博碩士論文 107521018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.142.164.248
姓名 郭羚筠(Ling-Yun Kuo)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 垂直型氮化鋁鎵/氮化鎵蕭特基二極體於氮化鎵基板特性分析
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要針對利用氮化鋁鎵/氮化鎵異質結構成長於氮化鎵基板來製作垂直型蕭特基二極體,為了改善傳統蕭特基二極體的高導通電壓(VON)以及高漏電流問題,本次實驗加入p型氮化鎵形成p-n空乏區,達成常關型(normally-off)的操作,降低了漏電流。再藉由陽極蝕刻,蝕刻深度超過2DEG介面來降低導通電壓,並且設計陽極為T型,緩和陽極邊緣電場,提升崩潰電壓。首先,透過Silvaco TCAD模擬軟體分析無陽極蝕刻以及陽極蝕刻深度至超過2DEG介面之基本電性,其後討論製程結果之特性表現。
在室溫下量測電容-電壓曲線分析漂移層的濃度,以及順向、逆向電流-電壓特性,其中無陽極蝕刻之氮化鋁鎵/氮化鎵蕭特基二極體的導通電壓為4.05 V,當陽極蝕刻深度超過2DEG介面時,其導通電壓達到最低0.68 V,以及最小導通電阻為32 mΩ·cm2,崩潰電壓為400 V,Figure of Merit經由計算為5.0 MW/cm2。而在無陽極蝕刻加入場電板的設計,其設計延伸長度為5到10 µm,場電板延伸長度為10 µm的二極體,崩潰電壓提升到720 V。並且利用變溫來探討氮化鋁鎵/氮化鎵蕭特基二極體順向偏壓及逆向偏壓的特性分析,在順向偏壓下,藉由蕭特基不均勻能障模型來計算蕭特基能障,排除金屬沉積後的蕭特基接觸不均勻接面,再來利用逆向偏壓的特性曲線來進一步討論漏電流的機制。
摘要(英) The thesis mainly focuses on the use of aluminum gallium nitride/gallium nitride heterostructures grown on gallium nitride substrates to make vertical Schottky diodes, in order to improve the high on-voltage (VON) and high leakage current of conventional Schottky diodes . In this experiment, p-type gallium nitride was added to form a pn depletion region, achieving a normally-off operation and reducing leakage current. Then by anode etching, the etching depth exceeds the 2DEG interface to reduce the turn on voltage, and the anode is designed to be T-shaped to relax the anode edge electric field and increase the breakdown voltage. First of all, Silvaco TCAD was used to simulate the electrical properties of schottky barrier diodes without anode recess and with anode recess on the different epitaxial layers, and then discuss the characteristics of the process results.
Measure the capacitance-voltage curve at room temperature to analyze the concentration of the drift layer, as well as the forward and reverse current-voltage characteristics. The turn on voltage of the aluminum gallium nitride/gallium nitride schottky diode without anode etching is 4.05 V, when the anode etching depth exceeds the 2DEG interface, the turn on voltage reaches the lowest 0.68 V, and the minimum on-resistance is 32 mΩ·cm2, the breakdown voltage is 400 V, and the figure of merit is calculated to be 5.0 MW/cm2. Device A is added to the design of the field plate, and its designed extension length is 5 to 10 µm. The field plate extends the diode with a length of 10 µm, and the breakdown voltage is increased to 720 V.
Furthermore, use variable temperature to explore the characteristics analysis of the forward bias and reverse bias of the aluminum gallium nitride/gallium nitride schottky diode. Under the forward bias, the Schottky inhomogeneous barrier model is used to calculate the schottky barrier eliminates the uneven junction of Schottky contact after metal deposition, and then uses the reverse bias characteristic curve to further discuss the leakage current mechanism.
