selected Pleurotus species. Enzyme and Microbial Technology 38, 65-73 (2006)
163. Revankar, M. S. & Lele, S. Enhanced production of laccase using a new isolate of white rot fungus WR-1. Process Biochemistry 41, 581-588 (2006)
164. Altaf, S. A., Umar, D. M. & Muhammad, M. S. Production of xylanase enzyme by Pleurotus eryngii and Flamulina velutipes grown on different carbon sources under submerged fermentation. World Applied Sciences Journal 8, 47-49 (2010)
165. Camarero, S., Bockle, B., Martinez, M. J. & Martinez, A. T. Manganese-mediated lignin degradation by Pleurotus pulmonarius. Applied and Environmental Microbiology 62, 1070-1072 (1996)
166. Velázquez-Cedeño, M. A., Mata, G. & Savoie, J.-M. Waste-reducing cultivation of Pleurotus ostreatus and Pleurotus pulmonarius on coffee pulp: changes in the production of some lignocellulolytic enzymes. World Journal of Microbiology and Biotechnology 18, 201-207 (2002)
167. Masaphy, S. & Levanon, D. The effect of lignocellulose on lignocellulolytic activity of Pleurotus pulmonarius in submerged culture. Applied Microbiology and Biotechnology 36, 828-832 (1992)
168. Fernández-Fueyo, E., Castanera, R., Ruiz-Dueñas, F. J., López-Lucendo, M. F., Ramírez, L., Pisabarro, A. G. & Martínez, A. T. Ligninolytic peroxidase gene expression by Pleurotus ostreatus: differential regulation in lignocellulose medium and effect of temperature and pH. Fungal Genetics and Biology 72, 150-161 (2014)
169. Martínez, A. T., Camarero, S., Guillén, F., Gutiérrez, A., Muñoz, C., Varela, E., Martínez, M. J., Barrasa, J., Ruel, K. & Pelayo, J. Progress in biopulping of non‐woody materials: Chemical, enzymatic and ultrastructural aspects of wheat straw delignification with ligninolytic fungi from the genus Pleurotus. FEMS Microbiology Reviews 13, 265-273 (1994)
170. Ruiz-Dueñas, F. J., Fernández, E., Martínez, M. J. & Martínez, A. T. Pleurotus ostreatus heme peroxidases: an in silico analysis from the genome sequence to the enzyme molecular structure. Comptes rendus biologies 334, 795-805 (2011)
171. Stamets, P. Mycelium running: how mushrooms can help save the world (Random House Digital, Inc.2005)
172. Philippoussis, A., Zervakis, G. & Diamantopoulou, P. Bioconversion of agricultural lignocellulosic wastes through the cultivation of the edible mushrooms Agrocybe aegerita, Volvariella volvacea and Pleurotus spp. World Journal of Microbiology and Biotechnology 17, 191-200 (2001)
173. Chang, A. Genetics and breeding of edible mushrooms (CRC Press1992)
174. Kavanagh, K. Fungi: biology and applications (John Wiley & Sons2017)
175. Kurt, S. & Buyukalaca, S. Yield performances and changes in enzyme activities of Pleurotus spp (P. ostreatus and P. sajor-caju) cultivated on different agricultural wastes. Bioresource Technology 101, 3164-3169 (2010)
176. Zervakis, G., Philippoussis, A., Ioannidou, S. & Diamantopoulou, P. Mycelium growth kinetics and optimal temperature conditions for the cultivation of edible mushroom species on lignocellulosic substrates. Folia microbiologica 46, 231 (2001)
177. Akinfemi, A. & Ogunwole, O. Chemical composition and in vitro digestibility of rice straw treated with Pleurotus ostreatus, Pleurotus pulmonarius and Pleurotus tuber-regium. Slovak Journal of Animal Scicence 45, 14-20 (2012)
178. Hoa, H. T. & Wang, C.-L. The effects of temperature and nutritional conditions on mycelium growth of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology 43, 14-23 (2015)
179. Karunarathna, S. C., Hyde, K. D., Chukeatirote, E. & Klomklung, N. Optimal conditions of mycelial growth of three wild edible mushrooms from northern Thailand. Acta Biologica Szegediensis 58, 39-43 (2014)
180. Chung, K.-R., Shilts, T., Ertürk, Ü., Timmer, L. & Ueng, P. P. Indole derivatives produced by the fungus Colletotrichum acutatum causing lime anthracnose and postbloom fruit drop of citrus. FEMS Microbiology Letters 226, 23-30 (2003)
181. Maor, R., Haskin, S., Levi-Kedmi, H. & Sharon, A. In planta production of indole-3-acetic acid by Colletotrichum gloeosporioides f. sp. aeschynomene. Appl. Environ. Microbiol. 70, 1852-1854 (2004)
182. Gravel, V., Antoun, H. & Tweddell, R. J. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biology & Biochemistry 39, 1968-1977 (2007)
183. Chung, K. R. & Tzeng, D. D. Biosynthesis of indole-3-acetic acid by the gall-inducing fungus Ustilago esculenta. J Biol Sci 4, 744-750 (2004)
184. Sirrenberg, A., Göbel, C., Grond, S., Czempinski, N., Ratzinger, A., Karlovsky, P., Santos, P., Feussner, I. & Pawlowski, K. Piriformospora indica affects plant growth by auxin production. Physiologia plantarum 131, 581-589 (2007)
