博碩士論文 101389001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:194 、訪客IP:107.23.157.16
姓名 曾耀田(Yao-Tien Tseng)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 以微陽極導引電鍍法製作鎳鉻合金微螺旋及感測一氧化碳用氧化鋅/銅微感測器
(Fabrication of Ni-Cr Microhelix and Micro Sensor of ZnO/Cu for CO-sensing by Microanode Guided Electroplating)
相關論文
★ 1M KOH中Ag-Cu、Ag-Co二元薄膜觸媒對氧還原之催化★ Mg2Ni1-xCux合金在6M KOH水溶液中之電化學吸放氫性質及相關腐蝕行為之研究
★ 以電化學方法在鋅箔上製備氧化鋅奈米結構★ 固態氧化物燃料電池陰極 La0.8Sr0.2Mn1−xRuxO3之製作與特性研究
★ 奈米氧化鋅結構之電化學研製及其在發光二極體之應用★ 銅微柱表面之電化學析鍍氧化鋅奈米結構研究
★ 香草醛在含50 V% 乙二醇低氯離子溶液中對AA6060鋁合金之腐蝕抑制研究★ 磁控濺鍍製備鋯、鈦共摻氧化鋅薄膜之結構與光電特性分析
★ 即時影像監控導引下連續電鍍製作銅-鋅合金微柱並研究其結構與機械性質★ 鑭、鍶、銀、錳氧化物之製備與其作為固態氧化物燃料電池陰極之研究
★ Photodetector - Light Harvesting and specific surface Enhancement (LivE)★ 具奈米結構赤鐵礦之製備及其在光電化學行為研究
★ 以溶凝膠法製備鋁鈦共摻雜氧化鋅薄膜並研究其微結構,腐蝕及光電化學之特性★ Ba0.5Sr0.5Co0.8Fe0.2O3-δ-La3Ni2O7+δ複合 結構應用於P-SOFC陰極之可行性研究
★ 銅鎳合金微結構之微電鍍研究★ 以微電鍍法製備三維銅錫介金屬化合物微結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文依據實驗室所開發之微陽極引導電鍍(Micro Anode Guided Electroplating, MAGE)技術來製造(1)鎳鉻合金微螺旋結構來研究其熱穩定性;(2)銅微米柱,進而在表面電鍍氧化鋅,開發氣體偵測器;(3)鋁摻雜之氧化鋅(Al:ZnO)半導體奈米柱薄膜。MAGE技術,主要在微陽極與基材間,設定偏壓於小間隙(小於100 μm)下進行電鍍。此製程有別於傳統電鍍法,可在超高電場強度(〜106 V / m)及高電流密度(> 10 A/cm2)進行鎳鉻合金析鍍,有利於產生奈米晶和非晶結構。結果顯示:
(1) 在商用鎳鉻絲上析鍍出鎳鉻合金微螺旋旋,經通電加熱超過1200°C時,商用鎳鉻絲已遭熔斷,本製程所得鎳鉻合金微螺旋卻仍完好如初,具有優異之熱穩定性。
(2) 在銅微柱表面電鍍一層氧化鋅奈米柱後,具有優良之氣體偵性能。此氣體偵測器之靈敏度隨氧化鋅奈米柱之高寬比(aspect ratio)而定,當其高寬比高達3.8時,於300 °C下,偵測一氧化碳由5 ppm增加至25 ppm時,響應值由2.38上升至3.43,偵測靈敏度大幅上升。
(3) 所得鋁摻雜之電鍍氧化鋅薄膜,明顯受鍍浴中[Al3+]濃度影響而得到三種不同相:[Al3+] < 60 μm時,得到緻密奈米柱結構;60 μM < [Al3+] < 100 μM時,獲得奈米柱及奈米片之混合相;[Al3+] > 250μM時,得到鬆散絮狀物相。摻雜2.84 at. % Al的奈米柱顯示出最高的載子濃度(3.83×1018 cm-3)。
摘要(英) Microanode Guided Electroplating (MAGE), developed in our laboratory, was employed to (1) fabricate Ni-Cr alloy for studying its thermal stability; (2) prepare Cu micropillar whose surface was deposited with ZnO nanorod for the use of gas-sensor; (3) manufacture semiconducting (Al:ZnO) film. Through MAGE, a few volts were applied at a tiny gap (<100μm) between the microanode and the substrate to conduct the electrodeposition. This is quite different from traditional electrodeposition because it performs in an ultrahigh strength of electric field (〜106 V / m) and current density ( > 10 A/cm2) thus taking the advantage to form deposits in amorphous or nano-phases. The results are as follows.
(1) After a test of Joule-heating over 1200°C, the Ni-Cr alloy microhelix deposited on a wire of commercial Nichrome showed no harm, but the commercial one has been burnt out. Superior thermal stability of the Ni-Cr alloy microhelix is attributed to its amorphous and nano phases.
(2) A sensor made of Cu micropillar whose surface deposited with a film of ZnO-nanorods demonstrated a good sensor of CO-gas. The sensitivity of the sensor was determined by the aspect ratio of the ZnO nanorods. At an aspect ratio of 3.8, the sensor showed the highest sensitivity. With increasing the concentration of CO from 5 ppm to 25 ppm at 300 °C, the response increased significantly from 2.38 to 3.43.
