博碩士論文 107521072 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.218.190.118
姓名 吳孟澤(Meng-Tse Wu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用深度學習分析腦波人機介面於腦電波駕駛模擬系統
(A Deep Learning based Brain Computer Interface for Implementation of EEG Controlled Driving Simulator System)
相關論文
★ 使用梳狀濾波器於相位編碼之穩態視覺誘發電位腦波人機介面★ 應用電激發光元件於穩態視覺誘發電位之腦波人機介面判斷
★ 智慧型手機之即時生理顯示裝置研製★ 多頻相位編碼之閃光視覺誘發電位驅動大腦人機介面
★ 以經驗模態分解法分析穩態視覺誘發電位之大腦人機界面★ 利用經驗模態分解法萃取聽覺誘發腦磁波訊號
★ 明暗閃爍視覺誘發電位於遙控器之應用★ 使用整體經驗模態分解法進行穩態視覺誘發電位腦波遙控車即時控制
★ 使用模糊理論於穩態視覺誘發之腦波人機介面判斷★ 利用正向模型設計空間濾波器應用於視覺誘發電位之大腦人機介面之雜訊消除
★ 智慧型心電圖遠端監控系統★ 使用隱馬可夫模型於穩態視覺誘發之腦波人機介面判斷 與其腦波控制遙控車應用
★ 使用類神經網路於肢體肌電訊號進行人體關節角度預測★ 使用等階集合法與影像不均勻度修正於手指靜脈血管影像切割
★ 應用小波編碼於多通道生理訊號傳輸★ 結合高斯混合模型與最大期望值方法於相位編碼視覺腦波人機介面之目標偵測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著腦科學研究發展,腦電波的分析讓人們揭開大腦神秘的面紗,腦機介面建構了一條腦波與其他機器之間溝通的管道,讓複雜的腦波經過處理能讓電腦順利分析,甚至是直接用腦波控制電腦。在許多研究中,腦電波裡特定的頻寬與大腦活動和動作表現有關聯,因此本研究希望藉由整合腦波訊號處理與自製模擬駕駛系統,提供足夠且標記的腦波訓練資料,並以前一秒的腦波來預測0.25秒後的方向盤角度,以此發展貼近日常駕駛習慣的腦波駕駛系統。本研究分為兩個部分,第一部分為預訓練實際運動模型,以PC方向盤作為標記工具,在虛擬道路中記錄不同時刻方向盤的角度作為腦波的分類標記,並結合連續時間的方向盤角度與腦波資訊,藉此來訓練連續時間實際運動模型;第二部分為使用多次遷移學習方式,來訓練想像運動腦波駕駛系統,以期望達到相同效果。兩個部分的實驗中皆將乾式腦波電極設置在10-20 EEG System之C3、Cz、C4、Fz、Fp1、Fp2、P3、P4的位置,標記方式為動作瞬間作為基準點,以此基準點向前取一秒的資料作為分析腦波的區間,透過小波變換(wavelet transform)的方式取出特定的腦波頻段,再將八個通道所取出的頻率與時間關係做疊加,疊加後的二維資料,最後送入長短期記憶神經網路(Long Short-Term Memory, LSTM)分析使用者腦波變化。目前第一部分實際運動三分類已經達到受測者們平均80.36% ± 1.92%的辨識率,並在第二部分想像運動腦波駕駛中達到57.38%± 1.48%準確率。
摘要(英) With the development of EEG science research, the advanced techniques for brain wave analysis enable people to probe the profound neurocircuitry inside human brain. One promising technique is the use of brain waves to control peripheral machines through user’s intentions, which is called brain copmuter interface (BCI). The major challenge in designing a BCI is its signal processing to extract useful inteion informamtion so that the brain wave can be used to control external devices smoothly. According to the researches in the past, some specific frequency bands in the human brain are related to user’s limb movements. In this study, we intend to develop a brainwave-controlled driving system in vitrual reality (VR) driving environment. This study is divided into two parts. The first part is the pre-trained actual motion model. By gathering sufficient data for neural network training, the gathered continuous EEG were integrated with labeled steering information in driving environment. These two datas are used to train the continuous-time actual motion model. The second part is the use of multiple transfer learning methods to train the imaginary brain wave driving system in order to achieve the same effect. In this study, the EEG data were recorded from C3, Cz, C4, Fz, Fp1, Fp2, P3, P4 electrode positions based on the international 10-20 momntage system.The one-second EEG data preceding the momvement point was used as input data for BCI control. The one-second eight-channel EEG data were transformed into temprospectral domamin using wavelet transform and then used as input data for Long Short-Term Memory (LSTM) network to identify user’s momvement intention. The pre-trained actual motion model has achieved an accuracy rate of 80.36%± 1.92% and the brain wave driving system has achieved 57.38%± 1.48%.
