參考文獻 |
1. Duarte, M.F., et al., Single-pixel imaging via compressive sampling. IEEE signal processing magazine, 2008. 25(2): p. 83-91.
2. Bromberg, Y., O. Katz, and Y. Silberberg, Ghost imaging with a single detector. Physical Review A, 2009. 79(5): p. 053840.
3. Morris, P.A., et al., Imaging with a small number of photons. Nature communications, 2015. 6(1): p. 1-6.
4. Radwell, N., et al., Single-pixel infrared and visible microscope. Optica, 2014. 1(5): p. 285-289.
5. Janassek, P., S. Blumenstein, and W. Elsäßer, Ghost spectroscopy with classical thermal light emitted by a superluminescent diode. Physical Review Applied, 2018. 9(2): p. 021001.
6. Sun, M.-J., et al., Single-pixel three-dimensional imaging with time-based depth resolution. Nature communications, 2016. 7(1): p. 1-6.
7. Clemente, P., et al., Optical encryption based on computational ghost imaging. Optics letters, 2010. 35(14): p. 2391-2393.
8. Zhang, X., et al., Adaptive ghost imaging. Optics Express, 2020. 28(12): p. 17232-17240.
9. Pittman, T., et al., Optical imaging by means of two-photon quantum entanglement. Physical Review A, 1995. 52(5): p. R3429.
10. Shapiro, J.H., Computational ghost imaging. Physical Review A, 2008. 78(6): p. 061802.
11. Katz, O., Y. Bromberg, and Y. Silberberg, Compressive ghost imaging. Applied Physics Letters, 2009. 95(13): p. 131110.
12. Yu, W.-K., et al., Adaptive compressive ghost imaging based on wavelet trees and sparse representation. Optics express, 2014. 22(6): p. 7133-7144.
13. Li, Z., et al., Content-adaptive ghost imaging of dynamic scenes. Optics express, 2016. 24(7): p. 7328-7336.
14. Narendra, K.S. and A.M. Annaswamy, Stable adaptive systems. 2012: Courier Corporation.
15. Bennink, R.S., S.J. Bentley, and R.W. Boyd, “Two-photon” coincidence imaging with a classical source. Physical review letters, 2002. 89(11): p. 113601.
16. Valencia, A., et al., Two-photon imaging with thermal light. Physical review letters, 2005. 94(6): p. 063601.
17. Wang, L. and S. Zhao, Fast reconstructed and high-quality ghost imaging with fast Walsh–Hadamard transform. Photonics Research, 2016. 4(6): p. 240-244.
18. Zhang, Z., et al., Hadamard single-pixel imaging versus Fourier single-pixel imaging. Optics Express, 2017. 25(16): p. 19619-19639.
19. Pratt, W.K., J. Kane, and H.C. Andrews, Hadamard transform image coding. Proceedings of the IEEE, 1969. 57(1): p. 58-68.
20. Wikipedia, c. Least mean squares filter. 21 February 2020 09:45 UTC 17 July 2020 05:21 UTC]; Available from: https://en.wikipedia.org/w/index.php?title=Least_mean_squares_filter&oldid=941899198.
21. Wikipedia, c. Structural similarity. 8 July 2020 13:48 UTC 19 July 2020 03:20 UTC]; Available from: https://en.wikipedia.org/w/index.php?title=Structural_similarity&oldid=966673856.
22. Hore, A. and D. Ziou. Image quality metrics: PSNR vs. SSIM. in 2010 20th international conference on pattern recognition. 2010. IEEE.
23. Wang, Z., L. Lu, and A.C. Bovik, Video quality assessment based on structural distortion measurement. Signal processing: Image communication, 2004. 19(2): p. 121-132.
24. Xu, Z.-H., et al., 1000 fps computational ghost imaging using LED-based structured illumination. Optics express, 2018. 26(3): p. 2427-2434. |