博碩士論文 107521094 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:13.58.220.206
姓名 江慶益(Qing-yi Jiang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 智慧型天線系統之關鍵被動組件研製
(Designs of Key Passive Building Blocks for a Smart Antenna System)
相關論文
★ 用於行動上網裝置之智慧型陣列天線★ 吸收式帶止濾波器之研製
★ 一維及二維切換式波束掃描陣列天線★ 寬頻微型化六埠網路接收機
★ 具有良好選擇度的寬頻吸收式帶止濾波器★ 微小化吸收式帶止濾波器之通帶改善
★ 共面波導帶通濾波器之研製★ 微帶耦合線帶通濾波器與雙工器研製
★ 宇宙微波背景輻射陣列望遠鏡接收機 之校準信號源研製★ K-Band及Q-Band毫米波帶通濾波器設計
★ 薄膜製程射頻被動元件設計★ 微波帶通低雜訊放大器設計
★ 積體式微波帶通濾波器之研製★ 應用於高位元率無線傳輸系統之V頻段漸進式開槽天線陣列
★ 以多重耦合線實現多功能帶通濾波器★ 以單刀雙擲帶通濾波器實現高整合度射頻前端收發系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-10-20以後開放)
摘要(中) 本論文以智慧型天線系統之波束成型模組(Beam-forming module)與訊號來向(Direction of Array, DOA)偵測器中的關鍵被動組件為設計目標。首先,因應第五代行動通訊發展需求,本論文題出操作於28 GHz頻段之切換式波束成型晶片,設計上使用橋式T線圈取代傳輸線以縮小4×4巴特勒矩陣的電路尺寸,進而與吸收式單刀四擲開關整合成切換式波束成型晶片,並實現於砷化鎵製程中。整體晶片尺寸僅1.798 mm×1.85 mm,在28 GHz的電氣尺寸為0.172 λ0 ×0.168 λ0。其次,因應多頻、多模的操作需求,採用雙頻橋式T線圈實現微型化雙頻六埠網路設計,以做為訊號來向偵測器的基本組件。此雙頻六埠網路的操作頻率為2.45與5.8 GHz,並實現於積體被動電路(IPD)製程中,電路面積僅5.85 mm×5.47 mm,在2.45 GHz的操作頻率下電氣尺寸為0.0477 λ0 ×0.0446 λ0,在5.8 GHz的頻率下電氣尺寸則為0.113 λ0 ×0.105 λ0。
摘要(英) In this thesis, a compact switched beamformer for use in a beam-forming antenna array and a dual-band six-port network for use in a direction of arrival estimator are proposed, which will serve as key passive building block designs of a smart antenna system. First, the design of an on-chip switched beamforming network is demonstrated at 28 GHz, which is based on the integration of an absorptive single-pole four-throw (SP4T) switch and a 4×4 Butler matrix using the GaAs pHEMT process. A compact circuit size is achieved by using bridged-T coils to replace transmission line sections in the 4×4 Butler matrix. Specifically, the circuit size is only 1.798 mm×1.85 mm while the electrical size is around 0.172 λ0×0.168 λ0 at 28 GHz. Driven by the demand of multi-frequency and multi-mode wireless communication apparatus, a dual-band six-port network is also developed, in which dual-band bridged-T coils are employed as the buildings blocks. The two operating frequencies of the dual-band six-port network are set as 2.45 and 5.8 GHz, and it is implemented using an integrated passive circuit (IPD) process. The circuit size is only 5.85 mm×5.47 mm. The corresponding electrical size is around 0.0477 λ0× 0.0446 λ0 at 2.4 GHz and 0.113 λ0×0.105 λ0 at 5.8 GHz.
關鍵字(中) ★ 波束成型網路
★ 六埠網路
關鍵字(英)
論文目次 論文摘要 I
Abstract II
致謝 III
目錄 IV
圖形列表 VI
表格列表 IX
第一章 緒論 1
1.1研究動機 1
1.2文獻回顧 3
1.3章節介紹 5
第二章 毫米波微型化切換式波束成型晶片 6
2.1電路架構及原理 6
2.1.1巴特勒矩陣 6
2.1.2吸收式單刀四擲開關 8
2.1.3切換式波束成型晶片 8
2.2切換式波束成型晶片電路設計 9
2.2.1巴特勒矩陣 9
2.2.2吸收式單刀四擲開關 16
2.2.3切換式波束成型晶片 20
2.3電路實作與驗證 24
2.4電路製程變異問題探討 32
2.4.1巴特勒矩陣測試電路量測 32
2.4.2電晶體測試電路量測 33
2.4.3重新模擬結果 37
2.5電路改版設計 43
2.6結果與討論 48
第三章 微型化雙頻六埠網路 50
3.1電路架構及原理 50
3.2 電路設計 52
3.2.1雙頻橋式T線圈等效傳輸線 52
3.2.2微小化雙頻分支線耦合器 54
3.2.3微小化雙頻功率分配器 58
3.2.4微小化雙頻六埠網路 60
3.3電路實作與驗證 63
3.4結果討論 72
第四章 結論 74
參考文獻 76
參考文獻 [1] Agiwal, M., Roy, A., and Saxena, N. : ‘Next generation 5G wireless networks: a comprehensive survey’, IEEE Commun. Surv. Tutor., 2016, 18, (3), pp. 1617–1655
[2] Wang, C.W., Ma, T.G., and Yang, C.F.: ‘A new planar artificial transmission line and its applications to a miniaturized Butler matrix’, IEEE Trans. Microw. Theory Tech., 2007, 55, (12), pp. 2792–2801
[3] A. Koelpin, G. Vinci, B. Laemmle, D. Kissinger, and R. Weigel, “The six-port in modern society”, IEEE Microw. Mag., vol. 11, no. 7, pp. 35-43, Dec. 2010.