(3) Three typical phases of the electrodeposited Al-doped ZnO films were attained determined by the concentration of [Al3+] in the bath. (i). a compact nanorods phase resulted from the bath with [Al3+] < 60μM; (ii) a mixture of nanorods and nanosheets obtained in the bath with 60μM< [Al3+] < 100μM, and (iii) a loose phase of cloudy flocs resulted from the bath with [Al3+] > 250μM. The ZnO nanorods doped with 2.84 at. % Al showed the highest carrier concentration (3.83×1018 cm-3)
關鍵字(中) ★ 微電鍍
★ 即時導引電鍍
★ 鎳鉻合金
★ 氧化鋅
★ 鋁摻雜氧化鋅
★ 單晶
★ 奈米晶
★ 非晶質
★ 氣體偵測器
★ 一氧化碳
★ 電化學沈積
★ 陰極極化曲線
關鍵字(英) ★ microelectroplating
★ real-time guided continuous microelectroplating
★ Ni-Cr alloy
★ ZnO
★ Al-doped ZnO
★ single crystal
★ nanocrystalline
★ amorphous
★ gas sensor
★ carbon monoxide
★ electrochemical deposition
★ cathodic potentiodynamic polarization
論文目次 中文摘要 i
Abstract iii
誌謝 v
TABLE OF CONTENT vi
LIST OF TABLES ix
LIST OF FIGURES x
LIST OF ABBREVIATIONS AND SYMBOLS xvii
Chapter 1 1
Introduction 1
1.1 Localized Electrochemical Deposition (LECD) and MicroAnode Guided Electroplating (MAGE) 1
1.2 Advantages of MAGE for Fabricating Micro Component 3
1.3 Tiny metallic heater 4
1.4 Use MAGE and Electrochemical Methods to assemble a miniature CO gas detector 5
1.5 Micro Gas Sensor and gas sensing 7
1.6 Doping and modification of ZnO 8
1.7 Motivation and Goal 9
1.8 Thesis Overview 11
Chapter 2 13
Literature Survey 13
2.1 Microanode Guided Electrodeplating for Fabricating Ni-Cr alloy 13
2.2 Electrodeposited Ni-Cr alloy in nanocrystalline and amorphous 15
2.3 Alloy electroplating 18
2.3.1. Regular Co-deposition 18
2.3.2. Irregular Co-deposition 19
2.3.3. Equilibrium Co-deposition 20
2.3.4. Anomalous Co-deposition 20
2.3.5 Induced Co-deposition 25
2.4 ZnO growth and ZnO doping mechanism & application 27
2.4.1 Application for ZnO Gas Sensing and Its Mechanism 31
Chapter 3 33
Experimental methods and procedures 33
3.1 Ni-Cr alloy micropillars and microhelices manufactured by MAGE 33
3.1.1 Fabrication of Ni-Cr Microstructure 33
3.1.2 Surface morphology and crystal structure characterization of Ni-Cr microstructures 36
3.1.3 Differential scanning calorimetry (DSC) analysis for Ni-Cr alloy 36
3.1.4 TEM Sample preparation and HR-TEM analysis 37
3.1.5 Mechanical Test of Nano-indentation 37
3.1.6 Comparative observations for Heating Ni-Cr Alloy and Nichrome Wire 38
3.2 Electrochemically depositing ZnO Nanorods on the Cu Micropillars 39
3.2.1 Fabrication of Free-Standing Cu Micropillars on Cu plates by MAGE 39
3.2.2 Electrochemical deposition of ZnO Coating on the Cu Micropillar 42
3.2.3 Morphology, Crystalline Structure, and Characterization of the ZnO Nanorods on the Cu Micropillar 43
3.2.4 Assembly of the Gas Sensor and Its Performance 44
3.3 Al-doped ZnO Nanorods and Nanostructures Prepared by Electrochemical Deposition 49
3.3.1 ZnO seed layer preparation 49
3.3.2 ZnO Nanorods deposited by electrochemical deposition 49
3.3.3 Study of cathodic potentiodynamic polarization 50
3.3.4 Analysis and Characterization of Al-doped ZnO Nanorods 51
Chapter 4 52
Results and Discussion 52
4.1 Ni-Cr Alloy Microstructures Prepared by Micro Anode Guided Electroplating 52
4.1.1 Materials Characterization of Ni-Cr alloy 52
4.1.1 Surface Morphology, Microstructure, and Composition of Ni-Cr Alloy Microwires 56
4.1.2 DSC Investigation of Ni-Cr Alloy 58
4.1.3 TEM and HRTEM Analysis of Ni-Cr alloy 62
4.1.4 Mechanical Property and Thermal Stability of Ni-Cr microwire 65
4.1.5 Cathodic potentiodynamic polarization of Ni, Cr, and Ni-Cr alloy 69
4.1.6 Equilibrium co-deposition system 75
4.2 Electrochemical Coating of ZnO Nanorods on the Cu Micropillar for CO Gas Sensing 82
4.2.1 Surface Morphology of the ZnO: the H2O2 Concentration in the Bath 82
4.2.2 HRTEM Analysis of the ZnO Coatings 86
4.2.3 XRD Patterns of the Various ZnO Coatings Detached from the Microsensors 88
4.2.4 XPS Analysis of the Various ZnO Coatings 91
4.2.5 Photoluminescence Spectra of the ZnO Coatings 93
4.2.6 Mechanism for the electrochemically deposited ZnO nanorods influenced by H2O2 concentration in the baths 95
4.2.7 Dependence of the Sensitivity of the Sensors on the Morphology of ZnO Coatings 100
4.2.8 Sensing Mechanism of the ZnO Coatings 103
4.3 Electrochemically Deposited Al:ZnO Nanorods and Nanostructure Determined by [Al3+] in the Bath 109
4.3.1 Surface Morphology of the Al:ZnO Products Observed by SEM 109
4.3.2 Crystal analysis of the products by GIXRD 111
4.3.2 Chemical analysis of the products by XPS 114
4.3.4 Examination of the Nanorods by TEM 116
4.3.5 Phase Transition of Al:ZnO Depending on [Al3+] in a Bath 118
4.3.6 Characterization of the Nanorods by Mott-Schottky Measurement 120
4.3.7 Cathodic polarization in different baths 122
4.3.8 Mechanism of forming ZnO/AZO products 124
Chapter 5 132
5.1 Conclusion 132
5.2 Future Work 134
References 136
Appendix 152
參考文獻 [1] Madden, J. D.; Hunter, I. W. Three-dimensional microfabrication by localized electrochemical deposition. J. Microelectromech. Syst. 1996, 5 (1), 24-32.
[2] Ciou, Y. J.; Hwang, Y. R. Research on Real-time Image Processing Guided Micro-Anode Electroplating for fabrication of three-dimensional microstructure. Master Thesis National Central University, Taoyuan City, 2011.
[3] Ciou, Y. J.; Hwang, Y. R.; Lin, J. C.; Tseng, Y. T. Fabrication of 3D Microstructure by Localized Electrochemical Deposition with Image Feedback Distance Control and Five-Axis Motion Platform. ECS Journal of Solid State Science and Technology 2016, 5 (7), P425-P432.
[4] Gu, N. H.; Lin, J. C. On the Microhelix Structures of Copper Prepared by Microanode Guided Electroplating and their Mechanical properties. Master Thesis National Central University, Taoyuan City, 2015.
[5] Liu, J. L.; Lin, J. C. Preparation of Three-dimensional Micro Structure of Cu-Sn Intermetallic Compound by Micro-electroplating. Master Thesis National Central University, Taoyuan City, 2018.
[6] Tseng, Y. T.; Lin, J. C.; Shian-Ching Jang, J.; Tsai, P. H.; Ciou, Y. J.; Hwang, Y.-R. Three-Dimensional Amorphous Ni–Cr Alloy Printing by Electrochemical Additive Manufacturing. ACS Applied Electronic Materials 2020, 2 (11), 3538-3548.
[7] Lin, J. C.; Yang, J. H.; Chang, T. K.; Jiang, S. B. On the Structure of Micrometer Copper Features Fabricated by Intermittent Micro-Anode Guided Electroplating. Electrochim. Acta 2009, 54 (24), 5703-5708.
[8] Lin, J. C.; Chang, T. K.; Yang, J. H.; Chen, Y. S.; Chuang, C. L. Localized Electrochemical Deposition of Micrometer Copper Columns by Pulse Plating. Electrochim. Acta 2010, 55 (6), 1888-1894.
