博碩士論文 107222028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:137 、訪客IP:3.147.51.75
姓名 劉書孝(Shu-Xiao Liu)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(The Study of the Di-Higgs Production via Vector Boson Fusion Channel for the Phase II CMS at √? =14 TeV)
相關論文
★ 7 TeV 和2.76 TeV 質子對撞下,光子散射截面積的測量★ Search for Pair Production of t*-> t + photon : Estimation of Photon Purity and Study of the Top and W Mass Resolution
★ 以大型強子對撞機裡的緊湊渺子線圈偵測器尋找重夸克在半輕子頻道衰變成頂夸克和光子★ Search for Z′→Zh→llbb in pp Collisions at √s =8 TeV Using the CMS Detector at the LHC
★ Search for heavy resonances decaying into a Z boson and a Higgs boson in the 2l2b final state in pp collisions at √s = 13 TeV★ 從質子質子對撞在質量中心能量 13 兆電子 伏特利用緊湊渺子偵測器尋找重粒子衰變 到一對希格斯粒子於四個底夸克最終態
★ Study of the b-tagging Scale Factor using the tt ̅ Events from pp collisions at √s =13 TeV with the CMS Detector★ 在大型強子對撞機的緊湊渺子線圈偵測器,使用13兆電子伏特的質子-質子對撞尋找會衰變到一對希格斯玻色子且最終狀態為四個底夸克的重共振態
★ 在緊湊渺子線的質心對撞能量為 13 兆電子伏特的數據裡, 用字母法輔以突起搜尋之方法來尋找類 Z 玻色子衰變為 Z 玻色子及希格斯粒子在衰變為輕子與底垮克★ 在與希格斯玻色子有關聯的暗物質搜索中去測量深度雙底夸克標記校正因子的誤判率
★ 於尋找單希格斯粒子中研究噴流子結構可觀測量★ The analysis of the TASEH CD102 data
★ 找尋具有長生命週期新粒子的物理模型所預測的暗物質★ Toward discovering the low-mass dark matter: Constraints on Searches of Low-mass Weakly Interacting Massive Particle (WIMP) with Earth Attenuation Effect incorporated && Exploring the physics of germanium internal amplification for low-energy detection
★ 利用LC電路開發低質量軸子探測器★ Large-volume Microwave Cavity Design for the Taiwan Axion Search Experiment with Haloscope
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 大型強子對撞機將會在下個10 年進入高亮度大型強子對撞機時期並且在14 兆電子伏特質心對撞能量下運作。預期每年的總亮度為300 fb−1。在本研究中,雙希格斯玻色子生成經向量玻色子融合通道將被研究。雙希格斯玻色子會被重建為兩個AK8 噴流,向量玻色子融合噴流會被重建為兩個AK4 噴流。針對雙希格斯玻色子及向量玻色子融合拓樸設計的篩選會被採用。動力學分布及沒有堆疊跟200堆疊的比較會被呈現。對於6 個模型中理論參數的篩選通過率也會被研究。
摘要(英) LHC will enter the era of High-Luminosity LHC in the next 10 year and will run at sqrt(s) = 14 TeV. The designed integrated luminosity is 300 fb?1 per year. The di-Higgs production via vector boson fusion channel is probed in this analysis. The Higgs bosons are reconstructed by two AK8 jets and the VBF jets are reconstruct by AK4 jets. The selections designed for VBF topology and di-Higgs are applied. The kinematic distribution and the comparison with no pile up and 200 pile up are presented. The efficiency of each selection is also studied for six variations of the theoretical parameters in the theory model.
關鍵字(中) ★ 雙希格斯玻色子生成 關鍵字(英) ★ HHVBF
★ HL-LHC
論文目次 1 Introduction and Theory Overview 1
1.1 Introduction . . . . . . . . . . . . 1
1.2 Review of Run 2 Result . . . . . . . 1
1.3 Theoretical Overview . . . . . . . . 2
1.4 Benchmark . . . . . . . . . . . . . . 2
2 Experimental Apparatus 5
2.1 Large Hadron Collider . . . . . . . . 5
2.1.1 The High Luminosity LHC . . . . . . 6
2.2 Compact Muon Solenoid . . . . . . . . 6
2.2.1 Magnetic system . . . . . . . . . . 7
2.2.2 Tracker . . . . . . . . . . . . . . 8
Microstrip Detector . . . . . . . . 9
Pixel Detector . . . . . . . . . 9
2.2.3 Calolimeter . . . . . . . . . . . . . . 10
Electromagnetic Calorimeter . . . . . . . 10
Hadron Calorimeter . . . . . . . 11
2.2.4 Muon Detector . . . . . . . . . . . . 11
2.2.5 Trigger . . . . . . . . . . . . . . . . 12
3 Physical Objects, Sample Production and Selection 15
3.1 Physical Objects . . . . . . . . . . . . . . . 15
3.1.1 Sample Production: LHE and Reconstruction Level . . . . 15
3.1.2 Vertex and Pile Up . . . . . . . . . 16
3.1.3 Jet Reconstruction . . . . . . . . . 16
3.1.4 Soft Drop Mass . . . . . . . . . . . . 17
3.1.5 DeepAK8 . . . . . . . . . . . . 18
3.2 MC Samples . . . . . . . . . . . . . . . . . 18
3.3 Selection . . . . . . . . . . . . . . 19
4 Result . . . . . . 21
4.1 13 and 14 TeV LHE comparison . . . . . . . . . . . 21
4.2 Cut flow studies of signal . . . . . . . . . . . 28
4.3 6 parameters kinematic comparison . . . . . . . . 30
Appendix A Cut flow 37
Bibliography 39
參考文獻 [1] Fady Bishara, Roberto Contino, and Juan Rojo. “Higgs pair production
in vector-boson fusion at the LHC and beyond”. In: The European Physical
Journal C 77.7 (2017), p. 481. ISSN: 1434-6052. DOI: 10.1140/epjc/
s10052-017-5037-9. URL: https://doi.org/10.1140/epjc/
s10052-017-5037-9.
