博碩士論文 107328006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:18.118.142.230
姓名 林念平(Nien-Ping Lin)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 貧油甲苯汽油替代燃料層紊流最小引燃能量在低和高壓條件下的量測
(Laminar and Turbulent Minimum Ignition Energy Measurements of a Lean Toluene Reference Fuel at Reduced and Elevated Pressures)
相關論文
★ 預混紊流燃燒:火花引燃機制與加氫效應之定量量測★ 低氮氧化物燃燒器與加氫效應定量量測
★ 平板式SOFC電池堆流場可視化與均勻度之實驗模擬和分析★ 平板式SOFC單電池堆性能量測:棋盤狀流道尺寸效應
★ 實驗量測分析Kee's燃料電池堆流場分佈模式之可靠度★ 棋盤式雙極板尺寸效應對固態氧化物燃料電池性能之影響
★ 氫氣/一氧化碳合成氣於高壓層流與紊流環境下之燃燒速度量測★ 自我加速蜂巢結構球狀火焰及其局部自我相似性之量測與分析
★ 加壓型SOFC陽極支撐與電解質支撐單電池堆量測與分析★ 高壓預混紊流球狀擴張火焰之自我相似性和其火焰速率於不同Lewis數(Le < 1, Le ≈ 1, Le >1)
★ 實驗研究密度比效應對紊流火焰速率之影響★ 加壓型氨固態氧化物燃料電池之性能和穩定性量測
★ 平板式加壓型合成氣固態氧化物燃料電池實驗研究★ 雷射直寫系統最佳化及其單一細胞列印與光電醫學之應用
★ 加壓型合成氣固態氧化物燃料電池加氨之實驗研究: 電池性能與穩定性量測★ 高溫高壓甲苯參考燃料層流與紊流燃燒速度量測及其正規化分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文量測甲苯汽油替代燃料TRF85/空氣 (Toluene Reference Fuel 85; 由77.4%異辛烷、17.6%正庚烷以及5%甲苯所組成)的層紊流最小引燃能量(Minimum Ignition Energy, MIE)。以貧油的TRF85 (當量比為 = 0.8; 有效Lewis數Le ≈ 2.97) 加熱汽化加入空氣進行預混,利用本實驗室已建立之大型高壓雙腔體設計之十字型紊流燃燒爐,將一對尖頭火花探針安置於中央測試區,再以高壓單一脈衝產生器以選定之火花能量來引燃。藉由十字型內燃燒爐水平管兩側的對轉風扇,可以在中心區域產生近似等向性紊流場,而方均根擾動速度(u′) 的實驗條件控制在0 ~ 4.9 m/s。此研究主要探討兩種引燃現象,一個是最近被發現的紊流促進引燃(Turbulence Facilitated Ignition, TFI),也就是在探針間距(dgap)小於1 mm且Le >> 1時,一定程度的紊流可以增加引燃機率且降低MIE。而本實驗在dgap = 0.8 mm時發現層流最小引燃能量MIEL = 4.76 mJ ,而當u′ = 1.4 m/s時紊流最小引燃能量MIET = 2.39 mJ,顯示TFI現象亦適用於液態燃料。另一個現象則是Shy團隊在2007年時所發現的引燃能量轉折現象,MIE會先隨著紊流強度的提升而緩慢的增長,當紊流強度超過臨界方均根擾動速度u′c時,MIE會與紊流呈指數性成長。結果顯示壓力與MIE在層流以及u′ = 1.4 m/s下呈現負次冪的關係 MIEL ~ p-1.7,MIET ~ p-1.6。隨著正規化紊流強度u′/SL的提升,正規化最小引燃能量 Γ = MIET/MIEL會先緩慢的增長,而當臨界正規化紊流強度 (u′/SL)c > 5.5 (0.7-atm), 7.0 (1-atm) and 9.7 (3-atm) 時,Γ會大幅上升,SL為層流火焰燃燒速度。為了進一步解釋上述的現象,此研究引入了Shy團隊在2010及2013所提出的Péclet數(Pe)壓力模型,火核反應區Pe* = Pe(p/p0)-1/4(u′k/RZ)。在引燃能量轉折現象發生前,Pe*會小於臨界Péclet數 Pe*c ≈ 4,Γ = 1 + 0.45Pe*,而在轉折發生後,Pe* > Pe*c,Γ = 1 + 0.04(Pe*4 - 400)。此研究對火花引燃引擎汽油替代燃料之引燃機制應有火助益。
摘要(英) This thesis investigates experimentally the effects of pressure and turbulence on laminar and turbulent minimum ignition energies (MIEL and MIET) of a lean gasoline surrogate fuel (TRF85)/air mixture with an effective Lewis number Le ≈ 2.97 >> 1. TRF is the toluene reference fuel, 85 is the research octane number, and thus TRF85 consists of 77.4% i-octane, 17.6% n-heptane, and 5% toluene. Ignition experiments are conducted by a pair of electrodes with sharp ends at the center of the experimentation domain in an already-established dual-chamber cruciform burner capable of generating near-isotropic turbulence. A wide range of ignition energy (Eig) varying from 0.47 mJ to 45.97 mJ can be discharged by a high-voltage ignition system and controlled by a home-made ignition circuit. The r.m.s. fluctuating velocity (u′) can be varied from 0 to 4.9 m/s. Two phenomena are investigated. The first concerns a turbulence facilitated ignition (TFI) phenomenon, where MIEL can be larger than MIET under two restrictions, i.e. sufficiently small spark gap (dgap; typically smaller than 1 mm) and sufficiently large Le >> 1. At dgap = 