185. Liu, Y.-Y., Chen, H.-W. & Chou, J.-Y. Variation in indole-3-acetic acid production by wild Saccharomyces cerevisiae and S. paradoxus strains from diverse ecological sources and its effect on growth. PloS one 11, e0160524 (2016)
186. Robinson, M., Riov, J. & Sharon, A. Indole-3-acetic acid biosynthesis in Colletotrichum gloeosporioides f. sp. aeschynomene. Applied Environmental Microbiology 64, 5030-5032 (1998)
187. Brown, H. M. & Purves, W. K. Indoleacetaldehyde reductase of Cucumis sativus L: kinetic properties and role in auxin biosynthesis. Plant physiology 65, 107-113 (1980)
188. Carreno-Lopez, R., Campos-Reales, N., Elmerich, C. & Baca, B. Physiological evidence for differently regulated tryptophan-dependent pathways for indole-3-acetic acid synthesis in Azospirillum brasilense. Molecular and General Genetics 264, 521-530 (2000)
189. Nutaratat, P., Srisuk, N., Arunrattiyakorn, P. & Limtong, S. Indole-3-acetic acid biosynthetic pathways in the basidiomycetous yeast Rhodosporidiumpaludigenum. Archives of microbiology 198, 429-437 (2016)
190. Szkop, M. & Bielawski, W. A simple method for simultaneous RP-HPLC determination of indolic compounds related to bacterial biosynthesis of indole-3-acetic acid. Antonie Van Leeuwenhoek 103, 683-691 (2013)
191. Evidente, A., Iacobellis, N. & Sisto, A. Isolation of indole-3-acetic acid methyl ester, a metabolite of indole-3-acetic acid from Pseudomonas amygdali. Experientia 49, 182-183 (1993)
192. Nagia, M. M., Shaaban, M., Abdel-Aziz, M. S., El-Zalabani, S. M. & Hanna, A. G. Secondary metabolites and bioactivity of two fungal strains. Egyptian Pharmaceutical Journal 11, 16 (2012)
193. Liu, J., Sui, Y., Wisniewski, M., Droby, S. & Liu, Y. Utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. International journal of food microbiology 167, 153-160 (2013)
194. McCormack, P., Wildman, H. & Jeffries, P. Production of antibacterial compounds by phylloplane-inhabiting yeasts and yeastlike fungi. Applied Environmental Microbiology 60, 927-931 (1994)
195. Kulkarni, G. B., Sanjeevkumar, S., Kirankumar, B., Santoshkumar, M. & Karegoudar, T. Indole-3-acetic acid biosynthesis in Fusarium delphinoides strain GPK, a causal agent of wilt in Chickpea. Applied Biochemistry and Biotechnology 169, 1292-1305 (2013)
196. Sun, P.-F., Fang, W.-T., Shin, L.-Y., Wei, J.-Y., Fu, S.-F. & Chou, J.-Y. Indole-3-acetic acid-producing yeasts in the phyllosphere of the carnivorous plant Drosera indica L. PloS one 9, e114196 (2014)
197. Kaldorf, M. & Ludwig‐Müller, J. AM fungi might affect the root morphology of maize by increasing indole‐3‐butyric acid biosynthesis. Physiologia Plantarum 109, 58-67 (2000)
198. Yao, Q., Zhu, H. & Chen, J. Growth responses and endogenous IAA and iPAs changes of litchi (Litchi chinensis Sonn.) seedlings induced by arbuscular mycorrhizal fungal inoculation. Scientia horticulturae 105, 145-151 (2005)
199. Etemadi, M., Gutjahr, C., Couzigou, J.-M., Zouine, M., Lauressergues, D., Timmers, A., Audran, C., Bouzayen, M., Bécard, G. & Combier, J.-P. Auxin perception is required for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Physiology and Biochemistry 166, 281-292 (2014)
200. Fiorilli, V., Catoni, M., Miozzi, L., Novero, M., Accotto, G. P. & Lanfranco, L. Global and cell‐type gene expression profiles in tomato plants colonized by an arbuscular mycorrhizal fungus. New Phytologist 184, 975-987 (2009)
201. Yoshida, S. & Hasegawa, S. The rice root system: its development and function Vol. 10 (International Rice Research Institute, Philippines, 1982)
202. Hamner, K., Lyon, C. & Hamner, C. Effect of mineral nutrition on the ascorbic acid content of the tomato. Botanical Gazette 103, 586-616 (1942)
203. Tang, W. & Newton, R. J. Polyamines promote root elongation and growth by increasing root cell division in regenerated Virginia pine (Pinus virginiana Mill.) plantlets. Plant cell reports 24, 581-589 (2005)
204. Baron, K. & Stasolla, C. The role of polyamines during in vivo and in vitro development. In Vitro Cellular & Developmental Biology-Plant 44, 384-395 (2008)
205. Dadáková, E., Pelikánová, T. & Kalač, P. Content of biogenic amines and polyamines in some species of European wild-growing edible mushrooms. European Food Research and Technology 230, 163 (2009)
206. Cloete, K. J., Valentine, A. J., Stander, M. A., Blomerus, L. M. & Botha, A. Evidence of symbiosis between the soil yeast Cryptococcus laurentii and a sclerophyllous medicinal shrub, Agathosma betulina (Berg.) Pillans. Microbial ecology 57, 624-632 (2009)