關鍵字(中) ★ 氮化鋁鎵/氮化鎵
★ 蕭特基二極體
★ 陽極蝕刻
關鍵字(英) ★ AlGaN/GaN
★ Schottky barrier diode
★ recess anode metal
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 X
第一章 緒論 1
1.1 前言 1
1.2 功率二極體市場發展與應用 3
1.3 氮化鎵二極體國內外相關研究成果 4
1.4 研究動機與目的 14
1.5 論文架構 15
第二章 氮化鋁鎵/氮化鎵蕭特基二極體於氮化鎵基板上之結構設計及元件模擬分析 16
2.1 前言 16
2.2氮化鋁鎵/氮化鎵於氮化鎵基板之磊晶結構 16
2.3氮化鋁鎵/氮化鎵蕭特基二極體於氮化鎵基板之元件製程與佈局設計 25
2.3.1 氮化鋁鎵/氮化鎵蕭特基二極體製作流程 25
2.3.2 氮化鋁鎵/氮化鎵蕭特基二極體佈局設計 26
2.4氮化鋁鎵/氮化鎵蕭特基二極體之元件特性模擬 29
2.5結論 38
第三章 氮化鋁鎵/氮化鎵蕭特基二極體室溫之電性量測與分析 39
3.1前言 39
3.2氮化鋁鎵/氮化鎵蕭特基二極體之電容-電壓特性分析 39
3.3氮化鋁鎵/氮化鎵蕭特基二極體之常溫電流-電壓特性分析 41
3.3.1 氮化鋁鎵/氮化鎵蕭特基二極體順向導通特性 41
3.3.2氮化鋁鎵/氮化鎵蕭特基二極體逆向崩潰特性 48
3.4氮化鋁鎵/氮化鎵蕭特基二極體變溫之電性量測與分析 54
3.4.1前言 54
3.4.2氮化鋁鎵/氮化鎵蕭特基二極體變溫萃取蕭特基能障 54
3.4.3氮化鋁鎵/氮化鎵蕭特基二極體逆向漏電流分析 63
3.5結論 71
第四章 結論與未來展望 73
4.1結論 73
4.2未來展望 74
參考文獻 75
附錄I -氮化鋁鎵/氮化鎵蕭特基二極體製作流程 80
參考文獻 [1] J. Millan, P. Godignon, A. Perez-Tomas, “Wide Band Gap Semiconductor Devices for Power Electronics,” AUTOMATIKA, vol. 53, pp. 107–116, February 2012.
[2] A. Morya, M. Moosavi, M. C. Gardner and H. A. Toliyat, “Applications of Wide Bandgap (WBG) Devices in AC Electric Drives: A Technology Status Review,” IEEE IEMDC Conference, August 2017.
[3] Yole Developpment, “Power GaN 2019: Epitaxy, Device, Applications & Techology Trends report,” November 2019.
[4] A. P. Zhang, J. W. Johnson, B. Luo, F. Ren, S. J. Pearton, S. S. Park, Y. J. Park and J.-I. Chyi, “Vertical and lateral GaN rectifiers on free-standing GaN substrates,” Applied Physics Letters, vol. 79, pp. 1555–1557, September 2001.
[5] A. P. Zhang, G. Dang, F. Ren, J. Han, A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, J. M. Redwing, X. A. Cao and S. J. Pearton, “Al composition dependence of breakdown voltage in AlxGa1-xN Schottky rectifiers,” Applied Physics Letters, vol. 76, pp. 1767–1769, March 2000.
[6] A. P. Zhang, G. Dang, F. Ren, J. Han, A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, J. M. Redwing, H. Cho and S. J. Pearton, “Temperature dependence and current transport mechanisms in AlxGa1-xN Schottky rectifiers,” Applied Physics Letters, vol. 76, pp. 3816 –3818, June 2000.
[7] A. P. Zhang, J. W. Johnson, F. Ren, J. Han, A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, J. M. Redwing, K. P. Lee and S. J. Pearton, “Lateral AlxGa1-xN power rectifiers with 9.7 kV reverse breakdown voltage,” Applied Physics Letters, vol. 78, pp. 823–825, February 2001.
[8] S. Lenci, B. De Jaeger, L. Carbonell, J. Hu, G. Mannaert, D. Wellekens, S. You, B. Bakeroot and S. Decoutere, “Au-Free AlGaN/GaN Power Diode on 8-in Si Substrate With Gated Edge Termination,” IEEE Electron Device Letters, vol. 34, no. 8, pp. 1035–1037, August 2013.
[9] J.-H. Lee, K.-S. Im, J. K. Kim and J.-H. Lee, “Performance of Recessed Anode AlGaN/GaN Schottky Barrier Diode Passivated With High-Temperature Atomic Layer-Deposited Al2O3 Layer,” IEEE Trans. Electron Devices, vol. 66, no. 1, pp. 324-329, January 2019.
[10] K. Nomoto, B. Song, Z. Hu, M. Zhu, M. Qi, N. Kaneda, T. Mishima, T. Nakamura, D. Jena, and H. G. Xing, “1.7-kV and 0.55-mΩ· cm2 GaN p-n Diodes on Bulk GaN Substrates With Avalanche Capability,” IEEE Electron Device Letters, vol. 37, no. 2, pp. 161–164, February 2016.