0.8 mm, MIEL ≈ 4.76 mJ > MIET ≈ 2.39 mJ at u′ = 1.4 m/s. The second phenomenon is a MIE transition, similar to that discovered by Shy et al. (2007), where the increase slopes of MIET versus u′ change from gradually to exponentially when u′ is greater than some critical value (u′c). Laminar results show that MIEL decreases with increasing pressure having a power law relation of MIEL ~ p-1.7. At u′ = 1.4 m/s, MIET ~ p-1.6. As to turbulent results, the increasing slopes of the normalized MIE = MIET/MIEL = Γ with the turbulent intensity (u′/SL) change from gradually to exponentially when (u′/SL)c > 5.5 (0.7-atm), 7.0 (1-atm) and 9.7 (3-atm), where SL is the unstretched laminar flame speed. Finally, a modified reaction zone Péclet number Pe* = Pe(p/p0)-1/4(u′k/RZ) with pressure correlation based on the model proposed by Shy et al. (2010; 2013) is used to examine the aforesaid MIE transition, where k is the Kolmogorov length scale and RZ is the reaction zone thermal diffusivity estimated by the average temperature between the adiabatic flame temperature and the reactant temperature. In the pre-transition where Pe* is less than a critical value of Pe*c ≈ 4, Γ = 1 + 0.45Pe*. In the post-transition where Pe* > Pe*c, Γ = 1 + 0.04(Pe*4 - 400). These results should be important to spark ignition dynamics in lean-burn spark ignition engines.
關鍵字(中) ★ 最小引燃能量
★ 引燃能量轉折
★ 壓力效應
★ 甲苯汽油替代燃料
★ 反應區Péclet常數
★ 薄反應區與破碎狀反應區
關鍵字(英) ★ Minimum ignition energy
★ MIE transition
★ pressure effect
★ toluene reference fuel
★ reaction zone Péclet number
★ thin and broken reaction zones
論文目次 Contents

Abstract i
摘要 iii
致謝 v
Contents vi
List of Figures viii
Nomenclature x
Chapter 1 Introduction 1
1.1 Motivations 1
1.2 Minimum ignition energy (MIE) 2
1.3 MIE transition and turbulent facilitated ignition 4
1.4 Objectives 4
Chapter 2 Selected Reviews 6
2.1 Surrogate Fuel 6
2.2 Diluent effect 8
2.3 Toluene Reference Fuel 10
2.4 Pressure effect on MIE 11
2.5 MIE Transition 11
2.6 Lewis Number 12
2.7 MIE simulation 13
2.8 Gap effect 14
2.9 Turbulent Facilitated Ignition 15
Chapter 3 Experimental Setup and method 17
3.1 Facility 17
3.1.1 Double combustion chamber 17
3.1.2 Chamber Heating system 18
3.1.3 Fuel heating system 19
3.1.4 Imaging system 19
3.2 Minimum ignition energy measurement 20
3.2.1 Ignition system 20
3.3 Analyzing methods 21
3.3.1 Logistic Regression 21
3.3.2 Laminar burning velocity 23
Chapter 4 Results and Discussion 26
4.1 Pressure effect on MIE 26
4.2 Effect of turbulence on MIE 28
4.3 Reaction Zone Péclet number 32
4.4 Péclet number model 34
4.5 TFI 36
Chapter 5 Conclusion and Future work 38
5.1 Conclusions 38
5.2 Future work 39
References 40
參考文獻 References

[1] Annual Energy Outlook 2019 with Projections to 2050, Report No. 20585, Energy Information Administration, Washington, WA, United States (2019) https://www.eia.gov/outlooks/aeo/pdf/aeo2019.pdf.
[2] H. Wei, T. Zhu, G. Shu, L. Tan, Y. Wang, Gasoline engine exhaust gas recirculation - A review, Appl. Energy 99 (2012) 534-544.