207. McSteen, P. Auxin and monocot development. Cold Spring Harbor Perspectives in Biology 2, a001479 (2010)
208. Kawata, S.-I. & Ishihara, K. Studies on the root hairs in rice plant. Japanese Journal of Crop Science 27, 341-348 (1959)
209. Pitts, R. J., Cernac, A. & Estelle, M. Auxin and ethylene promote root hair elongation in Arabidopsis. The Plant Journal 16, 553-560 (1998)
210. Hochholdinger, F. & Zimmermann, R. Conserved and diverse mechanisms in root development. Current opinion in plant biology 11, 70-74 (2008)
211. Nassar, A. H., El-Tarabily, K. A. & Sivasithamparam, K. Promotion of plant growth by an auxin-producing isolate of the yeast Williopsis saturnus endophytic in maize (Zea mays L.) roots. Biology and Fertility of soils 42, 97-108 (2005)
212. Conners, I. L. An annotated index of plant diseases in Canada and fungi recorded on plants in Alaska, Canada and Greenland. Publ. Res. Br. Canada Dept Agric. 1251, 381 (1967)
213. Robinson, R. K. Encyclopedia of food microbiology (Academic press2014)
214. Qi, P., Bai, J. & Zhu, G. (1966) Fungal diseases of cultivated plants in Jilin province. Science Press
215. Huang, H. & Kokko, E. Trichothecium roseum, a mycoparasite of Sclerotinia sclerotiorum. Canadian Journal of Botany 71, 1631-1638 (1993)
216. Zahoranová, A., Henselová, M., Hudecová, D., Kaliňáková, B., Kováčik, D., Medvecká, V. & Černák, M. Effect of cold atmospheric pressure plasma on the wheat seedlings vigor and on the inactivation of microorganisms on the seeds surface. Plasma Chemistry and Plasma Processing 36, 397-414 (2016)
217. Domsch, K. Der Einfluß saprophytischer Bodenpilze auf die Jugendentwicklung höherer Pflanzen. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 470-475 (1963)
218. Marrè, E., Lado, P., Caldogno, F. R. & Colombo, R. Correlation between cell enlargement in pea internode segments and decrease in the pH of the medium of incubation: I. Effects of fusicoccin, natural and synthetic auxins and mannitol. Plant Science Letters 1, 179-184 (1973)
219. Mishima, T., Kido, N., Nakashima, S., Yamakawa, M., Miyaji, N., Soli, K. W., Honjoh, K.-i., Bari, M. L. & Miyamoto, T. Investigation of possible situation of internalization of Salmonella Enteritidis in tomato fruits and bacterial survival during tomato plant cultivation. Food science and technology research 18, 869-877 (2012)
220. Bettin, F., Cousseau, F., Martins, K., Boff, N. A., Zaccaria, S., da Silveira, M. M. & Dillon, A. J. P. Phenol removal by laccases and other phenol oxidases of Pleurotus sajor-caju PS-2001 in submerged cultivations and aqueous mixtures. Journal of environmental management 236, 581-590 (2019)
221. Caesar-TonThat, T.-C. & Cochran, V. Soil aggregate stabilization by a saprophytic lignin-decomposing basidiomycete fungus I. Microbiological aspects. Biology and fertility of soils 32, 374-380 (2000)
222. Stiernagle, T. Maintenance of C. elegans. C. elegans 2, 51-67 (1999)
223. Bargmann, C. I., Hartwieg, E. & Horvitz, H. R. Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74, 515-527 (1993)
224. Reyes-Estebanez, M., Herrera-Parra, E., Cristóbal-Alejo, J., Heredia-Abarca, G., Canto-Canché, B., Medina-Baizabal, I. & Gamboa-Angulo, M. Antimicrobial and nematicidal screening of anamorphic fungi isolated from plant debris of tropical areas in Mexico. African Journal of Microbiology Research 5, 1083-1089 (2011)
225. Kwok, O., Plattner, R., Weisleder, D. & Wicklow, D. A nematicidal toxin from Pleurotus ostreatus NRRL 3526. Journal of Chemical Ecology 18, 127-136 (1992)
226. Soman, A. G., Gloer, J. B., Angawi, R. F., Wicklow, D. T. & Dowd, P. F. Vertilecanins: New Phenopicolinic Acid Analogues from Verticillium lecanii. Journal of natural products 64, 189-192 (2001)
227. Ruanpanun, P., Tangchitsomkid, N., Hyde, K. D. & Lumyong, S. Actinomycetes and fungi isolated from plant-parasitic nematode infested soils: screening of the effective biocontrol potential, indole-3-acetic acid and siderophore production. World Journal of Microbiology and Biotechnology 26, 1569-1578 (2010)
228. Rosa, M. M., Tauk-Tornisielo, S. M., Rampazzo, P. E. & Ceccato-Antonini, S. R. Evaluation of the biological control by the yeast Torulaspora globosa against Colletotrichum sublineolum in sorghum. World Journal of Microbiology and Biotechnology 26, 1491-1502 (2010)
229. Lindeberg, G. & Holm, G. Occurrence of tyrosinase and laccase in fruit bodies and mycelia of some Hymenomycetes. Physiologia Plantarum 5, 100-114 (1952)