[2] S. Chatrchyan et al. “The CMS experiment at the CERN LHC”. In: JINST 3
(2008), S08004. DOI: 10.1088/1748-0221/3/08/S08004.
[3] Patrawan Pasuwan. “Track-counting luminosity measurements in ATLAS”.
In: PoS LHCP2019 (2019). Ed. by Pablo Roig Garcés et al., p. 063.
DOI: 10.22323/1.350.0063.
[4] Burkhard Schmidt. “The High-Luminosity upgrade of the LHC: Physics
and Technology Challenges for the Accelerator and the Experiments”. In:
J. Phys.: Conf. Ser. 706.2 (2016), 022002. 42 p. DOI: 10.1088/1742-6596/
706/2/022002. URL: https://iopscience.iop.org/article/
10.1088/1742-6596/706/2/022002.
[5] Jean-Marc Lévy-Leblond and Jean-Pierre Provost. “Additivity, rapidity,
relativity”. In: American Journal of Physics 47.12 (1979), pp. 1045–1049. DOI:
10.1119/1.11972. URL: https://doi.org/10.1119/1.11972.
[6] CMS Collaboration. “Precise mapping of the magnetic field in the CMS
barrel yoke using cosmic rays”. In: Journal of Instrumentation 5.03 (2010),
T03021–T03021. ISSN: 1748-0221. DOI: 10.1088/1748- 0221/5/03/
t03021. URL: http://dx.doi.org/10.1088/1748-0221/5/03/
T03021.
[7] I Gorelov et al. “Electrical characteristics of silicon pixel detectors”. In: Nuclear
Instruments and Methods in Physics Research Section A, 202-217 (2002)
489 (Aug. 2002). DOI: 10.1016/S0168-9002(02)00557-0.
[8] Particle Data Group et al. “Review of Particle Physics”. In: Progress of Theoretical
and Experimental Physics 2020.8 (Aug. 2020). 083C01. ISSN: 2050-3911.
DOI: 10.1093/ptep/ptaa104. eprint: https://academic.oup.
com/ptep/article-pdf/2020/8/083C01/33653179/ptaa104.
pdf. URL: https://doi.org/10.1093/ptep/ptaa104.
[9] K. Deiters et al. “Avalanche photodiodes for the CMS detector”. In: 2000
IEEE Nuclear Science Symposium. Conference Record (Cat. No.00CH37149).
Vol. 1. 2000, 7/32–7/35 vol.1. DOI: 10.1109/NSSMIC.2000.949269.
[10] Simon Honc. “New applications of the multi variate analysis framework
NeuroBayes for an inclusive b-jet cross section measurement at CMS”.
PhD thesis. 2011. DOI: 10.5445/IR/1000023325.
[11] S. Abdullin et al. “Design, performance, and calibration of the CMS
hadron-outer calorimeter”. In: European Physical Journal C 57 (Oct. 2008),
pp. 653–663. DOI: 10.1140/epjc/s10052-008-0756-6.
[12] J. Alwall et al. “The automated computation of tree-level and next-toleading
order differential cross sections, and their matching to parton
shower simulations”. In: Journal of High Energy Physics 2014.7 (2014), p. 79.
ISSN: 1029-8479. DOI: 10.1007/JHEP07(2014)079. URL: https://
doi.org/10.1007/JHEP07(2014)079.
[13] Johannes Bellm et al. “Herwig 7.0/Herwig++ 3.0 release note”. In: Eur.
Phys. J. C 76.4 (2016), p. 196. DOI: 10.1140/epjc/s10052-016-4018-
8. arXiv: 1512.01178 [hep-ph].
[14] Torbjörn Sjöstrand et al. “An introduction to PYTHIA 8.2”. In: Computer
Physics Communications 191 (2015), 159–177. ISSN: 0010-4655. DOI: 10 .
1016/j.cpc.2015.01.024. URL: http://dx.doi.org/10.1016/
j.cpc.2015.01.024.
[15] Matteo Cacciari, Gavin P Salam, and Gregory Soyez. “The anti-ktjet
clustering algorithm”. In: Journal of High Energy Physics 2008.04 (2008),
063–063. ISSN: 1029-8479. DOI: 10.1088/1126-6708/2008/04/063.
URL: http://dx.doi.org/10.1088/1126-6708/2008/04/063.
[16] Simone Marzani, Lais Schunk, and Gregory Soyez. “The jet mass distribution
after Soft Drop”. In: The European Physical Journal C 78.2 (2018). ISSN:
1434-6052. DOI: 10.1140/epjc/s10052-018-5579-5. URL: http:
//dx.doi.org/10.1140/epjc/s10052-018-5579-5.
[17] A.M. Sirunyan et al. “Identification of heavy, energetic, hadronically decaying
particles using machine-learning techniques”. In: Journal of Instrumentation
15.06 (2020), P06005–P06005. DOI: 10.1088/1748-0221/15/
06/p06005. URL: https://doi.org/10.1088/1748-0221/15/06/
p06005.
[18] Search for vector boson fusion production of a massive resonance decaying to a
pair of Higgs bosons in the four b quark final state at the HL-LHC using the
CMS Phase 2 detector. Tech. rep. CMS-PAS-FTR-18-003. Geneva: CERN,
2018. URL: https://cds.cern.ch/record/2628598.
指導教授 余欣珊(Shin-Shan Eiko Yu) 審核日期 2021-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明