[3] F. Zhao, M. Lai, D. Harrington, Automotive spark-ignited direct-injection gasoline engines, Prog. Energy Combust. Sci. 25 (1999) 437-562.
[4] E. Galloni, G. Fontana, R. Palmaccio, Effects of exhaust gas recycle in a downsized gasoline engine, Appl. Energy 105 (2013) 99-107.
[5] K. Maruta, H. Nakamuran, Super lean-burn in SI engine and fundamental combustion studies, J. Combust. Soc. Jpn. 183 (2016) 9-19.
[6] B. Lewis, G. von Elbe, Combustion, flames and explosions of gases 3rd Edition, Academic Press, London, (1987).
[7] M. Su, C. Chen, Heating and evaporation of a new gasoline surrogate fuel: A discrete multicomponent modeling study, Fuel 161 (2015) 215-221.
[8] R. Eckhoff, M. Ngo, W. Olsen, On the minimum ignition energy (MIE) for propane/air, J. Hazard Mater 175 (2010) 293-297.
[9] R. Eckhoff, Minimum ignition energy (MIE) - A basic ignition sensitivity parameter in design of intrinsically safe electrical apparatus for explosive dust clouds, J. Loss Prev. Process Ind. 15 (2002) 305-310.
[10] C. Movileanu, M. Mitu, V. Giurcan, D. Razus, D. Oancea, Quenching distances, minimum ignition energies and related properties of propane-air-diluent mixtures, Fuel 274 (2020) 117836.
[11] G. Cui, Z. Li, C. Yang, Z. Zhou, J. Li, Experimental study of minimum ignition energy of methane-air mixtures at low temperatures and elevated pressures, Energy and Fuels 30 (2016) 6738-6744.
[12] M. Ebaid, K. Al-Khishali, Measurements of the laminar burning velocity for propane: air mixtures, Adv. Mech. Eng. 8 (2016) 1-17.
[13] L. Jiang, S. Shy, M. Nguyen, S. Huang, D. Yu, Spark ignition probability and minimum ignition energy transition of the lean iso-octane/air mixture in premixed turbulent combustion, Combust. Flame 187 (2018) 87-95.
[14] J. Moorhouse, A. Williams, T. Maddison, an investigation of the minimum ignition energies of some C1 to C7 hydrocarbons, Combust. Flame 23 (1974) 203-213.
[15] C. Huang, S. Shy, C. Liu, Y. Yan, A transition on minimum ignition energy for lean turbulent methane combustion in flamelet and distributed regimes, Proc. Combust. Inst. 31 (2007) 1401-1409.
[16] S. Shy, C. Liu, W. Shih, Ignition transition in turbulent premixed combustion, Combust. Flame 157 (2010) 341-350.
[17] M. Peng, S. Shy, Y. Shiu, C. Liu, High pressure ignition kernel development and minimum ignition energy measurements in different regimes of premixed turbulent combustion, Combust. Flame 160 (2013) 1755-1766.
[18] F. Wu, A. Saha, S. Chaudhuri, C. Law, Facilitated ignition in turbulence through differential Diffusion, Phys. Rev. Lett. 113 (2014) 1-5.
[19] A. Saha, S. Yang, C. Law, On the competing roles of turbulence and differential diffusion in facilitated ignition, Proc. Combust. Inst. 37 (2019) 2383-2390.
[20] S. Yang, A. Saha, W. Liang, F. Wu, C.K. Law, Extreme role of preferential diffusion in turbulent flame propagation, Combust. Flame 188 (2018) 498-504.
[21] S. Daly, K. Niemeyer, W. Cannella, C. Hagen, FACE gasoline surrogates formulated by an enhanced multivariate optimization framework, Energy Fuels 32 (2018) 7916-7932.
[22] C. Mueller, W. Cannella, T. Bruno, B. Bunting, H. Dettman, J. Franz, M. Huber, M. Natarajan, W. Pitz, M. Ratcliff, K. Wright, Methodology for formulating diesel surrogate fuels with accurate compositional, ignition-quality, and volatility characteristics, Energy Fuels 26 (2012) 3284-3303.
[23] V. Bhavani Shankar, M. Sajid, K. Al-Qurashi, N. Atef, I. Alkhesho, A. Ahmed, S. Chung, W. Roberts, K. Morganti, M. Sarathy, Primary reference fuels (PRFs) as surrogates for low sensitivity gasoline fuels, SAE Tech. Pap. 10 (2016) 2016-01-0748.
[24] A. Ahmed, G. Goteng, V. Shankar, K. Al-Qurashi, W. Roberts, S. Sarathy, A computational methodology for formulating gasoline surrogate fuels with accurate physical and chemical kinetic properties, Fuel 143 (2015) 290-300.