230. Khan, M. R. & Khan, M. W. Interaction of Meloidogyne incognita and coal-smoke pollutants on tomato. Nematropica 26, 47-56 (1996)
231. Audebert, A., Coyne, D., Dingkuhn, M. & Plowright, R. The influence of cyst nematodes (Heterodera sacchari) and drought on water relations and growth of upland rice in Cote d′Ivoire. Plant Soil 220, 235-242 (2000)
232. Kwok, O. C. H., Plattner, R., Weisleder, D. & Wicklow, D. A nematicidal toxin from Pleurotus ostreatus NRRL 3526. J. Chem. Ecol. 18, 127-136 (1992)
233. Sufiate, B. L., de Freitas Soares, F. E., Moreira, S. S., de Souza Gouveia, A., Monteiro, T. S. A., de Freitas, L. G. & de Queiroz, J. H. Nematicidal action of Pleurotus eryngii metabolites. Biocatal. Agric. Biotechnol. 12, 216-219 (2017)
234. Marlin, M., Wolf, A., Alomran, M., Carta, L. & Newcombe, G. Nematophagous Pleurotus species consume some nematode species but are themselves consumed by others. Forests 10, 404 (2019)
235. Barron, G. & Dierkes, Y. Nematophagous fungi: Hohenbuehelia, the perfect state of Nematoctonus. Canadian Journal of Botany 55, 3054-3062 (1977)
236. Bernheimer, A. W. & Avigad, L. S. A cytolytic protein from the edible mushroom, Pleurotus ostreatus. Biochim. Biophys. Acta, Gen. Subj 585, 451-461 (1979)
237. Onuegbu, N. C., Odimegwu, N. E., Ibeabuchi, J. C., Njoku, N. E. & Agunwa, I. M. Antioxidant and antimicrobial activities of oyster mushroom. Am. J. Food Sci. Technol. 5, 64-69 (2017)
238. de Vrieze, J. The littlest farmhands. Science 349, 680-683 (2015)
239. Wang, H. & Ng, T. B. Eryngin, a novel antifungal peptide from fruiting bodies of the edible mushroom Pleurotus eryngii. Peptides 25, 1-5 (2004)
240. Milovanović, I., Stajić, M., Ćilerdžić, J., Stanojković, T., Knežević, A. & Vukojević, J. Antioxidant, antifungal and anticancer activities of Se-enriched Pleurotus spp. mycelium extracts. Arch. Biol. Sci. 66, 1379-1388 (2014)
241. McMahon, P. Effect of nutrition and soil function on pathogens of tropical tree crops. In Plant Pathol., (eds Cumagun, C. J. R.) (IntechOpen2012)
242. Jarosz-Wilkołazka, A. & Grąz, M. Organic acids production by white rot Basidiomycetes in the presence of metallic oxides. Can. J. Microbiol. 52, 779-785 (2006)
243. Sawai, J. & Yoshikawa, T. Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay. J. Appl. Microbiol. 96, 803-809 (2004)
244. Singer, M. J. & Munns, D. N. Soils: an introduction 2nd edn, (Macmillan Publishing Company, New York, NY 10022, 1991)
245. Gadd, G. M. Interactions of fungi with toxic metals. New Phytol. 124, 25-60 (1993)
246. Massee, G. Fungi exotici: XI. Bulletin of Miscellaneous Information (Royal Botanic Gardens, Kew) 1910, 249-253 (1910)
247. Almaliky, B., Abidin, M. Z., Kader, J. & Wong, M. First report of Marasmiellus palmivorus causing post-emergence damping off on coconut seedlings in Malaysia. Plant disease 97, 143-143 (2013)
248. Pong, V., Abidin, M., Almaliky, B., Kadir, J. & Wong, M. Isolation, Fruiting and Pathogenicity of Marasmiellus palmivorus (Sharples) Desjardin (comb. prov.) in Oil Palm Plantations in West Malaysia. Pertanika Journal of Tropical Agricultural Science 35(5), 37-48 (2012)
249. Sharples, A. Palm diseases in Malaya. Malayan Agricultural Journal 16, 313-360 (1928)
250. Sutarta, E. S., Santoso, H. & Yusuf, M. A. Climate change on oil palm: It′s impacts and adaptation strategies. Available at: www.researchgate.net/publication/265201096. Accessed on April 23, 2015. (2015)
251. Verheye, W. Growth and production of oil palm. In Land use, land cover and soil sciences, (eds Verheye, W. H.) (UNESCO-EOLSS Publishers, Oxford, UK, 2010)
252. Aderungboye, F. Diseases of the oil palm. PANS 23, 305-326 (1977)
253. Singh, P. K., Kathuria, S., Agarwal, K., Gaur, S. N., Meis, J. F. & Chowdhary, A. Clinical significance and molecular characterization of nonsporulating molds isolated from the respiratory tracts of bronchopulmonary mycosis patients with special reference to basidiomycetes. Journal of clinical microbiology 51, 3331-3337 (2013)
254. Gilbertson, R. L., Bigelow, D. M., Hemmes, D. E. & Desjardin, D. E. Annotated check list of wood-rotting basidiomycetes of Hawai′i. Mycotaxon 82, 215-239 (2002)
255. Dutta, A. K. & Krishnendu, A. A new host for the parasitic macrofungus Marasmius palmivorus Sharples (Marasmiaceae). Current Science 114, 1400-1402 (2018)
256. Farr, D. & Rossman, A. (2019) Fungal databases, U.S. National Fungus Collections, ARS, USDA. https://nt.ars-grin.gov/fungaldatabases/.
