參考文獻 |
參考文獻
[1] A. Kumar, K. Singh, and D. Bhattacharya, “Green communication and wireless networking,” in Proc. ICGCE, pp. 49-52, 2013.
[2] I. U. Ramirez and N. A. B. Tello, “A survey of challenges in green wireless communications research,” in Proc. ICMEAE, pp. 197-200, 2014.
[3] P. Gandotra, and R. K. Jha, “Next generation cellular networks and green communication,” in Proc. COMSNETS, pp. 522-524, 2018.
[4] J. Lu, H. Okada, T. Itoh, R. Maeda, and T. Harada, “Towards the world smallest wireless sensor nodes with low power consumption for ‘Green’ sensor networks,” in Proc. IEEE ICSENS, pp. 1-4, 2013.
[5] B. Atwood, B. Warneke, and K. S. J. Pister, “Smart dust mote forerunners,” in Proc. IEEE ICMS, pp. 357-360, 2001.
[6] N. Chand, P. Mishra, C. R. Krishna, E. S. Pilli, and M. C. Govil, “A comparative analysis of SVM and its stacking with other classification algorithm for intrusion detection,” in Proc. IEEE ICACCA, pp. 1-6, 2016.
[7] K. Y. Huang, L. C. Shen, K. J. Chen, and M. C. Huang, “Multilayer perceptron with genetic algorithm for well log data inversion,” in Proc. IEEE IGARSS, pp. 1544-1547, 2013.
[8] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep neural networks for image classification,” in Proc. IEEE CVPR, pp. 3642-3649, 2012.
[9] Y. Li, “Deep reinforcement learning: an overview,” arXiv:1701.07274, 2017.
[10] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436-444, May 2015.
[11] M. Tacca, P. Monti, and A. Fumagalli, “Cooperative and reliable ARQ protocols for energy harvesting wireless sensor nodes,” IEEE Trans. Wireless Commun., vol. 6, no. 7, pp. 2519-2529, Jul. 2007.
[12] S. Reddy and C. R. Murthy, “Profile-based load scheduling in wireless energy harvesting sensors for data rate maximization,” in Proc. IEEE ICC, pp. 1-5, 2010.
[13] N. Michelusi, K. Stamatiou, and M. Zorzi, “Transmission policies for energy harvesting sensors with time-correlated energy supply,” IEEE Trans. Commun., vol. 61, no. 7, pp. 2988-3001, Jul. 2013.
[14] O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener, “Transmission with energy harvesting nodes in fading wireless channels: optimal policies,” IEEE J. Sel. Areas Commun., vol. 29, no. 8, pp. 1732-1743, Sep. 2011.
[15] B. Medepally and N. B. Mehta, “Voluntary energy harvesting relays and selection in cooperative wireless networks,” IEEE Trans. Wireless Commun., vol. 9, no. 11, pp. 3543-3553, Nov. 2010.
[16] C. K. Ho, P. D. Khoa, and P. C. Ming, “Markovian models for harvested energy in wireless communications,” in Proc. IEEE ICCS, pp. 311-315, 2010.
[17] M.-L. Ku, Y. Chen and K. J. Ray Liu, “Data-driven stochastic models and policies for energy harvesting sensor communications,” IEEE J. Sel. Areas Commun., vol. 33, no. 8, pp. 1505-1520, Aug. 2015.
[18] Hsin-Hung Tsai, “Design and simulation of cooperative transmission policies for two-user energy harvesting networks”, Master Thesis, National Central University, 2015.
[19] H. Ye, G. Y. Li, and B.-H. Juang, “Power of learning for channel estimation and signal detection in OFDM systems,” IEEE Wireless Commun. Lett., vol. 7, no. 1, pp. 114-117, Sep. 2017.
[20] N. Krishna Prakash and D. Prasanna Vadana, “Machine learning based residential energy management system,” in Proc. IEEE ICCIC, pp. 684-687, 2017
[21] W. Lee, M. Kim, D.-H. Cho, “Deep power control: Transmit power control scheme based on convolutional neural network,” IEEE Commun. Lett., vol. 22, no. 6, pp. 1276-1279, Jun. 2018.
[22] M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, and W. Zhuang, ‘‘Learning-based computation offloading for IoT devices with energy harvesting,’’ IEEE Trans. Veh. Technol., vol. 68, no. 2, pp. 1930-1941, Feb. 2019.
[23] O. Naparstek and K. Cohen, “Deep multi-user reinforcement learning for distributed dynamic spectrum access,” IEEE Trans. Wireless Commun., vol. 18, no. 1, pp. 310-323, Jan. 2019.
[24] Y. S. Nasir and D. Guo, “Multi-agent deep reinforcement learning for dynamic power allocation in wireless networks,” IEEE J. Sel. Areas Commun., vol. 37, no. 10, pp. 2239-2250, Oct. 2019.
[25] L. Huang, S. Bi, and Y.-J. A. Zhang, “Deep reinforcement learning for online offloading in wireless powered mobile-edge computing networks,” arXiv:1808.01977, 2018.
[26] Y. Wei, F. R. Yu, M. Song, and Z. Han, "User scheduling and resource allocation in HetNets with hybrid energy supply: An actor-critic reinforcement learning approach", IEEE Trans. Wireless Commun., vol. 17, no. 1, pp. 680-692, Jan 2018.
[27] M. Adel and P. A. Massi “A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy,” Solar Energy, vol. 84, no. 5, pp. 807-821, May. 2010.
[28] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press
(1998)
[29] NREL. Solar radiation resource information, Golden, CO, USA. [Online].
Available: http://www.nrel.gov/rredc/
[30] A. Ortiz, H. Al-Shatri, X. Li, T. Weber and A. Klein, "Reinforcement learning for energy harvesting point-to-point communications", Proc. of the IEEE International Conference on Communications (ICC 2016) Kuala Lumpur: Malaysia, pp. 1-6, May 2016.
[31] V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.
[32] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification,” arXiv: 1502.01852v1, pp. 1-11, Feb. 2015.
[33] S. Ioffe, and C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift,” arXiv: 1502.03167v3, pp. 1-11, Mar. 2015.
[34] D. Mishkin, and J. Matas, “All you need is a good init,” arXiv: 1511.06422v7, pp. 1-13, Feb. 2016.
[35] Andrej Karpathy’s blog, “Hacker’s guide to Neural Networks,” [Online]. Available: http://karpathy.github.io/neuralnets/.
[36] Frederik Kratzert’s blog, “Understanding the backward pass through Batch NormalizationLayer,”[Online].Available:http://kratzert.github.io/2016/02/12/understanding-the-gradient-flow-through-the-batch-normalization-layer.html.
[37] D. P. Kingma, and J. Ba, “Adam: A Method for Stochastic Optimization,” arXiv: 1412.6980v9, pp. 1-15, Jan. 2017.
[38] M. Abadi, A. Agarwal, and et al. “Tensorflow: Large-scale machine learning on heterogeneous distributed systems,” arXiv:1603.04467v2, pp. 1-19, Mar. 2016. |