參考文獻 |
[1] G. A. Akpakwu, B. J. Silva, G. P. Hancke and A. M. Abu-Mahfouz, "A Survey on 5G Networks for the Internet of Things: Communication Technologies and Challenges," in IEEE Access, vol. 6, pp. 3619-3647, 2018, doi: 10.1109/ACCESS.2017.2779844.
[2] S. Bi, Y. Zeng and R. Zhang, "Wireless powered communication networks: an overview," in IEEE Wireless Communications, vol. 23, no. 2, pp. 10-18, April 2016, doi: 10.1109/MWC.2016.7462480.
[3] A. V. Savkin and H. Huang, "Deployment of Unmanned Aerial Vehicle Base Stations for Optimal Quality of Coverage," in IEEE Wireless Communications Letters, vol. 8, no. 1, pp. 321-324, Feb. 2019, doi: 10.1109/LWC.2018.2872547.
[4] S. Yin, Z. Qu and L. Li, "Uplink Resource Allocation in Cellular Networks with Energy-Constrained UAV Relay," 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, 2018, pp. 1-5, doi: 0.1109/VTCSpring.2018.8417737.
[5] S. Cho, K. Lee, B. Kang, K. Koo and I. Joe, "Weighted Harvest-Then-Transmit: UAV-Enabled Wireless Powered Communication Networks," in IEEE Access, vol. 6, pp. 72212-72224, 2018, doi: 10.1109/ACCESS.2018.2882128.
[6] L. Xie, J. Xu and R. Zhang, "Throughput Maximization for UAV-Enabled Wireless Powered Communication Networks - Invited Paper," 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, 2018, pp. 1-7, doi: 10.1109/VTCSpring.2018.8417659.
[7] J. Park, H. Lee, S. Eom and I. Lee, "UAV-Aided Wireless Powered Communication Networks: Trajectory Optimization and Resource Allocation for Minimum Throughput Maximization," in IEEE Access, vol. 7, pp. 134978-134991, 2019, doi: 10.1109/ACCESS.2019.2941278.
[8] J. Tang, J. Song, J. Ou, J. Luo, X. Zhang and K. Wong, "Minimum Throughput Maximization for Multi-UAV Enabled WPCN: A Deep Reinforcement Learning Method," in IEEE Access, vol. 8, pp. 9124-9132, 2020, doi: 10.1109/ACCESS.2020.2964042.
[9] K. Li, W. Ni, E. Tovar and A. Jamalipour, "On-Board Deep Q-Network for UAV-Assisted Online Power Transfer and Data Collection," in IEEE Transactions on Vehicular Technology, vol. 68, no. 12, pp. 12215-12226, Dec. 2019, doi: 10.1109/TVT.2019.2945037.
[10] X. Liu, Y. Liu, Y. Chen and L. Hanzo, "Trajectory Design and Power Control for Multi-UAV Assisted Wireless Networks: A Machine Learning Approach," in IEEE Transactions on Vehicular Technology, vol. 68, no. 8, pp. 7957-7969, Aug. 2019, doi: 10.1109/TVT.2019.2920284.
[11] S. Zhang, Y. Zeng and R. Zhang, "Cellular-Enabled UAV Communication: A Connectivity-Constrained Trajectory Optimization Perspective," in IEEE Transactions on Communications, vol. 67, no. 3, pp. 2580-2604, March 2019, doi: 10.1109/TCOMM.2018.2880468.
[12] S. Zhang, H. Zhang, Q. He, K. Bian and L. Song, "Joint Trajectory and Power Optimization for UAV Relay Networks," in IEEE Communications Letters, vol. 22, no. 1, pp. 161-164, Jan. 2018, doi: 10.1109/LCOMM.2017.2763135.
[13] Y. Huang, J. Xu, L. Qiu and R. Zhang, "Cognitive UAV Communication via Joint Trajectory and Power Control," 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata, 2018, pp. 1-5, doi: 10.1109/SPAWC.2018.8446024.
[14] G. Zhang, Q. Wu, M. Cui and R. Zhang, "Securing UAV Communications via Joint Trajectory and Power Control," in IEEE Transactions on Wireless Communications, vol. 18, no. 2, pp. 1376-1389, Feb. 2019, doi: 10.1109/TWC.2019.2892461.
[15]H. Jung, K. Kim, J. Kim, O. Shin and Y. Shin, "A relay selection scheme using Q-learning algorithm in cooperative wireless communications," 2012 18th Asia-Pacific Conference on Communications (APCC), Jeju Island, 2012, pp. 7-11, doi: 10.1109/APCC.2012.6388091.