[9] Chen, Y. S.; Lin, J. C.; Lin, Z. H.; Li, C.; Chang, J. K. Effect of Solvent on the Morphology of Nickel Localized Electrochemical Deposition. J. Electrochem. Soc. 2011, 158 (5), D264-D268.
[10] Lin, J. C.; Chang, T. K.; Yang, J. H.; Jeng, J. H.; Lee, D. L.; Jiang, S. B. Fabrication of A Micrometer Ni–Cu Alloy Column Coupled with a Cu Micro-Column for Thermal Measurement. J. Micromech. Microeng. 2009, 19 (1), 015030.
[11] Tseng, Y. T.; Lin, J. C.; Ciou, Y. J.; Hwang, Y. R. Fabrication of a Novel Microsensor Consisting of Electrodeposited ZnO Nanorod-Coated Crossed Cu Micropillars and the Effects of Nanorod Coating Morphology on the Gas Sensing. ACS Appl. Mater. Interfaces 2014, 6 (14), 11424-11438.
[12] Tseng, Y. T.; Choudhury, A.; Peng, K. C.; Chen, J. H.; Chou, C. T.; Lin, J. C. Concentration effect of aluminum nitrate on the Crystalline−Amorphous transition between Al-doped ZnO nanorods and nanostructures prepared by electrochemical deposition. Electrochim. Acta 2019, 308, 350-362.
[13] Lin, C.; Lee, C.; Yang, J.; Huang, Y. Improved copper microcolumn fabricated by localized electrochemical deposition. Electrochemical and Solid-State Letters 2005, 8 (9), C125-C129.
[14] Lin, J.; Yang, J.; Chang, T.; Jiang, S. On the structure of micrometer copper features fabricated by intermittent micro-anode guided electroplating. Electrochim. Acta 2009, 54 (24), 5703-5708.
[15] Osaka, T.; Takai, M.; Hayashi, K.; Sogawa, Y.; Ohashi, K.; Yasue, Y.; Saito, M.; Yamada, K. New soft magnetic CoNiFe plated films with high B/sub s/=2.0-2.1 T. IEEE Transactions on Magnetics 1998, 34 (4), 1432-1434.
[16] Lin, J.; Chang, T.; Yang, J.; Jeng, J.; Lee, D.; Jiang, S. Fabrication of a micrometer Ni–Cu alloy column coupled with a Cu micro-column for thermal measurement. J. Micromech. Microeng. 2008, 19 (1), 015030.
[17] Huang, C. A.; Chen, C. Y.; Hsu, C. C.; Lin, C. S. Characterization of Cr–Ni multilayers electroplated from a chromium (III)–nickel (II) bath using pulse current. Scripta Materialia 2007, 57 (1), 61-64.
[18] Jansson, A.; Thornell, G.; Johansson, S. High resolution 3D microstructures made by localized electrodeposition of nickel. J. Electrochem. Soc. 2000, 147 (5), 1810-1817.
[19] Yeo, S.; Choo, J. H.; Yip, K. S. In Localized electrochemical deposition: the growth behavior of nickel microcolumns, Micromachining and Microfabrication Process Technology VI, International Society for Optics and Photonics: 2000; pp 30-40.
[20] Liu, X.; Zangari, G. High moment FeCoNi alloy thin films fabricated by pulsed-current electrodeposition. IEEE Transactions on Magnetics 2001, 37 (4), 1764-1766.
[21] Chang, T.; Lin, J.; Yang, J.; Yeh, P.; Lee, D.; Jiang, S. Surface and transverse morphology of micrometer nickel columns fabricated by localized electrochemical deposition. J. Micromech. Microeng. 2007, 17 (11), 2336.
[22] Nagarajan, B.; Hu, Z.; Song, X.; Zhai, W.; Wei, J. Development of micro selective laser melting: The state of the art and future perspectives. Engineering 2019, 5 (4), 702-720.
[23] Bose, A.; Schuh, C. A.; Tobia, J. C.; Tuncer, N.; Mykulowycz, N. M.; Preston, A.; Barbati, A. C.; Kernan, B.; Gibson, M. A.; Krause, D. Traditional and additive manufacturing of a new Tungsten heavy alloy alternative. International Journal of Refractory Metals and Hard Materials 2018, 73, 22-28.
[24] Lin, C. C.; Yen, C. H.; Hu, C. C. The Degradation Behavior of Brightener on Dimensionally Stable Anodes during the Copper Electrodeposition. J. Electrochem. Soc. 2019, 166 (13), D626.
[25] Tharamani, C.; Hoor, F.; Begum, N.; Mayanna, S. Electrodeposition and Characterization of Ni–Cr Alloy Coating. J. Electrochem. Soc. 2006, 153 (3), C164-C169.
[26] Huang, C. A.; Chen, C. Y. Hardness variation and annealing behavior of a Cr–Ni multilayer electroplated in a trivalent chromium-based bath. Surface and Coatings Technology 2009, 203 (20-21), 3320-3324.
[27] Survilienė, S.; Češūnienė, A.; Jasulaitienė, V.; Jurevičiūtė, I. The use of XPS for study of the surface layers of CrNi alloys electrodeposited from the Cr (III)+ Ni (II) bath. Applied surface science 2012, 258 (24), 9902-9906.
[28] Aghdam, A. S.; Allahkaram, S.; Mahdavi, S. Corrosion and tribological behavior of Ni–Cr alloy coatings electrodeposited on low carbon steel in Cr (III)–Ni (II) bath. Surface and Coatings Technology 2015, 281, 144-149.
[29] Inoue, A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Materialia 2000, 48 (1), 279-306.
[30] Brenner, A. Electrodeposition of alloys: principles and practice, Academic Press: 1963; Vol. I.
[31] Dahms, H.; Croll, I. M. The Anomalous Codeposition of Iron-Nickel Alloys. J. Electrochem. Soc. 1965, 112 (8), 771.
[32] Hessami, S.; Tobias, C. W. A Mathematical Model for Anomalous Codeposition of Nickel‐Iron on a Rotating Disk Electrode. J. Electrochem. Soc. 1989, 136 (12), 3611.
[33] Grande, W. C.; Talbot, J. B. Electrodeposition of Thin Films of Nickel‐Iron: I. Experimental. J. Electrochem. Soc. 1993, 140 (3), 669.
[34] Matlosz, M. Competitive adsorption effects in the electrodeposition of iron‐nickel alloys. J. Electrochem. Soc. 1993, 140 (8), 2272.
[35] Fan, C.; Piron, D. Study of anomalous nickel-cobalt electrodeposition with different electrolytes and current densities. Electrochim. Acta 1996, 41 (10), 1713-1719.
[36] Zech, N.; Podlaha, E.; Landolt, D. Anomalous codeposition of iron group metals: I. Experimental results. J. Electrochem. Soc. 1999, 146 (8), 2886.
