博碩士論文 101582011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:18.191.237.228
姓名 張園宗(Yuan-Tsung Chang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱
(AI Deep Learning Platforms for Smart Manufacturing Plant)
相關論文
★ 基於edX線上討論板社交關係之分組機制★ 利用Kinect建置3D視覺化之Facebook互動系統
★ 利用 Kinect建置智慧型教室之評量系統★ 基於行動裝置應用之智慧型都會區路徑規劃機制
★ 基於分析關鍵動量相關性之動態紋理轉換★ 基於保護影像中直線結構的細縫裁減系統
★ 建基於開放式網路社群學習環境之社群推薦機制★ 英語作為外語的互動式情境學習環境之系統設計
★ 基於膚色保存之情感色彩轉換機制★ 一個用於虛擬鍵盤之手勢識別框架
★ 分數冪次型灰色生成預測模型誤差分析暨電腦工具箱之研發★ 使用慣性傳感器構建即時人體骨架動作
★ 基於多台攝影機即時三維建模★ 基於互補度與社群網路分析於基因演算法之分組機制
★ 即時手部追蹤之虛擬樂器演奏系統★ 基於類神經網路之即時虛擬樂器演奏系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 製造產業長期以來,就是支持全球經濟的重要經濟活動之一。當前,有許多類型的製造商在傳統或現代環境下運行。利用傳統環境的製造商傾向於更多地使用人力資源來執行其操作,例如移動,檢查或生產物品。此外,現代的機器人比傳統的機器人更傾向於使用機器人或機器,並且許多操作是自動完成的,無需人工幫助。因此,它有助於提高製造企業的運營效率以及收入。
儘管一些新建的工廠使用智能數位設備,但傳統的工廠仍然具有手動開關,照明燈,數字顯示器,甚至指針式儀表板。因此,此類公司無法在互聯網上傳輸數位化訊息或資訊。同樣,由於他們需要工人檢查某些類型設備的狀態或數據值,因此可能浪費人力、時間和成本。因此,為了克服這些問題,可以實現自動化系統。自動化系統可以幫助傳統製造工廠獲得更高的運營效率並獲得更高的收入。因此,它們在進入工業4.0時代時可以提高競爭力。
基於上述陳述,我們提出了幾種系統來支持基於人工智能(AI)和深度學習的製造環境,以升級環境本身並提昇運營和製造收益的有效性。該系統包括自動圖像識別,產品缺陷檢測,火災和/或煙霧檢測以及水檢測。所有系統都是自動化系統,由AI自動完成和智慧化操作。
核心技術提出了一種用於多尺度缺陷圖像檢測的改進模型。我們修改了SSD 512的演算法部分流程,因為它可以檢測高維圖像。所提出的系統針對不同尺寸的圖像進行模型調整,並使其調整以適合自動檢測的模型,可以達成快速訓練模型、高精準度偵測的目標,適合在製造產業應用在工業製造產線上使用,進而發展智慧工廠適用的AI平台。
摘要(英) Manufacturing is one of the principal parts of business which has been supporting the world’s economy for a long time. Currently, there are many types of manufacturers running under traditional or modern environments. Manufactures which utilize traditional environments tend to use human resources more to execute its operations, such as moving, checking, or producing items. Besides, modern ones tend to use robots or machines more than the traditional ones and many operations are done automatically without the help of humans. Thus it helps to increase the effectiveness of a manufacture’s operations as well as the income.
Though some newly built factories, use smart digital devices, traditional ones still have manual switches, lights, numerical displays, even pointer-type dashboard. So, such companies can not transmit digitized signal or values on the internet. Also, since they need workers to check status or data values of certain types of equipment, it may waste human resources, time, as well as cost. Therefore, to overcome these issues, an automated system can be implemented. Automated systems can help traditional manufacturing plants to get greater operational efficiency and make a higher income. Consequently, their competitiveness can be upgraded as they go towards the era of Industry 4.0. Based on the above statements, we propose several systems to support manufacturing environments based on artificial intelligence (AI) and deep learning in order to upgrade the environments themselves and escalate the effectiveness of the operations and manufacturing’s gain. The systems include automated image recognition, product’s defect detection, fire and/or smoke detection, and water detection. All of the systems are automated systems, done and operated by AI.
This work proposes an improved model for multi-scale defect image detection. We modified the algorithm of SSD 512 since it can detect higher-dimensional images. The proposed system makes model adjustments for images of different sizes and adjusts it fit the model suitable for automated detection.
關鍵字(中) ★ AI
★ Deep Learning
★ SSD
★ 智慧工廠
★ 工業4.0
關鍵字(英) ★ artificial intelligence
★ deep learning
★ defect detection
★ fire detection
★ smoke detection
★ water detection
論文目次 Chapter 1 Introduction 1
1.1. Motivation 1
1.2. Background 2
1.3. Dissertation Organization 7
Chapter 2 Related Works 8
2.1. Automated Object Defect Detection 8
2.2. YOLO (You Only Look Once) 9
2.3. SSD (Single Shot Multibox Detector) 12
2.4. R-CNN 14
2.5. Mask R-CNN 16
Chapter 3 Implementations of Artificial Intelligence in Manufacturing Environment and Experiment Setup 18
3.1. System Overview 19
3.2. Automated Object Defect Detection 19
3.2.1. Equipment Installation 22
3.2.2. Image Data Collection 25
3.2.3. Defect Detection Experiments 38
3.2.4. Key points of algorithm modification 41
3.3. Other integrated application modules 48
3.3.1. Automated Fire and Smoke Detection 48
3.3.2. Data analysis module 50
Chapter 4 Experimental Results and Discussion 53
4.1. Performance comparison between the algorithms and frameworks 55
4.2. Comparison of Defects Detection 62
4.3. Data analysis between the algorithms and frameworks 88
Chapter 5 Conclusion 93
References 95
參考文獻 [1] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You Only Look Once: Unified, Real-Time Object Detection", in IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA, 2016, pp. 779-788.

