參考文獻 |
[1] N. I. B. Ahmad Bukhari, A. F. Anuar, K. M. Khazin, and T. M. F. Bin Tengku Abdul Aziz, “English-Malay Code-Mixing Innovation in Facebook among Malaysian University Students,” Res. World – J. Arts Sci. Commer., 2015, doi: 10.18843/rwjasc/v6i4/01.
[2] Y. K. Lal, V. Kumar, M. Dhar, M. Shrivastava, and P. Koehn, “De-mixing sentiment from code-mixed text,” in ACL 2019 - 57th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Student Research Workshop, 2019.
[3] S. Thara and P. Poornachandran, “Code-Mixing: A Brief Survey,” in 2018 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2018, 2018, doi: 10.1109/ICACCI.2018.8554413.
[4] R. Vollmann and S. T. Wooi, “The sociolinguistic status of Malaysian English,” GLS Grazer Linguist. Stud., 2019, doi: http://dx.doi.org/10.25364/04.46:2019.91.5.
[5] MohdSyuhaidiAbuBakar and AliffluqmanMohdMazzalan, “Aliran Pertuturan Bahasa Rojak Dalam Kalangan Pengguna Facebook Di Malaysia,” e-Academia J., 2018, doi: 10.13140/RG.2.2.21870.92485.
[6] M. I. Yasef Kaya and M. Elif Karsligil, “Stock price prediction using financial news articles,” in Proceedings - 2010 2nd IEEE International Conference on Information and Financial Engineering, ICIFE 2010, 2010, doi: 10.1109/ICIFE.2010.5609404.
[7] B. Gu, P. Konana, A. Liu, B. Rajagopalan, and J. Ghosh, “Identifying Information in Stock Message Boards and Its Implications for Stock Market Efficiency,” Workshop on Information Systems and Economics, Los Angeles, 2006.
[8] S. Lai, K. Liu, S. He, and J. Zhao, “How to generate a good word embedding,” IEEE Intell. Syst., 2016, doi: 10.1109/MIS.2016.45.
[9] S. Ruder, Neural Transfer Learning for Natural Language Processing. Galway: National University of Ireland, 2019.
[10] A. Pratapa, M. Choudhury, and S. Sitaram, “Word embeddings for code-mixed language processing,” in Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018, 2020, doi: 10.18653/v1/d18-1344.
[11] S. Yadav and T. Chakraborty, “Unsupervised Sentiment Analysis for Code-mixed Data,” pp. 1–8, 2020, [Online]. Available: http://arxiv.org/abs/2001.11384.
[12] L. Qin, M. Ni, Y. Zhang, and W. Che, “CoSDA-ML: Multi-Lingual Code-Switching Data Augmentation for Zero-Shot Cross-Lingual NLP,” 2020, doi: 10.24963/ijcai.2020/533.
[13] H. Shafiee et al., “PENGARUH BAHASA ROJAK DI MEDIA BAHARU TERHADAP BAHASA KEBANGSAAN,” Int. J. Law, Gov. Commun., 2019.
[14] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for efficient text classification,” in 15th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2017 - Proceedings of Conference, 2017, doi: 10.18653/v1/e17-2068.
[15] A. Conneau et al., “Unsupervised Cross-lingual Representation Learning at Scale,” 2020, doi: 10.18653/v1/2020.acl-main.747.
[16] A. Conneau and G. Lample, “Cross-lingual language model pre-training,” in Advances in Neural Information Processing Systems, 2019.
[17] A. Abbasi, H. Chen, and A. Salem, “Sentiment analysis in multiple languages: Feature selection for opinion classification in Web forums,” ACM Trans. Inf. Syst., vol. 26, no. 3, 2008, doi: 10.1145/1361684.1361685.
[18] T. Nasukawa and J. Yi, “Sentiment analysis: Capturing favorability using natural language processing,” in Proceedings of the 2nd International Conference on Knowledge Capture, K-CAP 2003, 2003, doi: 10.1145/945645.945658.
[19] K. Chekima and R. Alfred, “Sentiment Analysis of Malay Social Media Text,” in Lecture Notes in Electrical Engineering, 2018, doi: 10.1007/978-981-10-8276-4_20.
[20] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le, “XLNet: Generalized autoregressive pre-training for language understanding,” in Advances in Neural Information Processing Systems, 2019.
[21] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “BERT: Pretraining of deep bidirectional transformers for language understanding,” in NAACL HLT 2019 - 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference, 2019.
[22] S. Sohangir, D. Wang, A. Pomeranets, and T. M. Khoshgoftaar, “Big Data: Deep Learning for financial sentiment analysis,” J. Big Data, 2018, doi: 10.1186/s40537-017-0111-6.
[23] T. Renault, “Sentiment analysis and machine learning in finance: a comparison of methods and models on one million messages,” Digit. Financ., 2020, doi: 10.1007/s42521-019-00014-x.
[24] M. F. R. Abu Bakar, N. Idris, L. Shuib, and N. Khamis, “Sentiment Analysis of Noisy Malay Text: State of Art, Challenges and Future Work,” IEEE Access, 2020, doi: 10.1109/ACCESS.2020.2968955.
[25] L. Cheng Kuan, M. Akmar Ismail, T. M. A. Zayet, and S. Mohamed Shuhidan, “Prediction of Malaysian stock market movement using sentiment analysis,” in Journal of Physics: Conference Series, 2019, doi: 10.1088/1742-6596/1339/1/012017.
[26] N. Farra, “Cross-lingual and Low-resource Sentiment Analysis,” ProQuest Diss. Theses, p. 267, 2019, [Online]. Available: https://search.proquest.com/docview/2288064497?accountid=9645.
[27] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts, “Learning word vectors for sentiment analysis,” in ACL-HLT 2011 - Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, 2011.
[28] T. Loughran and B. Mcdonald, “Textual Analysis in Accounting and Finance: A Survey,” J. Account. Res., 2016, doi: 10.1111/1475-679X.12123.
[29] A. Al-Saffar, S. Awang, H. Tao, N. Omar, W. Al-Saiagh, and M. Al-bared, “Malay sentiment analysis based on combined classification approaches and Senti-lexicon algorithm,” PLoS One, 2018, doi: 10.1371/journal.pone.0194852.
[30] E. Kasmuri and H. Basiron, “Building a Malay-English code-switching subjectivity corpus for sentiment analysis,” Int. J. Adv. Soft Comput. its Appl., 2019.
[31] A. Vaswani et al., “Attention Is All You Need,” Adv. Neural Inf. Process. Syst., 2017.
[32] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” in 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track |