257. Tsai, W.-T. Benefit analysis and regulatory actions for imported palm kernel shell as an environment-friendly energy source in Taiwan. Resources 8, 1-10 (2019)
258. Hsueh, C.-H. & Yang, Z.-Y. The scenic plants in Taiwan (3). Hsindian, Taiwan: United Distribution. (2011)
259. Hsueh, C.-H. The encyclopedia of vegetables and fruits in Taiwan (3). Hsindian, Taiwan: United Distribution (in Chinese). (2001)
260. Yanna, Ho, W. H. & Hyde, K. D. Fungal communities on decaying palm fronds in Australia, Brunei, and Hong Kong. Mycological Research 105, 1458-1471 (2001)
261. Piepenbring, M., Nold, F., Trampe, T. & Kirschner, R. Revision of the genus Graphiola (Exobasidiales, Basidiomycota). Nova Hedwigia 94, 67-96 (2012)
262. White, T., Bruns, T., Lee, S., Taylor, J., A Innis, M., H Gelfand, D. & Sninsky, J. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In PCR Protocols, Vol. 31 (Academic Press1990)
263. Kurtzman, C. & Robnett, C. Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5′end of the large-subunit (26S) ribosomal DNA gene. Journal of clinical microbiology 35, 1216-1223 (1997)
264. Rishbeth, J. Infection cycle of Armillaria and host response. European Journal of Forest Pathology 15, 332-341 (1985)
265. Hsiao, W.-W., Hung, T.-H. & Sun, E.-J. The pathogenicity of basidiospores of Phellinus noxius which causes brown root rot disease in Taiwan. Taiwania 64, 189-194 (2019)
266. Singer, R. The genera Marasmiellus, Crepidotus and Simocybe in the neotropics. Beih Nova Hedwigia 44, 1-517 (1973)
267. Corner, E. J. H. The agaric genera Marasmius, Chaetocalathus, Crinipellis, Heimiomyces, Resupinatus, Xerula and Xerulina in Malesia Vol. 111 (J. Cramer, Germany, 1996)
268. Wilson, A. W. & Desjardin, D. E. Phylogenetic relationships in the gymnopoid and marasmioid fungi (Basidiomycetes, euagarics clade). Mycologia 97, 667-679 (2005)
269. Hemmes, D. & Desjardin, D. Mushrooms of Hawaii. Berkeley (California: Ten Speed Press2002)
270. Nilsson, R. H., Tedersoo, L., Ryberg, M., Kristiansson, E., Hartmann, M., Unterseher, M., Porter, T. M., Bengtsson-Palme, J., Walker, D. M. & De Sousa, F. A comprehensive, automatically updated fungal ITS sequence dataset for reference-based chimera control in environmental sequencing efforts. Microbes and Environments, ME14121 (2015)
271. Hosagoudar, V. & Mathew, S. A preliminary report on the mycoflora of the Andaman & Nicobar Islands, India. Journal of Economic and Taxonomic Botany 24, 631-640 (2000)
272. Sharples, A. Diseases and pests of the rubber tree. (1936)
273. Tamur, H. A., Mohsin, L. Y., Al-janabi, J. K. A. & Al-Yassiry, Z. A. N. Marasmiellus palmivorus as a new causal agent of reed wilt disease in Iraq. Pak. J. Biotechnol. 15, 25-31 (2018)
274. Munyogwa, M. J. & Mtumwa, A. H. The prevalence of abdominal obesity and its correlates among the adults in Dodoma region, Tanzania: a community-based cross-sectional study. Advances in Medicine 2018(2018)
275. Adachi, T., Toishi, T., Wu, H., Kamiya, T. & Hara, H. Expression of extracellular superoxide dismutase during adipose differentiation in 3T3-L1 cells. Redox Report 14, 34-40 (2009)
276. Chattopadhyay, M., Khemka, V. K., Chatterjee, G., Ganguly, A., Mukhopadhyay, S. & Chakrabarti, S. Enhanced ROS production and oxidative damage in subcutaneous white adipose tissue mitochondria in obese and type 2 diabetes subjects. Molecular and Cellular Biochemistry 399, 95-103 (2015)
277. Marazza, J. A., Nazareno, M. A., de Giori, G. S. & Garro, M. S. Enhancement of the antioxidant capacity of soymilk by fermentation with Lactobacillus rhamnosus. Journal of Functional Foods 4, 594-601 (2012)
278. Kashmiri, Z. & Mankar, S. Free radicals and oxidative stress in bacteria. International Journal of Current Microbiology and Applied Sciences 3, 34-40 (2014)
279. Traisaeng, S., Batsukh, A., Chuang, T.-H., Herr, D. R., Huang, Y.-F., Chimeddorj, B. & Huang, C.-M. Leuconostoc mesenteroides fermentation produces butyric acid and mediates Ffar2 to regulate blood glucose and insulin in type 1 diabetic mice. Sci. Rep. 10, 1-10 (2020)
280. McNabney, S. M. & Henagan, T. M. Short chain fatty acids in the colon and peripheral tissues: a focus on butyrate, colon cancer, obesity and insulin resistance. Nutrients 9, 1348 (2017)
281. Devillard, E., McIntosh, F. M., Duncan, S. H. & Wallace, R. J. Metabolism of linoleic acid by human gut bacteria: different routes for biosynthesis of conjugated linoleic acid. Journal of Bacteriology 189, 2566-2570 (2007)
282. Kraus, N. A., Ehebauer, F., Zapp, B., Rudolphi, B., Kraus, B. J. & Kraus, D. Quantitative assessment of adipocyte differentiation in cell culture. Adipocyte 5, 351-358 (2016)