[37] Zech, N.; Podlaha, E.; Landolt, D. Anomalous codeposition of iron group metals: II. Mathematical model. J. Electrochem. Soc. 1999, 146 (8), 2892.
[38] Vaes, J.; Fransaer, J.; Celis, J. P. The role of metal hydroxides in NiFe deposition. J. Electrochem. Soc. 2000, 147 (10), 3718.
[39] Podlaha, E.; Landolt, D. Induced Codeposition: I. An Experimental Investigation of Ni‐Mo Alloys. J. Electrochem. Soc. 1996, 143 (3), 885.
[40] Podlaha, E.; Landolt, D. Induced codeposition: III. Molybdenum alloys with nickel, cobalt, and iron. J. Electrochem. Soc. 1997, 144 (5), 1672.
[41] Lin, G.-W.; Chen, J.-S.; Tseng, W.; Lu, F.-H. Formation of anatase TiO2 coatings by plasma electrolytic oxidation for photocatalytic applications. Surface and Coatings Technology 2019, 357, 28-35.
[42] Hong, W. K.; Sohn, J. I.; Hwang, D. K.; Kwon, S. S.; Jo, G.; Song, S.; Kim, S. M.; Ko, H. J.; Park, S. J.; Welland, M. E.; Lee, T. Tunable Electronic Transport Characteristics of Surface-Architecture-Controlled ZnO Nanowire Field Effect Transistors. Nano Lett. 2008, 8 (3), 950-956.
[43] Kim, Y. H.; Kim, J. S.; Kim, W. M.; Seong, T. Y.; Lee, J.; Müller-Meskamp, L.; Leo, K. Realizing the Potential of ZnO with Alternative Non-Metallic Co-Dopants as Electrode Materials for Small Molecule Optoelectronic Devices. Adv. Funct. Mater. 2013, 23 (29), 3645-3652.
[44] Ko, S. H.; Lee, D.; Kang, H. W.; Nam, K. H.; Yeo, J. Y.; Hong, S. J.; Grigoropoulos, C. P.; Sung, H. J. Nanoforest of Hydrothermally Grown Hierarchical ZnO Nanowires for a High Efficiency Dye-Sensitized Solar Cell. Nano Lett. 2011, 11 (2), 666-671.
[45] Chen, H. M.; Chen, C. K.; Chang, Y.-C.; Tsai, C.-W.; Liu, R.-S.; Hu, S.-F.; Chang, W.-S.; Chen, K.-H. Quantum Dot Monolayer Sensitized ZnO Nanowire-Array Photoelectrodes: True Efficiency for Water Splitting. Angewandte Chemie 2010, 122 (34), 6102-6105.
[46] Aad, R.; Simic, V.; Le Cunff, L.; Rocha, L.; Sallet, V.; Sartel, C.; Lusson, A.; Couteau, C.; Lerondel, G. ZnO nanowires as effective luminescent sensing materials for nitroaromatic derivatives. Nanoscale 2013, 5 (19), 9176-9180.
[47] Khan, A.; Hussain, M.; Abbasi, M. A.; Ibupoto, Z. H.; Nur, O.; Willander, M. Analysis of junction properties of gold–zinc oxide nanorods-based Schottky diode by means of frequency dependent electrical characterization on textile. Journal of Materials Science 2014, 49 (9), 3434-3441.
[48] Heo, Y. W.; Tien, L. C.; Norton, D. P.; Kang, B. S.; Ren, F.; Gila, B. P.; Pearton, S. J. Electrical Transport Properties of Single ZnO Nanorods. Appl. Phys. Lett. 2004, 85 (11), 2002-2004.
[49] Hernandez-Ramirez, F.; Prades, J. D.; Jimenez-Diaz, R.; Fischer, T.; Romano-Rodriguez, A.; Mathur, S.; Morante, J. R. On the Role of Individual Metal Oxide Nanowires in the Scaling Down of Chemical Sensors. Phys. Chem. Chem. Phys. 2009, 11 (33), 7105-7110.
[50] Chen, L.; Liu, Z.; Bai, S.; Zhang, K.; Li, D.; Chen, A.; Liu, C. C. Synthesis of 1-Dimensional ZnO and Its Sensing Property for CO. Sens. Actuators, B 2010, 143 (2), 620-628.
[51] Weintraub, B.; Zhou, Z.; Li, Y.; Deng, Y. Solution Synthesis of One-Dimensional ZnO Nanomaterials and Their Applications. Nanoscale 2010, 2 (9), 1573-1587.
[52] Rout, C. S.; Krishna, S. H.; Vivekchand, S.; Govindaraj, A.; Rao, C. Hydrogen and ethanol sensors based on ZnO nanorods, nanowires and nanotubes. Chemical Physics Letters 2006, 418 (4), 586-590.
[53] Look, D. C.; Reynolds, D. C.; Sizelove, J.; Jones, R.; Litton, C. W.; Cantwell, G.; Harsch, W. Electrical properties of bulk ZnO. Solid state communications 1998, 105 (6), 399-401.
[54] Chang, S. J.; Hsueh, T. J.; Hsu, C. L.; Lin, Y. R.; Chen, I. C.; Huang, B. R. A ZnO Nanowire Vacuum Pressure Sensor. Nanotechnology 2008, 19 (9), 095505.
[55] Wu, L.; Song, F.; Fang, X.; Guo, Z. X.; Liang, S. A Practical Pacuum Sensor Based on a ZnO Nanowire Array. Nanotechnology 2010, 21 (47), 475502.
[56] Kim, I. D.; Rothschild, A.; Yang, D. J.; Tuller, H. L. Macroporous TiO2 thin film gas sensors obtained using colloidal templates. Sensors and Actuators B: Chemical 2008, 130 (1), 9-13.
[57] Barreca, D.; Bekermann, D.; Comini, E.; Devi, A.; Fischer, R. A.; Gasparotto, A.; Maccato, C.; Sberveglieri, G.; Tondello, E. 1D ZnO Nano-Assemblies by Plasma-CVD as Chemical Sensors for Flammable and Toxic Gases. Sens. Actuators, B 2010, 149 (1), 1-7.
[58] Du, X.; Du, Y.; George, S. M. CO Gas Sensing by Ultrathin Tin Oxide Films Grown by Atomic Layer Deposition Using Transmission FTIR Spectroscopy. J. Phys. Chem. A 2008, 112 (39), 9211-9219.
[59] Lee, H. U.; Ahn, K.; Lee, S. J.; Kim, J. P.; Kim, H. G.; Jeong, S. Y.; Cho, C. R. ZnO Nanobarbed Fibers: Fabrication, Sensing NO2 Gas, and Their Sensing Mechanism. Appl. Phys. Lett. 2011, 98 (19), 193114.
[60] Ramgir, N. S.; Sharma, P. K.; Datta, N.; Kaur, M.; Debnath, A. K.; Aswal, D. K.; Gupta, S. K. Room Temperature H2S Sensor Based on Au Modified ZnO Nanowires. Sens. Actuators, B 2013, 186, 718-726.