[11] A. D. Koehler, T. J. Anderson, M. J. Tadjer, A. Nath, B. N. Feigelson, D. I. Shahin, K. D. Hobart, and F. J. Kub, “Vertical GaN junctionbarrier Schottky diodes,” ECS J. Solid State Sci. Technol. , vol. 6, no. 1, pp. Q10–Q12, January 2017.
[12] Y. Zhang, M. Sun, Z. Liu, D. Piedra, M. Pan, X. Gao, Y. Lin, A. Zubair, L. Yu, and T. Palacios, “Novel GaN trench MIS barrier Schottky rectifiers with implanted field rings,” IEDM Tech. Dig., pp. 10.2.1–10.2.4, December 2016.
[13] H. Fukushima, S. Usami, M. Ogura, Y. Ando, A. Tanaka, M. Deki, M. Kushimoto, S. Nitta, Y. Honda, and H. Amano, “Vertical GaN p-n diode with deeply etched mesa and the capability of avalanche breakdown,” Appl. Phys. Express, vol. 12, no. 026502, February. 2019.
[14] H. Fu, K. Fu, S. R. Alugubelli, C.-Y. Cheng, X. Huang , H. Chen, T.-H. Yang, C. Yang, J. Zhou, J. Montes, X. Deng, X. Qi, S. M. Goodnick, F. A. Ponce, and Y. Zhao, “High Voltage Vertical GaN p-n Diodes With Hydrogen-Plasma Based Guard Rings,” IEEE Electron Device Letters, vol. 41, no. 1, pp. 127–130, January 2020.
[15] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” Journal of Applied Physics, vol. 85, no. 6, pp. 3222-3233, March 1999.
[16] B. N. Pantha, R. Dahal, M. L. Nakarmi, N. Nepal, J. Li, J. Y. Lin, H. X. Jiang, Q. S. Paduano, and David Weyburne, “Correlation between optoelectronic and structural properties and epilayer thickness of AlN,” Applied Physics Letters, vol. 90, pp. 241101–241101-3, June 2007.
[17] 范姜少琪, “不同陽極蝕刻深度之氮化鋁鎵/氮化鎵蕭特基二極體特性分析,” 國立中央大學電機工程學系碩士論文, 2018.
[18] Y. Zhou, D. Wang, C. Ahyi, C. C. Tin, J. Williams, M. Park, N. M. Williams, A. Hanser, E. A. Preble, “Temperature-dependent electrical characteristics of bulk GaN Schottky rectifier,” Journal of Applied Physics, vol. 101, No. 2, pp. 024506-024506-4, January 2007.
[19] Y. H. Choi, J. Lim, K. H. Cho, M.K. Han, “High Voltage AlGaN/GaN Schottky Barrier Diode Employing the Inductively Coupled Plasma-Chemical Vapor Deposition SiO2 Passivation, “ IEEE International Conference on Power Electronics, pp.71-73, October 2007.
[20] A. G. Chynoweth, “Ionization Rates for Electrons and Holes in Silicon,” Physical Review, vol. 109, pp. 1537–1545, March 1958.
[21] A. G. Chynoweth, “Uniform Silicon P–N Junctions II: Ionization rates for Electrons,” Journal of Applied Physics, vol. 31, pp. 1161–1165, June 1960.
[22] B. J. Baliga, “Fundamentals of Power Semiconductor Devices.” New York: Springer Verlag, 2008.
[23] B. J. Baliga, “Gallium Nitride and Silicon Carbide Power Devices.” World Scientific, 2017.
[24] Y. Zhang, M. Sun, H.-Y. Wong, Y. Lin, P. Srivastava, C. Hatem, M. Azize, D. Piedra, L. Yu, T. Sumitomo, N. A. Braga, R. V. Mickevicius, and T. Palacios, “Origin and Control of OFF-State Leakage Current in GaN-on-Si Vertical Diodes,” IEEE Trans. Electron Devices, vol. 62, no. 7, pp. 2155-2161, July 2015.
[25] Y. Saitoh, K. Sumiyoshi, M. Okada, T. Horii, T. Miyazaki, H. Shiomi, M. Ueno, K. Katayama, M. Kiyama, and T. Nakamura, “Extremely low on-resistance and high breakdown voltage observed in vertical GaN Schottky barrier diodes with high-mobility drift layers on low dislocation-density GaN substrates,” Appl. Phys. Express, vol. 3, no. 8, p. 081001, July 2010.
[26] D. Disney, H. Nie, A. Edwards, D. Bour, H. Shah, and I. C. Kizilyalli, “Vertical power diodes in bulk GaN,” in Proc. Int. Symp. on Power Semiconductor Devices and IC′s (ISPSD), pp. 59-62, May 2013.