[4] 李駿華, "無頻寬減損之微小化功率分配器與巴特勒矩陣," 碩士論文 國立中央大學, June 2011.
[5] 方偉廷, "基於橋式T線圈之微型化切換式波束成型模組," 博士論文 國立中央大學, June 2017.
[6] W. Choi, K. Park, Y. Kim, K. Kim and Y. Kwon, "A V-Band switched beam-forming antenna module using absorptive switch integrated with 4×4 Butler matrix in 0.13-μm CMOS," in IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 12, pp. 4052-4059, Dec. 2010
[7] W. Fang, E. Chang and Y. Lin, "Bridged-T coil for miniature dual-band branch-line coupler and power divider designs," in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 2, pp. 889-901, Feb. 2018
[8] A. M. Martir, I. M. Fernandez, and A. O. Monux, “Wideband slotcoupled Butler matrix,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 12, pp. 848–850, Dec. 2014.
[9] S. Trinh-Van, J. M. Lee, Y. Yang, K. Lee and K. C. Hwang, "A sidelobe-reduced, four-beam array antenna fed by a modified 4×4 Butler matrix for 5G applications," in IEEE Transactions on Antennas and Propagation, vol. 67, no. 7, pp. 4528-4536, July 2019
[10] G. Tian, J. Yang and W. Wu, "A novel compact Butler matrix without phase shifter," in IEEE Microwave and Wireless Components Letters, vol. 24, no. 5, pp. 306-308, May 2014
[11] H. N. Chu and T. Ma, "An extended 4×4 Butler matrix with enhanced beam controllability and widened spatial coverage," in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 3, pp. 1301-1311, March 2018
[12] C. Lee, M. K. Khattak and S. Kahng, "Wideband 5G beamforming printed array clutched by LTE-A 4 × 4-multiple-input–multiple-output antennas with high isolation," in IET Microwaves, Antennas & Propagation, vol. 12, no. 8, pp. 1407-1413
[13] E. T. Der, T. R. Jones and M. Daneshmand, "Miniaturized 4 × 4 Butler matrix and tunable phase shifter using ridged half-mode substrate integrated waveguide," in IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 8, pp. 3379-3388, Aug. 2020
[14] Y. Lin and J. Lee, "Miniature Butler matrix design using glass-based thin-film integrated passive device technology for 2.5-GHz applications," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 7, pp. 2594-2602, July 2013
[15] Fei Wang and Hua Wang, "A broadband compact low-loss 4×4 Butler matrix in CMOS with stacked transformer based quadrature couplers," 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, 2016, pp. 1-4
[16] X. Tao, R. Cao, Z. Li, D. Rong, L. Jiang and L. Sun, "Design of X-band 4×4 on-chip Butler matrix based on 0.18µm SiGe BiCMOS process," 2019 IEEE 19th International Conference on Communication Technology (ICCT), Xi′an, China, 2019, pp. 805-809
[17] C. Chang, T. Chin, J. Wu and S. Chang, "Novel design of a 2.5-GHz fully integrated CMOS Butler matrix for smart-antenna systems," in IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 8, pp. 1757-1763, Aug. 2008
[18] B. Suh and B. Min, "A 28-GHz reconfigurable SP4T switch network for a switched beam system in 65-nm CMOS," in IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 6, pp. 2057-2064, June 2020
[19] C. Chen, W. Fang and Y. Lin, "Miniature 2.4-GHz switched beamformer module in IPD and its application to very-low-profile 1D and 2D scanning antenna arrays," 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), Orlando, FL, 2017, pp. 273-284
[20] T. Chin, S. Chang, J. Wu and C. Chang, "A 25-GHz compact low-power phased-array receiver with continuous beam steering in CMOS technology," in IEEE Journal of Solid-State Circuits, vol. 45, no. 11, pp. 2273-2282, Nov. 2010
[21] M. Elkhouly, Y. Mao, C. Meliani, J. C. Scheytt, and F. Ellinger, "A G-band four-element Butler matrix in 0.13 µm SiGe BiCMOS technology," IEEE J. Solid-State Circuits, vol. 49, no. 9, pp. 1916-1926, Sept. 2014.
[22] H.V.Nguyen and C.Caloz, “Dual-band CRLH six-port front-end in MIM technology”, Proceedings of the 36th European Microwave Conference, September 2006, pp.122-124
[23] E. E. Djoumessi, S. O. Tatu, R. G. Bosisio, M. Chaker, and K. Wu, “Varactor-tuned multi-band six-port front-end for wireless applications,” in Proc. Asia-Pacific Microwave Conf., Dec. 16–20, 2008, pp. 1–5.
[24] Serioja O. Tatu, and Tayeb A. Denidni, “Analysis of a new multiband multiport circuit for phase detection applications”, IEEE Microwave and Wireless Components Lett. Vol. 15, pp. 389-391. June 2005
[25] 黃冠淳, "寬頻微型化六埠網路接收機," 碩士論文 國立中央大學, June 2017.
[26] Balanis, Constantine A., “Antenna theory analysis and design”, John Wiley & Sons, 3rd Edition, USA (2005)
[27] Qualcomm Technologies, Inc., Global update on spectrum for 4G & 5G, Sep. 2020. Accessed on: Oct. 20, 2020. [Online].Available: https://www.qualcomm.com/media/documents/files/spectrum-for-4g-and-5g.pdf
[28] G. Vinci, A. Koelpin, and R. Weigel, “Employing six-port technology for phase-measurement-based calibration of automotive radar,” in Microwave Conference, 2009. APMC 2009. Asia Pacific, Singapore, dec. 2009, pp. 329 –332.
指導教授 林祐生(Yo-Shen Lin) 審核日期 2020-10-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明