[61] Fang, T. H.; Kang, S. H. Preparation and characterization of Mg-doped ZnO nanorods. Journal of Alloys and Compounds 2010, 492 (1), 536-542.
[62] Chanda, A.; Gupta, S.; Vasundhara, M.; Joshi, S. R.; Mutta, G. R.; Singh, J. Study of structural, optical and magnetic properties of cobalt doped ZnO nanorods. RSC Advances 2017, 7 (80), 50527-50536.
[63] Bae, S. Y.; Na, C. W.; Kang, J. H.; Park, J. Comparative Structure and Optical Properties of Ga-, In-, and Sn-Doped ZnO Nanowires Synthesized via Thermal Evaporation. The Journal of Physical Chemistry B 2005, 109 (7), 2526-2531.
[64] Yang, S.; Li, G.; Qu, C.; Wang, G.; Wang, D. Simple synthesis of ZnO nanoparticles on N-doped reduced graphene oxide for the electrocatalytic sensing of l-cysteine. RSC Advances 2017, 7 (56), 35004-35011.
[65] Macias-Sanchez, J. J.; Hinojosa-Reyes, L.; Caballero-Quintero, A.; de la Cruz, W.; Ruiz-Ruiz, E.; Hernandez-Ramirez, A.; Guzman-Mar, J. L. Synthesis of nitrogen-doped ZnO by sol-gel method: characterization and its application on visible photocatalytic degradation of 2,4-D and picloram herbicides. Photochemical & Photobiological Sciences 2015, 14 (3), 536-542.
[66] Jamali-Sheini, F. Synthesis of Te-doped ZnO nanowires with promising field emission behavior. RSC Advances 2016, 6 (116), 115335-115344.
[67] Peipei, L.; Pingqi, G.; Xiaohui, L.; Haiqiao, W.; Jian, H.; Xi, Y.; Yuheng, Z.; Baojie, Y.; Junfeng, F.; Jichun, Y. High-Performance Organic-Silicon Heterojunction Solar Cells by Using Al-Doped ZnO as Cathode Interlayer. Solar RRL 2018, 2 (3), 1700223.
[68] Zhan, Z.; Zhang, J.; Zheng, Q.; Pan, D.; Huang, J.; Huang, F.; Lin, Z. Strategy for Preparing Al-Doped ZnO Thin Film with High Mobility and High Stability. Cryst. Growth Des. 2011, 11 (1), 21-25.
[69] Sengupta, D.; Mondal, B.; Mukherjee, K. Genesis of flake-like morphology and dye-sensitized solar cell performance of Al-doped ZnO particles: a study. Journal of Nanoparticle Research 2017, 19 (3), 100.
[70] Kim, H. W.; Kebede, M. A.; Kim, H. S. Structural, Raman, and photoluminescence characteristics of ZnO nanowires coated with Al-doped ZnO shell layers. Curr. Appl Phys. 2010, 10 (1), 60-63.
[71] Qu, X.; Jia, D. Controlled growth and optical properties of Al 3+ doped ZnO nanodisks and nanorod clusters. Mater. Lett. 2009, 63 (3), 412-414.
[72] Kumar, M.; Wen, L.; Sahu, B. B.; Han, J. G. Simultaneous enhancement of carrier mobility and concentration via tailoring of Al-chemical states in Al-ZnO thin films. Appl. Phys. Lett. 2015, 106 (24), 241903.
[73] Baka, O.; Azizi, A.; Velumani, S.; Schmerber, G.; Dinia, A. Effect of Al concentrations on the electrodeposition and properties of transparent Al-doped ZnO thin films. J. Mater. Sci.: Mater. Electron. 2014, 25 (4), 1761-1769.
[74] Mahmood, K.; Swain, B. S.; Jung, H. S. Controlling the surface nanostructure of ZnO and Al-doped ZnO thin films using electrostatic spraying for their application in 12% efficient perovskite solar cells. Nanoscale 2014, 6 (15), 9127-9138.
[75] Pruna, A.; Pullini, D.; Busquets, D. Effect of AZO film as seeding substrate on the electrodeposition and properties of Al-doped ZnO nanorod arrays. Ceramics International 2015, 41 (10, Part B), 14492-14500.
[76] Henni, A.; Merrouche, A.; Telli, L.; Karar, A. Studies on the structural, morphological, optical and electrical properties of Al-doped ZnO nanorods prepared by electrochemical deposition. J. Electroanal. Chem. 2016, 763, 149-154.
[77] Thierry, P.; Oleg, L.; Vasile, P.; Mathias, H.; Lee, C.; Rainer, A. Al-Doped ZnO Nanowires by Electrochemical Deposition for Selective VOC Nanosensor and Nanophotodetector. physica status solidi (a) 2018, 0 (0), 1700824.
[78] Edigaryan, A.; Safonov, V.; Lubnin, E.; Vykhodtseva, L.; Chusova, G.; Polukarov, Y. M. Properties and preparation of amorphous chromium carbide electroplates. Electrochim. Acta 2002, 47 (17), 2775-2786.
[79] Renz, R.; Fortman, J.; Taylor, E.; Inman, M. Electrically mediated process for functional trivalent chromium to replace hexavalent chromium: Scale-up for manufacturing insertion. Plating and surface finishing 2003, 90 (6), 52-54.
[80] Anii, B.; Robert, E. Modeling, optimization and comparative analysis of trivalent electrodeposition from aqueous glycine and formic acid baths. Journal of Electrochemical Society 2005, 152 (7), C504-C512.
[81] Gurlo, A.; Riedel, R. In Situ and Operando Spectroscopy for Assessing Mechanisms of Gas Sensing. Angew. Chem., Int. Ed. 2007, 46 (21), 3826-3848.
[82] Guillemin, S.; Consonni, V.; Appert, E.; Puyoo, E.; Rapenne, L.; Roussel, H. Critical Nucleation Effects on the Structural Relationship Between ZnO Seed Layer and Nanowires. J. Phys. Chem. C 2012, 116 (47), 25106-25111.
[83] Wang, C. Y.; Lin, J. C.; Chang, Y. C.; Tseng, Y. T.; Ciou, Y. J.; Hwang, Y. R. Fabrication of Cu-Zn Alloy Micropillars by Potentiostatic Localized Electrochemical Deposition. J. Electrochem. Soc. 2019, 166 (8), E252-E262.
[84] Nash, P. The Cr−Ni (Chromium-Nickel) system. Bulletin of Alloy Phase Diagrams 1986, 7 (5), 466-476.
[85] Lesz, S.; Dercz, G. Study on crystallization phenomenon and thermal stability of binary Ni–Nb amorphous alloy. Journal of Thermal Analysis and Calorimetry 2016, 126 (1), 19-26.
[86] Chassaing, E.; Joussellin, M.; Wiart, R. The kinetics of nickel electrodeposition: Inhibition by adsorbed hydrogen and anions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1983, 157 (1), 75-88.