283. Krishnakumar, N., Sulfikkarali, N., RajendraPrasad, N. & Karthikeyan, S. Enhanced anticancer activity of naringenin-loaded nanoparticles in human cervical (HeLa) cancer cells. Biomedicine & Preventive Nutrition 1, 223-231 (2011)
284. Chen, C., Shen, Y., An, D. & Voordouw, G. Use of acetate, propionate, and butyrate for reduction of nitrate and sulfate and methanogenesis in microcosms and bioreactors simulating an oil reservoir. Applied and Environmental Microbiology 83, e02983-02916 (2017)
285. Finke, N., Vandieken, V. & Jørgensen, B. B. Acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in Arctic marine sediments, Svalbard. FEMS Microbiology Ecology 59, 10-22 (2007)
286. Sorokin, D. Y., Detkova, E. & Muyzer, G. Propionate and butyrate dependent bacterial sulfate reduction at extremely haloalkaline conditions and description of Desulfobotulus alkaliphilus sp. nov. Extremophiles 14, 71-77 (2010)
287. Lee, O.-H., Kwon, Y.-I., Hong, H.-D., Park, C.-S., Lee, B.-Y. & Kim, Y.-C. Production of reactive oxygen species and changes in antioxidant enzyme activities during differentiation of 3T3-L1 adipocyte. Journal of the Korean Society for Applied Biological Chemistry 52, 70-75 (2009)
288. Uchida, K. 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Progress in Lipid Research 42, 318-343 (2003)
289. Pankratova, G., Hederstedt, L. & Gorton, L. Extracellular electron transfer features of Gram-positive bacteria. Analytica Chimica Acta 1076, 32-47 (2019)
290. Pankratova, G., Leech, D. n., Gorton, L. & Hederstedt, L. Extracellular electron transfer by the Gram-positive bacterium Enterococcus faecalis. Biochemistry 57, 4597-4603 (2018)
291. Xayarath, B., Alonzo III, F. & Freitag, N. E. Identification of a peptide-pheromone that enhances Listeria monocytogenes escape from host cell vacuoles. PLoS Pathogens 11(2015)
292. Bonfils, C., Bec, N., Larroque, C., Del Rio, M., Gongora, C., Pugnière, M. & Martineau, P. Cyclophilin A as negative regulator of apoptosis by sequestering cytochrome c. Biochemical and Biophysical Research Communications 393, 325-330 (2010)
293. Güller, P., Karaman, M., Güller, U., Aksoy, M. & Küfrevioğlu, Ö. İ. A study on the effects of inhibition mechanism of curcumin, quercetin, and resveratrol on human glutathione reductase through in vitro and in silico approaches. J. Biomol. Struct. Dyn. In press https://doi.org/10.1080/07391102.2020.1738962, 1-17 (2020)
294. Oschman, J. L. Can electrons act as antioxidants? A review and commentary. The Journal of Alternative and Complementary Medicine 13, 955-967 (2007)
295. Nelson, D. & Cox, M. Lehninger principles of biochemistry 5th edn, ( W. H. Freeman, New York, 2008)
296. Kimura, I., Ozawa, K., Inoue, D., Imamura, T., Kimura, K., Maeda, T., Terasawa, K., Kashihara, D., Hirano, K. & Tani, T. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nature communications 4, 1-12 (2013)
297. Courtois, F., Seidman, E. G., Delvin, E., Asselin, C., Bernotti, S., Ledoux, M. & Levy, E. Membrane peroxidation by lipopolysaccharide and iron-ascorbate adversely affects Caco-2 cell function: beneficial role of butyric acid. The American Journal of Clinical Nutrition 77, 744-750 (2003)
298. Huang, W., Guo, H.-L., Deng, X., Zhu, T.-T., Xiong, J.-F., Xu, Y.-H. & Xu, Y. Short-chain fatty acids inhibit oxidative stress and inflammation in mesangial cells induced by high glucose and lipopolysaccharide. Experimental and Clinical Endocrinology & Diabetes 125, 98-105 (2017)
299. Fischer, G. & Schmid, F. X. The mechanism of protein folding. Implications of in vitro refolding models for de novo protein folding and translocation in the cell. Biochemistry 29, 2205-2212 (1990)
300. Ramm, K. & Plückthun, A. The periplasmic Escherichia coli peptidylprolyl cis, trans-isomerase FkpA II. Isomerase-independent chaperone activity in vitro. Journal of Biological Chemistry 275, 17106-17113 (2000)
301. Marsili, E., Baron, D. B., Shikhare, I. D., Coursolle, D., Gralnick, J. A. & Bond, D. R. Shewanella secretes flavins that mediate extracellular electron transfer. Proceedings of the National Academy of Sciences 105, 3968-3973 (2008)
302. Rosenspire, A. J., Kindzelskii, A. L., Simon, B. J. & Petty, H. R. Real-time control of neutrophil metabolism by very weak ultra-low frequency pulsed magnetic fields. Biophysical Journal 88, 3334-3347 (2005)
303. Adey, W. R. Evidence for non-thermal electromagnetic bioeffects: Potential health risks in evolving low-frequency and microwave environments. In Electromagnetic Environments and Health in Buildings, (eds Clements-Croome, D.) (Spon Press, London, 2003)
