博碩士論文 107328007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:104 、訪客IP:3.15.34.105
姓名 宋育翔(Yu-Hsiang Sung)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 微量細粉對顆粒潰壩崩塌流動之影響
(Effect of a small amount fine powder on granular column collapses)
相關論文
★ 二維儲槽濾材顆粒流場之研究★ 粗細顆粒混合之流動性質分析
★ MOCVD腔體熱流場與新式進氣檔板之設計模擬分析研究★ 稻殼於流體化床進行快速裂解產製生質燃油之研究
★ 利用CFD 模擬催化生質能在快速熱裂解中碳沉積對於催化劑去活化反應影響★ 反向氣流對微小粉末於儲槽排放行為影響之研究
★ 積層製造自動化粉末回收系統-系統設計及其混合器之優化★ 雙床氣化爐冷模型中CFB入口速度、BFB床高和顆粒尺寸對矽砂之壓力分佈和質量流率的影響
★ 以實驗方式探討崩塌流場對可侵蝕底床侵蝕與堆積現象之影響★ 移動式顆粒床過濾器應用於去除PM2.5之研究
★ 超臨界顆粒流場中雙圓柱阻礙物震波交互影響之研究★ 添加微量液體對振動床中顆粒體分離現象的影響
★ 不同表面粗糙度的大顆粒在垂直式振動床中動態行為之研究★ 二維剪力槽中顆粒體群聚現象之研究探討
★ 直渠道顆粒流之顆粒密度分離效應★ 粉粒體於儲槽排放行為及氣泡現象之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究採用一1.5公尺長,0.1公尺寬,1.0公尺高的矩形玻璃儲槽模型以及氣壓缸的方式迅速抽離擋板讓預先填好的顆粒體模擬出顆粒潰壩(dam-break)實驗,並在於相同初始寬高比(initial aspect ratio)下,使用顆粒粒徑比的不同及改變細粉含量大小下探討顆粒崩塌流流動性及運動狀態之影響。且為了捕捉到顆粒崩塌瞬間每一個時間點運動變化,透過高速攝影機以及搭配PIV技術(Particle image velocimetry)來觀察顆粒崩塌流速度上的變化以及特定時間點下其速度剖面的差異。
由實驗結果得知隨著細粉含量的增加,使得細粉存在於粗顆粒中因崩塌過程重力驅動使得崩塌狀態下細粉的旋轉減少了粗顆粒及壁面之間摩擦而造成的潤滑效果(lubrication effect),造成其整體崩塌持續時間增長,流動性因此而變得較佳。且顆粒崩塌流動過程,因細粉滲透與粗顆粒分離而造成粗顆粒浮出在崩塌自由表面上,而造成粗顆粒在細粉所形成的潤滑層上流動來增加其流動性。且藉由分析特定位置(δL/3+Li)下顆粒流動的速度剖面來探討顆粒崩塌深度上速度至自由表面上的速度變化,以及隨著細粉含量的增加所造成顆粒崩塌流其流動性的增加。
摘要(英) In this study, we used a pneumatic cylinder to quickly lift the baffle through air intake and exhaust, so that the pre-filled particles collapsed instantaneously to conduct a series of particle collapse experiments. And under the same initial aspect ratio, use different particle size ratios and change the content of fine particles to observe the difference in particle flow behavior. In order to capture the changes in particle motion when the particles collapse, high-speed cameras and PIV technology (particle image velocimetry) are used to observe the changes in the flow velocity of the particle collapse and the velocity distribution at a specific characteristic time point of the particle collapse.
According to the experimental results, as the content of fine particles increases, the rotation of the fine particles in the collapsed state of the fine particles between the coarse particles will reduce the lubrication effect caused by the friction between the coarse particles and the wall surface, and cause its overall duration to increase collapse mobility. Due to the infiltration of fine particles and the separation of coarse particles, the process of particle collapse and flow produces a pure particle layer on the collapsed free surface. By analyzing the velocity distribution of the particle flow at a specific location (δL/3+Li), the velocity in the depth direction can be analyzed. The effect of surface velocity changes and particle collapse flow caused by the increase of fine particles.
關鍵字(中) ★ 粒子流
★ 潰壩崩塌
★ 流動性
★ 潤滑
關鍵字(英) ★ Granular column collapse
★ Dam-break
★ Flowability
★ Lubrication
論文目次 摘要 I
AbstractII
目錄 III
附圖目錄 V
附表目錄 X
符號目錄 XI
第一章 簡介 1
1.1 前言 1
1.2 顆粒崩塌流 2
1.3 顆粒潤滑機制 4
1.4研究動機 6
1.5 研究方向與本文架構6
第二章 實驗方法與原理15
2.1 實驗設備與材料15
2.1.1 實驗設置 15
2.1.2 實驗儀器設備15
2.1.3 顆粒材料 16
2.2 實驗與分析方法16
2.2.1 實驗方法 16
2.2.2 實驗流程 18
2.2.3 實驗影像與分析方法 19
2.2.4 流場速度計算與分析 20
第三章 結果與討論 32
3.1 顆粒崩塌定量分析 32
3.1.1崩塌流動歷程變化 32
3.1.2 崩塌流動層面積比較 35
3.1.3 流動層垂直厚度比較 36
3.1.4 崩塌距離隨時間之變化37
3.1.5 顆粒崩塌流動性比較 39
3.1.6 顆粒崩塌持續時間 40
3.2 顆粒崩塌流場與速度分析41
3.2.1 速度場分析 41
3.2.2 速度分佈 42
3.2.3 速度剖面分析 43
3.2.4 流動層剪切速率比較 45
第四章 結論 121
參考文獻 123
參考文獻 [1]Rondon, L., Pouliquen, O., and Aussillous, P., “Granular collapsein a fluid: Role of the initial volume fraction,” Physics of Fluids, 23, 073301, 2011.