[25] S. Sarathy, A. Farooq, G. Kalghatgi, Recent progress in gasoline surrogate fuels, Prog. Energy Combust. Sci. 65 (2018) 67-108.
[26] O. Mannaa, M. Mansour, W. Roberts, S. Chung, Laminar burning velocities at elevated pressures for gasoline and gasoline surrogates associated with RON, Combust. Flame 162 (2015) 2311-2321.
[27] A. Alramadan, S. Sarathy, M. Khurshid, J. Badra, A blending rule for octane numbers of PRFs and TPRFs with ethanol, Fuel 180 (2016) 175-186.
[28] I. Truedsson, M. Tuner, B. Johansson, W. Cannella, Emission formation study of HCCI combustion with gasoline surrogate fuels, SAE Tech. Pap. 11 (2013) 2013-01-2626.
[29] W. Zeng, H. Ma, Y. Liang, E. Hu, Experimental and modeling study on effects of N2 and CO2 on ignition characteristics of methane/air mixture, J. Adv. Res. 6 (2015) 189-201.
[30] W. Feng, L. Shibo, H. Yizhuo, J. Huiqiao, The chemical effect of CO2 on the methane laminar flame speed in O2/CO2 atmosphere, IOP Conf. Ser.: Earth Environ. Sci 186 (2018) 1-8.
[31] W. Zhang, X. Gou, Z. Chen, Effects of water vapor dilution on the minimum ignition energy of methane, n-butane and n-decane at normal and reduced pressures, Fuel 187 (2017) 111-116.
[32] C. Pera, V. Knop, Methodology to define gasoline surrogates dedicated to auto-ignition in engines, Fuel 96 (2012) 59-69.
[33] T. Ogura, Y. Sakai, A. Miyoshi, M. Koshi, P. Dagaut, Modeling of the oxidation of primary reference fuel in the presence of oxygenated octane improvers: ethyl tert-butyl ether and ethanol, Energy Fuels 21 (2007) 3233-3239.
[34] Y. Sakai, A. Miyoshi, M. Koshi, W. Pitz, A kinetic modeling study on the oxidation of primary reference fuel-toluene mixtures including cross reactions between aromatics and aliphatics, Proc. Combust. Inst. 32 (2009) 411-418.
[35] J. Fenn, Lean flammability limit and minimum spark ignition energy. commercial fluids and pure hydrocarbons, J. Ind. Eng. Chem. 43 (1951) 2865-2869.
[36] D. Ballal, A. Lefebvre, The influence of flow parameters on minimum ignition energy and quenching distance, Symp. (Int.) Combust. 15 (1975) 1473-1481.
[37] N. Peters, Turbulent combustion, Cambridge University Press, Massachusetts, 2000.
[38] NASA Glenn Research Center, NASA. (2003). NASA Glenn Coefficients for calculating thermodynamic properties of individual species, https://ntrs.nasa.gov/search.jsp?R=20020085330.
[39] B. Wang, L. Zhou, K. Xu, Q. Wang, Prediction of minimum ignition energy from molecular structure using quantitative structure-property relationship (QSPR) models, Ind. Eng. Chem. Res. 56 (2017) 47-51.
[40] H. Calcote, C. Gregory, C. Barnett, R. Gilmer, Spark ignition effect of molecular structure, J. Ind. Eng. Chem. 44 (1952) 2656-2662.
[41] D. Paul, Laser versus conventional ignition of flames, Opt. Eng. 33 (1994) 510-521.
[42] S. Shy, M. Nguyen, S. Huang, C. Liu, Is turbulent facilitated ignition through differential diffusion independent of spark gap?, Combust. Flame 185 (2017) 1-3.
[43] C. Liu, S. Shy, H. Chen, M. Peng, On interaction of centrally-ignited, outwardly-propagating premixed flames with fully-developed isotropic turbulence at elevated pressure, Proc. Combust. Inst. 33 (2011) 1293-1299.
[44] S. Moffett, S. Bhanderi, J. Shepherd, E. Kwon, Investigation of statistical nature of spark ignition, Fall Meeting of the Western States Section of the Combustion Institute Sandia National Laboratories, Livermore, CA (2007) 1-19.
[45] G. Markstein, Experimental and theoretical studies of flame-front stability, in: P. Pelcé (Ed.), Dynamics of Curved Fronts, Academic Press, San Diego, 1988, pp. 413-423.
[46] V. Kurdyumov, J. Blasco, A. Pérez, A. Martínez, On the calculation of the minimum ignition energy, Combust. Flame 136 (2004) 394-397.
[47] S. Shy, M. Nguyen, S. Huang, C. Liu, Is turbulent facilitated ignition through differential diffusion independent of spark gap?, Combust. Flame 185 (2017) 1-3.
指導教授 施聖洋(Shenq-Yang Shy) 審核日期 2021-1-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明