[87] Vazquez-Arenas, J. G.; Altamirano-Garcia, L.; Luna-Sanchez, R. M.; Cabrera-Sierra, R. Voltammetric Modeling of the Kinetics Involved in the Nickel Deposition onto Nickel. ECS Transactions 2010, 29 (1), 135-143.
[88] Epelboin, I.; Joussellin, M.; Wiart, R. Impedance measurements for nickel deposition in sulfate and chloride electrolytes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1981, 119 (1), 61-71.
[89] Lu, J.; Yang, Q.-h.; Zhang, Z. Effects of additives on nickel electrowinning from sulfate system. Transactions of Nonferrous Metals Society of China 2010, 20, s97-s101.
[90] Song, Y. B.; Chin, D. T. Current efficiency and polarization behavior of trivalent chromium electrodeposition process. Electrochim. Acta 2002, 48 (4), 349-356.
[91] Protsenko, V.; Danilov, F. Kinetics and mechanism of chromium electrodeposition from formate and oxalate solutions of Cr(III) compounds. Electrochim. Acta 2009, 54 (24), 5666-5672.
[92] Zeng, Z.; Wang, L.; Liang, A.; Zhang, J. Tribological and electrochemical behavior of thick Cr–C alloy coatings electrodeposited in trivalent chromium bath as an alternative to conventional Cr coatings. Electrochim. Acta 2006, 52 (3), 1366-1373.
[93] Zeng, Z.; Sun, Y.; Zhang, J. The electrochemical reduction mechanism of trivalent chromium in the presence of formic acid. Electrochemistry Communications 2009, 11 (2), 331-334.
[94] Phuong, N. V.; Kwon, S. C.; Lee, J. Y.; Lee, J. H.; Lee, K. H. The effects of pH and polyethylene glycol on the Cr(III) solution chemistry and electrodeposition of chromium. Surface and Coatings Technology 2012, 206 (21), 4349-4355.
[95] Landolt, D. Electrochemical and materials science aspects of alloy deposition. Electrochim. Acta 1994, 39 (8), 1075-1090.
[96] Quan, C.; He, Y.; Zhang, J. High temperature oxidation behavior of a novel Ni−Cr binary alloy coating prepared by cathode plasma electrolytic deposition. Surface and Coatings Technology 2016, 292, 11-19.
[97] Saltykov, P.; Witusiewicz, V. Enthalpy of Mixing of Liquid Al—Cr and Cr—Ni Alloys. J. Mater. Sci. Technol. 2002, 18 (2), 167-170.
[98] Murdoch, H. A.; Schuh, C. A. Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design. Journal of Materials Research 2013, 28 (16), 2154-2163.
[99] Plieth, W.; Georgiev, G. Residence times in kink sites and Markov chain model of alloy and intermetallic compound deposition. Russian Journal of Electrochemistry 2006, 42 (10), 1093-1100.
[100] Huang, C. A.; Chen, C. Y. Hardness variation and annealing behavior of a Cr–Ni multilayer electroplated in a trivalent chromium-based bath. Surface and Coatings Technology 2009, 203 (20), 3320-3324.
[101] Huang, C. A.; Chen, C. Y.; Chen, C. C.; Kelly, T.; Lin, H. M. Microstructure analysis of a Cr–Ni multilayer pulse-electroplated in a bath containing trivalent chromium and divalent nickel ions. Surface and Coatings Technology 2014, 255, 153-157.
[102] Pauporté, T.; Lincot, D. Hydrogen Peroxide Oxygen Precursor for Zinc Oxide Electrodeposition I. Deposition in Perchlorate Medium. J. Electrochem. Soc. 2001, 148 (4), C310-C314.
[103] Williams, D. B., Carter, C. Barry. Transmission Electron Microscopy : A Textbook for Materials Science, 2nd ed.; Springer US: New York, 2009; p 760.
[104] Fahoume, M.; Maghfoul, O.; Aggour, M.; Hartiti, B.; Chraïbi, F.; Ennaoui, A. Growth and Characterization of ZnO Thin Films Prepared by Electrodeposition Technique. Sol. Energy Mater. Sol. Cells 2006, 90 (10), 1437-1444.
[105] Chen, M.; Wang, Z. H.; Han, D. M.; Gu, F. B.; Guo, G. S. Porous ZnO Polygonal Nanoflakes: Synthesis, Use in High-Sensitivity NO2 Gas Sensor, and Proposed Mechanism of Gas Sensing. J. Phys. Chem. C 2011, 115 (26), 12763-12773.
[106] Nicholas, N. J.; Franks, G. V.; Ducker, W. A. The Mechanism for Hydrothermal Growth of Zinc Oxide. CrystEngComm 2012, 14 (4), 1232.
[107] McCluskey, M. D.; Jokela, S. J. Defects in ZnO. J. Appl. Phys. 2009, 106 (7), 071101.
[108] Janotti, A.; Van de Walle, C. G. Native Point Defects in ZnO. Phys. Rev. B: Condens. Matter Mater. Phys. 2007, 76 (16), 165202.
[109] Lee, M. K.; Tu, H. F. Ultraviolet Emission Blueshift of ZnO Related to Zn. J. Appl. Phys. 2007, 101 (12), 126103.
[110] Wei, X. Q.; Zhang, Z.; Yu, Y. X.; Man, B. Y. Comparative Study on Structural and Optical Properties of ZnO Thin Films Prepared by PLD Using ZnO Powder Target and Ceramic Target. Opt. Laser Technol. 2009, 41 (5), 530-534.
[111] Cheng, W.; Wu, P.; Zou, X.; Xiao, T. Study on Synthesis and Blue Emission Mechanism of ZnO Tetrapodlike Nanostructures. J. Appl. Phys. 2006, 100 (5), 054311
[112] Wei, X. Q.; Man, B. Y.; Liu, M.; Xue, C. S.; Zhuang, H. Z.; Yang, C. Blue Luminescent Centers and Microstructural Evaluation by XPS and Raman in ZnO Thin Films Annealed in Vacuum, N2 and O2. Phys. B 2007, 388 (1-2), 145-152.
[113] Srikant, V.; Clarke, D. R. On the Optical Band Gap of Zinc Oxide. J. Appl. Phys. 1998, 83 (10), 5447-5451.
[114] Look, D. C.; Hemsky, J. W.; Sizelove, J. R. Residual Native Shallow Donor in ZnO. Phys. Rev. Lett. 1999, 82 (12), 2552-2555.
[115] Zeng, H.; Duan, G.; Li, Y.; Yang, S.; Xu, X.; Cai, W. Blue Luminescence of ZnO Nanoparticles Based on Non-Equilibrium Processes: Defect Origins and Emission Controls. Adv. Funct. Mater. 2010, 20 (4), 561-572.