304. Lee, O. H., Seo, M. J., Choi, H. S. & Lee, B. Y. Pycnogenol® inhibits lipid accumulation in 3T3‐L1 adipocytes with the modulation of reactive oxygen species (ROS) production associated with antioxidant enzyme responses. Phytotherapy Research 26, 403-411 (2012)
305. Vigilanza, P., Aquilano, K., Baldelli, S., Rotilio, G. & Ciriolo, M. R. Modulation of intracellular glutathione affects adipogenesis in 3T3‐L1 cells. Journal of Cellular Physiology 226, 2016-2024 (2011)
306. Cani, P. D. & Delzenne, N. M. Interplay between obesity and associated metabolic disorders: new insights into the gut microbiota. Current Opinion in Pharmacology 9, 737-743 (2009)
307. Song, P., Li, W., Xie, J., Hou, Y. & You, C. Cytokine storm induced by SARS-CoV-2. Clin. Chim. Acta 509, 280-287 (2020)
308. Kawamatawong, T. Roles of roflumilast, a selective phosphodiesterase 4 inhibitor, in airway diseases. J. Thorac. Dis. 9, 1144 (2017)
309. Aida, F., Shuhaimi, M., Yazid, M. & Maaruf, A. Mushroom as a potential source of prebiotics: a review. Trends Food Sci. Technol. 20, 567-575 (2009)
310. Jin, S.-L. C., Latour, A. M. & Conti, M. Generation of PDE4 knockout mice by gene targeting. In Phosphodiesterase methods and protocols, (eds Lugnier, C.) (Humana Press2005)
311. Martzy, R., Bica-Schröder, K., Pálvölgyi, Á. M., Kolm, C., Jakwerth, S., Kirschner, A. K., Sommer, R., Krska, R., Mach, R. L. & Farnleitner, A. H. Simple lysis of bacterial cells for DNA-based diagnostics using hydrophilic ionic liquids. Sci. Rep. 9, 1-10 (2019)
312. Kosutova, P., Mikolka, P., Kolomaznik, M., Balentova, S., Calkovska, A. & Mokra, D. Effect of phosphodiesterase-4 inhibitor on the inflammation, oxidative damage and apoptosis in a saline lavage-induced model of acute lung injury. Eur Respiratory J 52, PA5252 (2018)
313. Liu, Y., Wang, C., Li, J., Li, T., Zhang, Y., Liang, Y. & Mei, Y. Phellinus linteus polysaccharide extract improves insulin resistance by regulating gut microbiota composition. The FASEB J. 34, 1065-1078 (2020)
314. Smiderle, F., Olsen, L., Ruthes, A., Czelusniak, P., Santana-Filho, A., Sassaki, G., Gorin, P. & Iacomini, M. Exopolysaccharides, proteins and lipids in Pleurotus pulmonarius submerged culture using different carbon sources. Carbohydr. Polym. 87, 368-376 (2012)
315. Chen, P., Torralba, M., Tan, J., Embree, M., Zengler, K., Stärkel, P., Van Pijkeren, J.-P., DePew, J., Loomba, R. & Ho, S. B. Supplementation of saturated long-chain fatty acids maintains intestinal eubiosis and reduces ethanol-induced liver injury in mice. Gastroenterology 148, 203-214. e216 (2015)
316. Yang, J.-X., Hsieh, K.-C., Chen, Y.-L., Lee, C.-K., Conti, M., Chuang, T.-H., Wu, C.-P. & Jin, S.-L. C. Phosphodiesterase 4B negatively regulates endotoxin-activated interleukin-1 receptor antagonist responses in macrophages. Sci. Rep. 7, 1-13 (2017)
317. Lowy, R. J. & Dimitrov, D. S. Characterization of influenza virus-induced death of J774. 1 macrophages. Exp. Cell Res. 234, 249-258 (1997)
318. Wang, G., Jiang, L., Wang, J., Zhang, J., Kong, F., Li, Q., Yan, Y., Huang, S., Zhao, Y. & Liang, L. The G protein-coupled receptor FFAR2 promotes internalization during influenza A virus entry. J. Virol. 94(2020)
319. Ujike, M. & Taguchi, F. Incorporation of spike and membrane glycoproteins into coronavirus virions. Viruses 7, 1700-1725 (2015)
320. Hirano, T. & Murakami, M. COVID-19: A new virus, but a familiar receptor and cytokine release syndrome. Immunity 52, 731-733 (2020)
321. Trian, T., Burgess, J. K., Niimi, K., Moir, L. M., Ge, Q., Berger, P., Liggett, S. B., Black, J. L. & Oliver, B. G. β 2-Agonist induced cAMP is decreased in asthmatic airway smooth muscle due to increased PDE4D. PloS one 6, e20000 (2011)
322. Van Ly, D., De Pedro, M., James, P., Morgan, L., Black, J. L., Burgess, J. K. & Oliver, B. G. Inhibition of phosphodiesterase 4 modulates cytokine induction from toll like receptor activated, but not rhinovirus infected, primary human airway smooth muscle. Respir. Res. 14, 127 (2013)
323. Dang, A. T. & Marsland, B. J. Microbes, metabolites, and the gut–lung axis. Mucosal Immunol. 12, 843-850 (2019)
324. Lavi, I., Nimri, L., Levinson, D., Peri, I., Hadar, Y. & Schwartz, B. Glucans from the edible mushroom Pleurotus pulmonarius inhibit colitis-associated colon carcinogenesis in mice. J. Gastroenterol. 47, 504-518 (2012)
325. Ibadallah, B. X., Abdullah, N. & Shuib, A. S. Identification of angiotensin-converting enzyme inhibitory proteins from mycelium of. Planta Med 81, 123-129 (2015)