關鍵字(中) ★ 腦電波
★ 腦波人機介面
★ 深度學習網路
★ 模擬駕駛系統
關鍵字(英) ★ Electroencephalography, (EEG)
★ Brain Computer Interface (BCI)
★ Deep Learning Neural Network
論文目次 中文摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 viii
第一章 緒論 1
1-1 研究動機與目的 1
1-2 文獻探討 2
1-3 論文章節架構 3
第二章 原理介紹 4
2-1 腦電訊號 4
2-1-1 常用腦電訊號基本類型 4
2-1-2 大腦皮質區域及功能 6
2-1-3 腦電波測量方法與位置 7
2-2 腦電波分析方法 9
2-2-1 巴特沃斯濾波器 9
2-2-2 事件相關去同步化腦波與事件相關同步化腦波 10
2-2-3 小波變換 11
2-3 腦機介面 13
2-4 人工神經網路 14
2-4-1 類神經網路 14
2-4-2 長短期記憶神經網路 15
2-4-3 注意力機制 16
第三章 研究設計與方法 17
3-1 系統架構 17
3-1-1 實際運動系統架構 17
3-1-2 想像運動系統架構 19
3-1-3 腦波機硬體架構 20
3-2 腦波預處理及神經網路模型 22
3-2-1 實際運動腦波預處理流程圖 22
3-2-2 腦波特徵提取 23
3-2-3 想像運動腦波預處理流程圖 25
3-2-4 神經網路架構 26
3-3 實驗設計 28
3-3-1 實際運動實驗對象 28
3-3-2 實際運動實驗設計流程 29
3-3-3 想像運動實驗對象 32
3-3-4 想像運動實驗設計流程 32
3-4 小波變換後時頻圖 34
第四章 實驗結果與討論 35
4-1 實際運動實驗數據分析 36
4-2 腦波開車模擬系統 41
第五章 結論與未來展望 46
第六章 參考文獻 47
參考文獻 [1] B. Graimann, B. Allison and G. Pfurtscheller, Brain-Computer Interfaces: A Gentle Introduction, 2010.
[2] I. Käthner, S. C. Wriessnegger, G. R. Müller-Putz, A. Kübler, and S. Halder, “Effects of mental workload and fatigue on the P300, alpha and theta band power during operation of an ERP (P300) brain–computer interface,” Biological Psychology, pp. 118-129, October 2014.
[3] S. N. Abdulkader, A. Atia, and M.-S. M. Mostafa, “Brain computer interfacing: Applications and challenges,” Egyptian Informatics Journal, pp. 213-230, July 2015.
[4] J. J. Daly and J. R. Wolpaw, “Brain–computer interfaces in neurological rehabilitation,” The Lancet Neurology, pp. 1032-1043, November 2008.
[5] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan, “Brain–computer interfaces for communication and control,” Clinical Neurophysiology, pp. 767-791, June 2002.
[6] G. Pfurtscheller and F. H. Lopes da Silva, “Event-related EEG/MEG synchronization and desynchronization: basic principles,” Clinical Neurophysiology, pp. 1842-1857, November 1999.