[116] Shalish, I.; Temkin, H.; Narayanamurti, V. Size-Dependent Surface Luminescence in ZnO Nanowires. Phys. Rev. B: Condens. Matter Mater. Phys. 2004, 69 (24), 245401.
[117] Djurisic, A. B.; Leung, Y. H. Optical Properties of ZnO Nanostructures. Small 2006, 2 (8-9), 944-61.
[118] Sun, Y.; Ashfold, M. N. R. Photoluminescence from Diameter-Selected ZnO Nanorod Arrays. Nanotechnology 2007, 18 (24), 245701.
[119] Huang, M. H.; Wu, Y.; Feick, H.; Tran, N.; Weber, E.; Yang, P. Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport. Adv. Mater. 2001, 13 (2), 113-116.
[120] Singh, N.; Mittal, S.; Sood, K.; Gupta, P. Controlling the Flow of Nascent Oxygen Using Hydrogen Peroxide Results in Controlling the Synthesis of ZnO/ZnO2. Chalcogenide Lett. 2010, 7 (4), 275-281.
[121] Pauporté, T.; Lincot, D. Hydrogen Peroxide Oxygen Precursor for Zinc Oxide Electrodeposition II—Mechanistic Aspects. J. Electroanal. Chem. 2001, 517 (1–2), 54-62.
[122] Ramirez, D.; Bartlett, P.; Abdelsalam, M.; Gomez, H.; Lincot, D. Electrochemical Synthesis of Macroporous Zinc Oxide Layers by Employing Hydrogen Peroxide as Oxygen Precursor. Phys. Status Solidi A 2008, 205 (10), 2365-2370.
[123] Yan, X.; Li, Z.; Chen, R.; Gao, W. Template Growth of ZnO Nanorods and Microrods with Controllable Densities. Cryst. Growth Des. 2008, 8 (7), 2406-2410.
[124] Edri, E.; Rabinovich, E.; Niitsoo, O.; Cohen, H.; Bendikov, T.; Hodes, G. Uniform Coating of Light-Absorbing Semiconductors by Chemical Bath Deposition on Sulfide-Treated ZnO Nanorods. J. Phys. Chem. C 2010, 114 (30), 13092-13097.
[125] Chen, D. W.; Wang, T. C.; Liao, W. P.; Wu, J. J. Synergistic Effect of Dual Interfacial Modifications with Room-Temperature-Grown Epitaxial ZnO and Adsorbed Indoline Dye for ZnO Nanorod Array/P3HT Hybrid Solar Cell. ACS Appl. Mater. Interfaces 2013, 5 (17), 8359-8365.
[126] Kumar, N.; Srivastava, A. K.; Nath, R.; Gupta, B. K.; Varma, G. D. Probing the Highly Efficient Room Temperature Ammonia Gas Sensing Properties of a Luminescent ZnO Nanowire Array Prepared via An AAO-Assisted Template Route. Dalton Trans. 2014, 5713-5720.
[127] Lupan, O.; Chow, L.; Pauporté, T.; Ono, L. K.; Roldan Cuenya, B.; Chai, G. Highly Sensitive and Selective Hydrogen Single-Nanowire Nanosensor. Sens. Actuators, B 2012, 173, 772-780.
[128] Yang, Z.; Li, L. M.; Wan, Q.; Liu, Q. H.; Wang, T. H. High-Performance Ethanol Sensing Based on An Aligned Assembly of ZnO Nanorods. Sens. Actuators, B 2008, 135 (1), 57-60.
[129] Hongsith, N.; Wongrat, E.; Kerdcharoen, T.; Choopun, S. Sensor Response Formula for Sensor Based on ZnO Nanostructures. Sens. Actuators, B 2010, 144 (1), 67-72.
[130] Ahn, M. W.; Park, K. S.; Heo, J. H.; Park, J. G.; Kim, D. W.; Choi, K. J.; Lee, J. H.; Hong, S. H. Gas Sensing Properties of Defect-Controlled ZnO-Nanowire Gas Sensor. Appl. Phys. Lett. 2008, 93 (26), 263103.
[131] Gong, H.; Hu, J. Q.; Wang, J. H.; Ong, C. H.; Zhu, F. R. Nano-Crystalline Cu-Doped ZnO Thin Film Gas Sensor for CO. Sens. Actuators, B 2006, 115 (1), 247-251.
[132] Barsan, N.; Weimar, U. Conduction Model of Metal Oxide Gas Sensors. J. Electroceram. 2001, 7 (3), 143-167.
[133] Takata, M.; Tsubone, D.; Yanagida, H. Dependence of Electrical Conductivity of ZnO on Degree of Sintering. J. Am. Ceram. Soc. 1976, 59 (1-2), 4-8.
[134] Della Gaspera, E.; Guglielmi, M.; Martucci, A.; Giancaterini, L.; Cantalini, C. Enhanced Optical and Electrical Gas Sensing Response of Sol–Gel Based NiO–Au and ZnO–Au Nanostructured Thin Films. Sens. Actuators, B 2012, 164 (1), 54-63.
[135] Kolmakov, A.; Zhang, Y.; Cheng, G.; Moskovits, M. Detection of CO and O2 Using Tin Oxide Nanowire Sensors. Adv. Mater. 2003, 15 (12), 997-1000.
[136] Zhang, Y.; Xu, J. Q.; Xiang, Q.; Li, H.; Pan, Q. Y.; Xu, P. C. Brush-Like Hierarchical ZnO Nanostructures: Synthesis, Photoluminescence and Gas Sensor Properties. J. Phys. Chem. C 2009, 113 (9), 3430-3435.
[137] Liao, L.; Lu, H. B.; Li, J. C.; He, H.; Wang, D. F.; Fu, D. J.; Liu, C.; Zhang, W. F. Size Dependence of Gas Sensitivity of ZnO Nanorods. J. Phys. Chem. C 2007, 111 (5), 1900-1903.
[138] Gurav, K. V.; Gang, M. G.; Shin, S. W.; Patil, U. M.; Deshmukh, P. R.; Agawane, G. L.; Suryawanshi, M. P.; Pawar, S. M.; Patil, P. S.; Lokhande, C. D.; Kim, J. H. Gas Sensing Properties of Hydrothermally Grown ZnO Nanorods with Different Aspect Ratios. Sens. Actuators, B 2014, 190, 439-445.
[139] Chang, S. J.; Hsueh, T. J.; Chen, I. C.; Huang, B. R. Highly Sensitive ZnO Nanowire CO Sensors with the Adsorption of Au Nanoparticles. Nanotechnology 2008, 19 (17), 175502.
[140] Chang, J. F.; Kuo, H. H.; Leu, I. C.; Hon, M. H. The Effects of Thickness and Operation Temperature on ZnO:Al Thin Film CO Gas Sensor. Sens. Actuators, B 2002, 84 (2–3), 258-264.
[141] Kolmakov, A.; Moskovits, M. Chemical Sensing and Catalysis by One-Dimensional Metal-Oxide Nanostructures. Annu. Rev. Mater. Res. 2004, 34 (1), 151-180.