326. Lavi, I., Levinson, D., Peri, I., Tekoah, Y., Hadar, Y. & Schwartz, B. Chemical characterization, antiproliferative and antiadhesive properties of polysaccharides extracted from Pleurotus pulmonarius mycelium and fruiting bodies. Appl. Microbiol. Biotechnol. 85, 1977-1990 (2010)
327. Baud, D., Agri, V. D., Gibson, G. R., Reid, G. & Giannoni, E. Using probiotics to flatten the curve of coronavirus disease COVID-2019 pandemic. Front. Public Health 8, 186 (2020)
328. Luoto, R., Ruuskanen, O., Waris, M., Kalliomäki, M., Salminen, S. & Isolauri, E. Prebiotic and probiotic supplementation prevents rhinovirus infections in preterm infants: a randomized, placebo-controlled trial. J. Allergy Clin. Immunol. 133, 405-413 (2014)
329. Namour, F., Galien, R., Van Kaem, T., Van der Aa, A., Vanhoutte, F., Beetens, J. & Van′t Klooster, G. Safety, pharmacokinetics and pharmacodynamics of GLPG0974, a potent and selective FFA2 antagonist, in healthy male subjects. Br. J. Clin. Pharmacol. 82, 139-148 (2016)
330. Sivaprakasam, S., Gurav, A., Paschall, A., Coe, G., Chaudhary, K., Cai, Y., Kolhe, R., Martin, P., Browning, D. & Huang, L. An essential role of Ffar2 (Gpr43) in dietary fibre-mediated promotion of healthy composition of gut microbiota and suppression of intestinal carcinogenesis. Oncogenesis 5, e238-e238 (2016)
331. Liu, Q., Tian, X., Maruyama, D., Arjomandi, M. & Prakash, A. Lung immune tone regulation by the gut-lung immune axis: Short-chain fatty acid receptors FFAR2 and FFAR3, and IL-1β expression profiling in mouse and human lung. bioRxiv (2020)
332. Wang, C., Xie, J., Zhao, L., Fei, X., Zhang, H., Tan, Y., Zhou, L., Liu, Z., Ren, Y. & Yuan, L. Aveolar macrophage activation and cytokine storm in the pathogenesis of severe COVID-19. Research Square (2020 March 25. doi: 10.21203/rs.3.rs-19346/v1)
333. Perez-Aso, M., Montesinos, M. C., Mediero, A., Wilder, T., Schafer, P. H. & Cronstein, B. Apremilast, a novel phosphodiesterase 4 (PDE4) inhibitor, regulates inflammation through multiple cAMP downstream effectors. Arthritis Res. Ther. 17, 1-13 (2015)
334. Vagena, E., Ryu, J. K., Baeza-Raja, B., Walsh, N. M., Syme, C., Day, J. P., Houslay, M. D. & Baillie, G. S. A high-fat diet promotes depression-like behavior in mice by suppressing hypothalamic PKA signaling. Transl. Psychiatry 9, 1-15 (2019)
335. Kaplan, R. M. & Vidyashankar, A. N. An inconvenient truth: global worming and anthelmintic resistance. Veterinary parasitology 186, 70-78 (2012)
336. Osei-Atweneboana, M. Y., Awadzi, K., Attah, S. K., Boakye, D. A., Gyapong, J. O. & Prichard, R. K. Phenotypic evidence of emerging ivermectin resistance in Onchocerca volvulus. PLoS neglected tropical diseases 5(2011)
337. Lee, C.-H., Chang, H.-W., Yang, C.-T., Wali, N., Shie, J.-J. & Hsueh, Y.-P. Sensory cilia as the Achilles heel of nematodes when attacked by carnivorous mushrooms. Proceedings of the National Academy of Sciences 117, 6014-6022 (2020)
338. Khopde, S. M., Priyadarsini, K. I., Venkatesan, P. & Rao, M. Free radical scavenging ability and antioxidant efficiency of curcumin and its substituted analogue. Biophysical Chemistry 80, 85-91 (1999)
339. Jäschke, A., Mi, H. & Tropschug, M. Human T cell cyclophilin18 binds to thiol-specific antioxidant protein Aop1 and stimulates its activity. Journal of Molecular Biology 277, 763-769 (1998)
340. Pessione, A., Lo Bianco, G., Mangiapane, E., Cirrincione, S. & Pessione, E. Characterization of potentially probiotic lactic acid bacteria isolated from olives: Evaluation of short chain fatty acids production and analysis of the extracellular proteome. Food Research International 67, 247-254 (2015)
341. Wagner, N., Tran, Q. H., Richter, H., Selzer, P. M. & Unden, G. Pyruvate fermentation by Oenococcus oeni and Leuconostoc mesenteroides and role of pyruvate dehydrogenase in anaerobic fermentation. Appl. Environ. Microbiol. 71, 4966-4971 (2005)
342. Canfora, E. E., Jocken, J. W. & Blaak, E. E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nature Reviews Endocrinology 11, 577 (2015)
343. Pfeffer, C., Larsen, S., Song, J., Dong, M., Besenbacher, F., Meyer, R. L., Kjeldsen, K. U., Schreiber, L., Gorby, Y. A. & El-Naggar, M. Y. Filamentous bacteria transport electrons over centimetre distances. Nature 491, 218 (2012)
344. Schnupf, P., Gaboriau-Routhiau, V., Gros, M., Friedman, R., Moya-Nilges, M., Nigro, G., Cerf-Bensussan, N. & Sansonetti, P. J. Growth and host interaction of mouse segmented filamentous bacteria in vitro. Nature 520, 99-103 (2015)
指導教授 黃俊銘 羅南德(Chun-Ming Huang Roland Kirschner) 審核日期 2020-12-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明