[2]Lube, G., Huppert, H. E., Sparks, R. S. J.,and Freundt, A., “Collapses of two-dimensional granular columns,” Physical Review E, 72, 041301, 2005.
[3]Lajeunesse, E., Monnier, J. B., and Homsy, G. M., “Granular slumping on a horizontal surface,” Physics of Fluids, 17, 103302, 2005.
[4]H . T . Chou and C. F Lee., “Falling process of a rectangular granular step,” Granular Matter, 13:39–51, 2011.
[5]Lube, G., Huppert, H. E., Sparks, R. S. J., and Freundt, A., “Static and flowing regions in granular collapses down channels,” Physics of Fluids, 19, 043301, 2007.
[6]Artoni, R., Santomaso, A. C., Gabrieli, F., Tono, D., and Cola, S., “Collapse of quasi-two-dimensional wet granular columns,”Physical ReviewE, 87, 032205, 2013.
[7]Gongdan, Z., Wright, N. G., Qicheng, S., and Qipeng, C., “Experimental Study on the Mobility of Channelized Granular Mass Flow,” Acta Geologica Sinica, Vol.90, pp.988-998, 2016.
[8]Dade,W.B., and Huppert, H. E., “Long-runout rockfalls,”Geology.,Vol26, pp.803-806, 1998.
[9]Zhou, W., Xu, K., Ma, G., Yang, L., and Chang, X., “Effects of particle size ratio on the macro- and microscopic behaviors of binary mixtures at the maximum packing efficiency state,” Granular Matter, 18:81, 2016.
[10]Meruane, C., Tamburrino, A., and Roche, O., “Dynamics of dense granular flows of small-and-large-grain mixtures in an ambient fluid,” Physical Review E, 86, 026311, 2012.
[11]Linares-Guerrero, E., Goujon, C., and Zenit, R., “Increased mobility of bidisperse granular avalanches,” J. Fluid Mech, vol.593, pp.475-504, 2007.
[12]Vallejo, Luis E., Espitia, Jairo M. and Bernardo Caicedo., “The influence of the fractal particle size distribution on the mobility of dry granular materials,” EPJ Web of Conferences, 140, 03032, 2017.
[13]Phillips, J., Hogg, A., Kerswell, R., and Thomas, N., “Enhanced mobility of granular mixtures of fine and coarse particles,” Earth and Planetary Science Letters, 246, pp.466-480, 2006.
[14]Adrian, Ronald J., “Image shifting technique to resolve directional ambiguity in double pulsed velocimetry,” Applied Optics, Vol. 25, pp.3855-3858, 1986.
[15]Du Pont, S.C., Fischer, R., Gondret, P., Perrin, B., Rabaud, M., “Wall effects on granular heap stability,” Europhys. Lett., 61(4), pp.492–498, 2003.
[16]Liao, C. C., Ou, S. F., Chen, S. L., and Chen, Y. R., “Influences of fine powder on dynamic properties and density segregation in a rotating drum,” Advanced Powder Technology, vol.31, pp.1702-1707 ,2020.
[17]Huang, X., Bec, S., and Colombani, J., “Ambivalent role of fine particles on the stability of a humid granular pile in a rotating drum,” Powder Technology, 279, pp.254-261, 2015.
[18]Huang, X., Bec, S., and Colombani, J., “Influence of fine particles on the stability of a humid granular pile,” Physical Review E, 90, 052201, 2014.
[19]Lube, G., Huppert, H. E., Sparks, R. S. J., and Hallworth, M. A., “Axisymmetric collapses of granular columns,” Journal of Fluid Mechanics, 508, pp.175–199, 2004.
[20]Lajeunesse, E., Mangeney-Castelnau, A., and Vilotte, J. P., “Spreading of a granular mass on a horizontal plane,” Physics of Fluids, 16(7), pp.2371–2381, 2004.
[21]Xu, X., Sun, Q., Jin, F., and Chen, Y., “Measurements of velocity and pressure of a collapsing granular pile,” Powder Technology, 303, pp.147–155, 2016.
[22]Girolami, L., Hergault, V., Vinay, G., and Wachs, A., “A three-dimensional discrete-grain model for the simulation of dam-break rectangular collapses: comparison between numerical results and experiments,” Granular Matter, 14(3), pp.381–392, 2012.
[23]Bonamy, D., Daviaud, F., and Laurent, L., “Experimental study of granular surface flows via a fast camera: A continuous description,” Physics of Fluids, 14(5), pp.1666–1673, 2002.
[24]Torres-Serra, J., Romero, E., and Rodríguez-Ferran, A., “A new column collapse apparatus for the characterisation of the flowability of granular materials,” Powder Technology, 2019.
指導教授 蕭述三 審核日期 2021-1-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明