[27] N. Tanaka, K. Hasegawa, K. Yasunishi, N. Murakami, and T. Oka, “50 A vertical GaN Schottky barrier diode on a free-standing GaN substrate with blocking voltage of 790 V,” Appl. Phys. Express, vol. 8, no. 7, pp. 071001-1-071001-3, June 2015.
[28] Y. Cao, R. Chu, R. Li, M. Chen, and A. J. Williams, “Improved performance in vertical GaN Schottky diode assisted by AlGaN tunneling barrier,” Appl. Phys. Letters, vol. 108, no. 11, p. 112101, Mar 2016.
[29] Y. Zhang, Z. Liu, M. J. Tadjer, M. Sun, D. Piedra, C. Hatem, T. J. Anderson, L. E. Luna, A. Nath, A. D. Koehler, H. Okumura, J. Hu, X. Zhang, X. Gao, B. N. Feigelson, K. D. Hobart, and T. Palacios, “Vertical GaN junction barrier Schottky rectifiers by selective ion implantation,” IEEE Electron Device Letters, vol. 38, no. 8, pp. 1097-1100, Aug. 2017.
[30] W. Li, K. Nomoto, M. Pilla, M. Pan, X. Gao, D. Jena, and H. G. Xing, “Design and realization of GaN trench junction-barrier-Schottky-diodes,” IEEE Trans. Electron Devices, vol. 64, no. 4, pp. 1635-1641, April 2017.
[31] S. Yang, S. Han, R. Li, and K. Sheng, “1 kV/1.3 mΩ·cm2 vertical GaN-on-GaN Schottky barrier diodes with high switching performance,” in Proc. Int. Symp. on Power Semiconductor Devices and IC′s (ISPSD), pp. 272-275, May 2018.
[32] M. A. Laurent, G. Gupta, D. J. Suntrup III, S. P. DenBaars, and U. K. Mishra, “Barrier height inhomogeneity and its impact on (Al,In,Ga)N Schottky diodes,” Journal of Applied Physics, vol. 119, no. 6, pp. 064501-064501-7, February 2016.
[33] F. Iucolano, F. Roccaforte, F. Giannazzo, V. Raineri, “Barrier inhomogeneity and electrical properties of Pt/GaN Schottky contacts,” Journal of Applied Physics, vol. 102, no. 11, pp. 113701-113701-8, December 2007.
[34] Z. Tekeli, Ş. Altındal, M. Çakmak, S. Özçelik, D. Çalışkan, E. Özbay, “The behavior of the I-V-T characteristics of inhomogeneous Ni/Au -Al0.3Ga0.7N/AlN/GaN heterostructures at high temperatures,” Journal of Applied Physics, vol. 102, no. 5, pp. 054510-054510-8, September 2007.
[35] H. Zhang, E. J. Miller, and E. T. Yua, “Analysis of leakage current mechanisms in Schottky contacts to GaN and Al0.25Ga0.75N/GaN grown by molecular-beam epitaxy,” Journal of Applied Physics, vol. 99, pp. 023703-054510-6, January 2006.
[36] K. R. Peta and M. D. Kim, “Leakage current transport mechanism under reverse bias in Au/Ni/GaN Schottky barrier diode,” Superlattices and Microstructures, vol. 113, pp. 678-683, December 2018.
[37] A. Armstrong, D. Feezel, A. A. Allerman, G. Pickrell, M. Monavarian, I. Stricklin, M. H. Crawford, K. C. Celio, F. L. Leonard, and A. A. Talin, “High Voltage Regrown GaN P‐N Diodes Enabled by Defect and Doping Control,” Sandia National Lab. (SNL‐NM), Albuquerque, NM (United States), 2018.
[38] T. L. Tansley and R. J. Egan, “Point-defect energies in the nitrides of aluminum, gallium, and indium,” Physical review. B, vol. 45, pp. 10942-10950, May 1992.
[39] H. Hasegawa and T. Hashizume, “Properties of Surface States on GaN and Related Compounds and Their Passivation by Dielectric Films,” Materials Research Society, vol. 743, pp. L2.6.1- L2.6.12, January 2002.
[40] V. Janardhanam, I. Jyothi, K.-S. Ahn, and C.-J. Choi, “Temperature-dependent current–voltage characteristics of Se Schottky contact to n-type Ge,” Thin Solid Films, vol. 546, pp. 63-68, November 2013.
指導教授 辛裕明(Yue-Ming Hsin) 審核日期 2020-10-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明