[142] Gurlo, A. Nanosensors: Towards Morphological Control of Gas Sensing Activity. SnO2, In2O3, ZnO and WO3 Case Studies. Nanoscale 2011, 3 (1), 154-165.
[143] Liu, C. Y.; Chen, C. F.; Leu, J. P. Fabrication and CO Sensing Properties of Mesostructured ZnO Gas Sensors. J. Electrochem. Soc. 2009, 156 (1), J16-J19.
[144] Zeng, W.; Wu, M. Y.; Li, Y. Q.; Wu, S. F. Hydrothermal Synthesis of Different SnO2 Nanosheets with CO Gas Sensing Properties. J. Mater. Sci.: Mater. Electron. 2013, 24 (10), 3701-3706.
[145] Wang, C.; Yin, L.; Zhang, L.; Qi, Y.; Lun, N.; Liu, N. Large Scale Synthesis and Gas-Sensing Properties of Anatase TiO2 Three-Dimensional Hierarchical Nanostructures. Langmuir 2010, 26 (15), 12841-12848.
[146] Chen, M.; Pei, Z.; Sun, C.; Wen, L.; Wang, X. Surface characterization of transparent conductive oxide Al-doped ZnO films. Journal of Crystal Growth 2000, 220 (3), 254-262.
[147] Duenow, J. N.; Gessert, T. A.; Wood, D. M.; Barnes, T. M.; Young, M.; To, B.; Coutts, T. J. Transparent conducting zinc oxide thin films doped with aluminum and molybdenum. Journal of Vacuum Science & Technology A 2007, 25 (4), 955-960.
[148] Dhakal, T.; Vanhart, D.; Christian, R.; Nandur, A.; Sharma, A.; Westgate, C. R. Growth morphology and electrical/optical properties of Al-doped ZnO thin films grown by atomic layer deposition. Journal of Vacuum Science & Technology A 2012, 30 (2), 021202.
[149] Dai, H.-Q.; Xu, H.; Zhou, Y.-N.; Lu, F.; Fu, Z.-W. Electrochemical Characteristics of Al2O3-Doped ZnO Films by Magnetron Sputtering. J. Phys. Chem. C 2012, 116 (1), 1519-1525.
[150] Perry, D. L.; Phillips, S. L. Handbook of Inorganic Compounds, Taylor & Francis: 1995; p 9.
[151] Lide, D. R. CRC Handbook of Chemistry and Physics, 84th Edition, Taylor & Francis: 2003; p 8-26.
[152] Vanysek, P. Electrochemical series. Handbook of Chemistry and Physics 2000, 88.
[153] Borade, P.; Joshi, K. U.; Gokarna, A.; Lerondel, G.; Jejurikar, S. M. The transformation of ZnO submicron dumbbells into perfect hexagonal tubular structures using CBD: a post treatment route. Nanotechnology 2016, 27 (2), 025602.
[154] Lu, J. G.; Ye, Z. Z.; Zeng, Y. J.; Zhu, L. P.; Wang, L.; Yuan, J.; Zhao, B. H.; Liang, Q. L. Structural, optical, and electrical properties of (Zn,Al)O films over a wide range of compositions. J. Appl. Phys. 2006, 100 (7), 073714.
[155] Oh, B.-Y.; Jeong, M.-C.; Lee, W.; Myoung, J.-M. Properties of transparent conductive ZnO:Al films prepared by co-sputtering. Journal of Crystal Growth 2005, 274 (3), 453-457.
[156] Mass, J.; Bhattacharya, P.; Katiyar, R. Effect of high substrate temperature on Al-doped ZnO thin films grown by pulsed laser deposition. Materials Science and Engineering: B 2003, 103 (1), 9-15.
[157] Zhang, L. L.; Zhao, X. S. Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews 2009, 38 (9), 2520-2531.
[158] Pardon, G. From Macro to Nano: Electrokinetic Transport and Surface Control. KTH Royal Institute of Technology, 2014.
[159] Petrucci, S. Ionic Interactions: From Dilute Solution to Fused Salts, Elsevier Science: 2012; p 147-149.
[160] Ishiguro, S. I.; Umebayashi, Y.; Kato, K.; Takahashi, R.; Ozutsumi, K. Strong and weak solvation steric effects on lanthanoid(iii) ions in N,N-dimethylformamide-N,N-dimethylacetamide mixtures. Journal of the Chemical Society, Faraday Transactions 1998, 94 (24), 3607-3612.
[161] Hsu, C. H.; Chen, D. H. Synthesis and conductivity enhancement of Al-doped ZnO nanorod array thin films. Nanotechnology 2010, 21 (28), 285603.
[162] Cho, S.; Jung, S.-H.; Jang, J.-W.; Oh, E.; Lee, K.-H. Simultaneous Synthesis of Al-Doped ZnO Nanoneedles and Zinc Aluminum Hydroxides through Use of a Seed Layer. Cryst. Growth Des. 2008, 8 (12), 4553-4558.
[163] Verrier, C.; Appert, E.; Chaix-Pluchery, O.; Rapenne, L.; Rafhay, Q.; Kaminski-Cachopo, A.; Consonni, V. Tunable Morphology and Doping of ZnO Nanowires by Chemical Bath Deposition Using Aluminum Nitrate. J. Phys. Chem. C 2017, 121 (6), 3573-3583.
[164] Surfactants in Chemical/Process Engineering, Taylor & Francis: 1988; Vol. 28, p 432-435.
[165] Beckett, R. Surface and Colloid Chemistry in Natural Waters and Water Treatment, Springer US: 2013; p 131.
[166] S., D. W. O.; T., O. E. M.; A., P. The coprecipitation of zinc aluminium hydroxides (refractory-, absorbent-, and catalyst precursors) from aqueous solution with ammonium hydroxide: Precipitate compositions and coprecipitation mechanisms. Crystal Research and Technology 1990, 25 (8), 913-919.
[167] Ahmed, A. A. A.; Talib, Z. A.; bin Hussein, M. Z.; Zakaria, A. Zn–Al layered double hydroxide prepared at different molar ratios: Preparation, characterization, optical and dielectric properties. Journal of Solid State Chemistry 2012, 191, 271-278.
[168] Tokoro, C.; Sakakibara, T.; Suzuki, S. Mechanism investigation and surface complexation modeling of zinc sorption on aluminum hydroxide in adsorption/coprecipitation processes. Chemical Engineering Journal 2015, 279, 86-92.
[169] Liu, J.; Song, J.; Xiao, H.; Zhang, L.; Qin, Y.; Liu, D.; Hou, W.; Du, N. Synthesis and thermal properties of ZnAl layered double hydroxide by urea hydrolysis. Powder Technology 2014, 253, 41-45.
指導教授 林景崎(Jing-Chie Lin) 審核日期 2021-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明