[7] Aimin Jiang, Jing Shang, Xiaofeng Liu, Yibin Tang, Hon Keung Kwan, Yanping Zhu, “Efficient CSP Algorithm With Spatio-Temporal Filtering for Motor Imagery Classification,” IEEE Transactions on Neural Systems and Rehabilitation Engineering , pp. 1006-1016, April 2020.
[8] De-Shuang Huang and Jian-Xun Mi, “A New Constrained Independent Component Analysis Method,” IEEE Transactions on Neural Networks , pp. 1532-1535, September 2007.
[9] Sina Khanmohammadi, Chun-An Chou, “Adaptive Seizure Onset Detection Framework Using a Hybrid PCA–CSP Approach,” IEEE Journal of Biomedical and Health Informatics, pp. 154-160, Jan. 2018.
[10] Saugat Bhattacharyya, Anwesha Khasnobish, Somsirsa Chatterjee, Amit Konar, D.N Tibarewala, “Performance analysis of LDA, QDA and KNN algorithms in left-right limb movement classification from EEG data,” 2010 International Conference on Systems in Medicine and Biology, pp. 126-131, December 2020.
[11] R. Shantha Selva Kumari, J. Prabin Jose, “Seizure detection in EEG using time frequency analysis and SVM,” 2011 International Conference on Emerging Trends in Electrical and Computer Technology, pp. 626-630, March 2011.
[12] Bin Hu, Xiaowei Li, Shuting Sun, Martyn Ratcliffe, “Attention Recognition in EEG-Based Affective Learning Research Using CFS+KNN Algorithm,” IEEE/ACM Transactions on Computational Biology and Bioinformatics , pp. 38-45, October 2016.
[13] Johannes Hennrich, Christian Herff, Dominic Heger, Tanja Schultz, “Investigating deep learning for fNIRS based BCI,” 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2844-2847, August 2015.
[14] Na Lu, Tengfei Li, Xiaodong Ren, and Hongyu Miao, “A Deep Learning Scheme for Motor Imagery Classification based on Restricted Boltzmann Machines,” IEEE Transactions on Neural Systems and Rehabilitation Engineering , pp. 566-576, June 2017.
[15] Y. R. Tabar and U. Halici, “A novel deep learning approach for classification of EEG motor imagery signals,” Journal of Neural Engineering, November 2016.
[16] Guangyi Zhang, Vandad Davoodnia, Alireza Sepas-Moghaddam, Yaoxue Zhang, Ali Etema, “Classification of Hand Movements From EEG Using a Deep Attention-Based LSTM Network,” IEEE Sensors Journal , pp. 3113-3122, 15 March 2020.
[17] L. R. Fournier, G. F. Wilson, C. R. Swainc, “Electrophysiological, behavioral, and subjective indexes of workload when performing multiple tasks: manipulations of task difficulty and training,” International Journal of Psychophysiology, pp. 129-145, January 1999.
[18] T. H. Budzynski, H. Budzynski, J. Evans, and A. Abarbanel, Introduction to quantitative EEG and neurofeedback: Advanced theory and applications, Academic Press, 2009.
[19] H. J. Herbert, “The ten-twenty electrode system of the International Federation,” Electroencephalography and clinical neurophysiology, pp. 370-375, 1958.
[20] G. Pfurtscheller, G. R. Müller-Putz, R. Scherer and C. Neuper, “Rehabilitation with Brain-Computer Interface Systems,” Computer, pp. 58-65, Oct. 2008 .
[21] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural computation, pp. 1735-1780, 15 November 1997.
[22] G. Pfurtscheller and C. Neuper, “Motor imagery and direct brain-computer communication,” Proceedings of the IEEE, pp. 1123 - 1134, July 2001.
[23] R. Polikar, “The Wavelet Tutorial,” [線上]. Available: http://users.rowan.edu/~polikar/WTtutorial.html.
指導教授 李柏磊(Po-Lei Lee) 審核日期 2020-10-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明