[2] C. Y, Cao. J. C. Zheng, Y. Q. Huang, J. Liu, and C. F. Yang, "Investigation of a Promoted You Only Look Once Algorithm and Its Application in Traffic Flow Monitoring", Appl. Sci. Vol. 9, No. 17, 2019, pp. 1-14.

[3] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and A. C. Berg, "SSD: Single Shot Multibox Detector", in European conference on computer vision, Amsterdam, 2016, pp. 21-37.

[4] F. Yang, H. Chen, J. Li, F. Li, L. Wang, and X. Yan, "Single Shot Multibox Detector With Kalman Filter for Online Pedestrian Detection in Video", IEEE Access, 2019, pp. 15478-15488.

[5] R. Girshick, J. Donahue, T. Darrel, and J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation", in IEEE conference on computer vision and pattern recognition, Columbus, Ohio, 2014, pp. 580-587.

[6] R. Girshick, "Fast R-CNN", in IEEE International Conference on Computer Vision, Santiago, Chile, 2015, pp. 1440-1448.

[7] S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", in Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015, pp. 91-99.

[8] K. He, G. Gkioxari, P. Doll´ar, and R. Girshick, "Mask R-CNN", in IEEE international conference on computer vision, Venice, Italy, 2018, pp. 2961-2969.

[9] R. Zhang, C. Cheng, X. Zhao, and X. Li, "Multiscale Mask R-CNN-Based Lung Tumor Detection Using PET Imaging", Artificial Intelligence in Molecular Imaging Clinics, Vol. 18, 2019, pp. 1-8.

[10] J. Min, Y. Kim, S. Lee, T. W. Jang, I. Kim, J. Song, "The Fourth Industrial Revolution and Its Impact on Occupational Health and Safety, Worker′s Compensation and Labor Conditions", 2019.

[11] J. Hull, "The second industrial revolution and the staples frontier in Canada: rethinking knowledge and history", Scientia Canadensis, Canada, 1994, Vol.18, No. 1, pp. 22-37.

[12] A. Toffler, "The third wave", Bantam books, New York, 1980, Vol. 484.

[13] J. Bloem, M. V. Doorn, S. Duivestein, D. Excoffier, R. Maas, E. V. Ommeren, "The fourth industrial revolution: things to tighten the link between IT and OT contents", Groningen Sogeti VINT, 2014.

[14] A. Mikołajczyk and M. Grochowski, "Data augmentation for improving deep learning in image classfication problem", International Interdisciplinary PhD Workshop, Swinoujście, 2018, pp. 117-122.