[16] C. H. Liu, Z. Chen, J. Tang, J. Xu and C. Piao, "Energy-Efficient UAV Control for Effective and Fair Communication Coverage: A Deep Reinforcement Learning Approach," in IEEE Journal on Selected Areas in Communications, vol. 36, no. 9, pp. 2059-2070, Sept. 2018, doi: 10.1109/JSAC.2018.2864373.
[17] J. P. Leite, P. H. P. de Carvalho and R. D. Vieira, "A flexible framework based on reinforcement learning for adaptive modulation and coding in OFDM wireless systems," 2012 IEEE Wireless Communications and Networking Conference (WCNC), Paris, France, 2012, pp. 809-814, doi: 10.1109/WCNC.2012.6214482.
[18] L. Deng, G. Wu, J. Fu, Y. Zhang and Y. Yang, "Joint Resource Allocation and Trajectory Control for UAV-Enabled Vehicular Communications," in IEEE Access, vol. 7, pp. 132806-132815, 2019, doi: 10.1109/ACCESS.2019.2941727.
[19] A. A. Khuwaja, Y. Chen, N. Zhao, M. Alouini and P. Dobbins, "A Survey of Channel Modeling for UAV Communications," in IEEE Communications Surveys & Tutorials, vol. 20, no. 4, pp. 2804-2821, Fourthquarter 2018, doi: 10.1109/COMST.2018.2856587.
[20] M. Mozaffari, W. Saad, M. Bennis, Y. Nam and M. Debbah, "A Tutorial on UAVs for Wireless Networks: Applications, Challenges, and Open Problems," in IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2334-2360, thirdquarter 2019, doi: 10.1109/COMST.2019.2902862.
[21] A. Al-Hourani, S. Kandeepan and S. Lardner, "Optimal LAP Altitude for Maximum Coverage," in IEEE Wireless Communications Letters, vol. 3, no. 6, pp. 569-572, Dec. 2014, doi: 10.1109/LWC.2014.2342736.
[22] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Second Edition — The MIT Press, Cambridge, MA, 2018
[23] Alexander A. Sherstov and Peter Stone. Function approximation via tile coding: Automating parameter choice. In J.-D. Zucker and I. Saitta, editors, SARA 2005, volume 3607 of Lecture Notes in Artificial Intelligence, pages 194--205, Berlin, 2005. Springer Verlag.
[24] Nadarajah, Saralees. “Exact distribution of the product of m gamma and n Pareto random variables.” J. Comput. Appl. Math. 235 (2011): 4496-4512.
[25] R. Jain, D. Chiu, and W. Hawe, ”A Quantitative Measure of Fairness and
Discrimination for Resource Allocation in Shared Computer Systems,”
DEC Research Report TR-301, Sept. 1984.
[26] Q. Liu, L. Shi, L. Sun, J. Li, M. Ding and F. Shu, "Path Planning for UAV-Mounted Mobile Edge Computing With Deep Reinforcement Learning," in IEEE Transactions on Vehicular Technology, vol. 69, no. 5, pp. 5723-5728, May 2020, doi: 10.1109/TVT.2020.2982508.
[27] M. S. Emigh, E. G. Kriminger, A. J. Brockmeier, J. C. Príncipe and P. M. Pardalos, "Reinforcement Learning in Video Games Using Nearest Neighbor Interpolation and Metric Learning," in IEEE Transactions on Computational Intelligence and AI in Games, vol. 8, no. 1, pp. 56-66, March 2016, doi: 10.1109/TCIAIG.2014.2369345.
[28] M. Ku, Y. Chen and K. J. R. Liu, "Data-Driven Stochastic Models and Policies for Energy Harvesting Sensor Communications," in IEEE Journal on Selected Areas in Communications, vol. 33, no. 8, pp. 1505-1520, Aug. 2015, doi: 10.1109/JSAC.2015.2391651
[29] W. Curran, R. Pocius and W. D. Smart, "Neural networks for incremental dimensionality reduced reinforcement learning," 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, 2017, pp. 1559-1565, doi: 10.1109/IROS.2017.8205962.
[30] Y. Zeng and R. Zhang, “Energy-Efficient UAV Communication With Trajectory Optimization,” in IEEE Transactions on Wireless Communications, vol. 16, no. 6, pp. 3747-3760, Jun. 2017.
[31] Y. Du, K. Wang, K. Yang and G. Zhang, "Energy-Efficient Resource Allocation in UAV Based MEC System for IoT Devices," 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 2018, pp. 1-6, doi: 10.1109/GLOCOM.2018.8647789. |