[15] D. Li, D. Yu, "Deep Learning: Methods and Applications, Foundations and Trends in Signal Processing", Now Publishers, 2014.

[16] Y. Bengio, "Learning deep architectures for AI, Foundations and Trends in Machine Learning", Vol. 2, 2009, pp. 1-127.

[17] Y. Bengio, A. Courville, and P. Vincent, "Representation learning: A review and new perspectives, Pattern Analysis and Machine Intelligence", IEEE Transactions, Vol. 35, 2019, pp. 1798-1828.

[18] J. Schmidhuber, "Deep learning in neural networks: An overview, Neural Networks", Vol. 61, 2015, pp. 85-117.

[19] Y. LeCun, Y. Bengio, and G. Hinton, "Deep Learning", Nature, Vol. 521, 2015, pp. 436-444.

[20] I. Arel, D. C. Rose, and T. P. Karnowski, "Deep machine learning-a new frontier in artificial intelligence research [research frontier]", Computation Intelligence Magazine, IEEE, Vol. 5, 2010, pp. 13-18.

[21] J. Kuruvilla, D. Sukumaran, A. Sankar, and S. P. Joy, "A review on image processing and image segmentation", International Conference on Data Mining and Advanced Computing, Ernakulam, 2016, pp. 198-203.

[22] T. R. Rao, "Metal casting: Principles and Practice", New Age International, 2007.

[23] K. I., "The future of manufacturing: 2020 and beyond", Industry Week Special Research Report, p. 12, 2016.

[24] R. Rajkolhe and J. Khan, "Defects, causes and their remedies in casting process: A review", International Journal of Research in Advent Technology, Vol. 2, No. 3, pp. 375–383, 2014.

[25] X. Li, S. K. Tso, X.-P. Guan, and Q. Huang, "Improving automatic detection of defects in castings by applying wavelet technique", IEEE Transactions on Industrial Electronics, Vol. 53, No. 6, pp. 1927–1934, 2006.

[26] J. Xin, C, Huang, "Fire Risk Assessment of Residential Buildings Based on Fire Statistics from China", Fire Technology, Vol. 50, pp. 1147-1161, 2014.

[27] Fire Service Bureau, Ministry of Public Security, China fire services, China Personnel Press, Beijing, 2012 (in Chinese).

[28] A. K. Soe, X. Zhang, "Fire detection by static image characteristics of the light blue flame using roi-based color intensity composition detection algorithm", ICIC Express Letters, Vol. 5, No. 12, December, 2011, pp. 4479-4486.

[29] V. Vipin, "Image Processing Based Forest Fire Detection", International Journal of Emerging Technology and Advanced Engineering, Vol. 2, February, 2012, pp. 87-95.

[30] S. Ham, B. Ko, J. Nam, "Fire-flame detection based on fuzzy finite automation", Pattern Recognition (ICPR), 2010 20th International Conference, 2010, pp. 3919-3922.

[31] Dimitropoulos, K. Tsalakanidou, Filareti, Grammalidis, Nikos, "Flame detection for video-based early fire warning systems and 3D visualization of fire propagation", Proceedings of the IASTED International Conference on Computer Graphics and Imaging (CGIM), 2012, pp. 209-216.

[32] X. Trong, Tung, Kim, Jong-Myon, "Fire flame detection in video sequences using multi-stage pattern recognition techniques", Engineering Applications of Artificial Intelligence, October, 2012, Vol. 25, No. 7, pp. 1365-1372.

[33] J. Zhou, X. Du, "Image recognition technology in fire detection", Fire Science and Technology, Vol. 26, No. 4, 2007, pp. 417-420.

[34] X. Zhang, F. Xu, Z. Song, Z. Mei, "Video flame detection algorithm based on multi-feature fusion technique", Proceedings of the 2012 24th Chinese Control and Decision Conference (CCDC), 2012, pp. 4291-4294.

[35] Y. Y. Yan, B. G. Shao, Y. W. Hong, B. G. Zhi, "Contour Extraction of Flame for Fire Detection", Advanced Materials Research, Manufacturing Science, and Technology, Vol 383-390, 2012, pp. 1106-1110.
[36] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun, “Faster R-CNN: Towards Real-Time ObjectDetection with Region Proposal Networks”, 2016
[37] Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick, “Mask R-CNN” , 2018
指導教授 施國琛 審核日期 2020-12-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明