博碩士論文 107521023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:3.137.173.172
姓名 胡聖浩(Sheng-Hao Hu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 氮化鋁鎵/氮化鎵高電子遷移率電晶體之佈局分析及功率放大器研製
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文以閘極長度為0.25 μm之氮化鎵高速電子遷移率電晶體製程技術,進行相關的設計應用與研究。依照背向通孔佈局的差異,元件可分成兩種型式:外部源極通孔(outside source via)及獨立源極通孔(individual source via)電晶體。針對兩種電晶體的直流與脈衝動態量測的結果進行分析與討論,直流量測涵蓋電晶體本身以及其蕭特基閘極二極體的導通和崩潰特性。兩個元件導通的特性表現不同,原因可能來自於背向通孔的佈局位置和通孔周圍的應力大小。此外,通孔接地後形成的背部場效板則使主動區內的電場分布不再集中於閘極邊緣,有助於改善崩潰特性。利用脈衝動態量測元件,研究常溫與變溫的電流崩塌機制,其中電流崩塌比率與臨界電壓偏移量在不同工作偏壓之下有不同的變化。
其次是應用於5G通訊系統頻段之3.5 GHz功率放大器的研製,包括class-AB及Doherty功率放大器。class-AB放大器是由單級電晶體與輸入、輸出匹配組成的電路架構,預計輸出功率將有40 dBm,而實際量測僅34.5 dBm,功率附加效益為25.1 %。Doherty功率放大器輸出端設計低品質因數的電路實現大頻寬,並使用集總電路取代傳輸線節省面積。量測結果雖然不如典型的Doherty放大器,在其飽和及功率回退處呈現最大效率,不過頻帶之內的增益並沒有太大的改變。
摘要(英) The design applications and research are presented in this thesis with 0.25 μm GaN HEMT technology. The devices can be divided into two types depending on the difference in the backside via layouts. One is called an outside backside via (OSV) transistor; the other is an individual backside via (ISV) transistor. First, the DC and pulse dynamic measurement results of both devices are discussed. The conduction and breakdown characteristics of the transistor and its Schottky gate diode are included in the DC measurement. Variation in conduction characteristic is thought to be possibly caused by the location of backside via and its induced stress. The electric field in active region is no longer converge at the edge of gate because of backside field plate formed by backvia grounding. Therefore, the breakdown characteristic is improved in the ISV device. A pulse measurement is performed in order to study the mechanism of current collapse in various temperatures. The change in the current collapse ratio and threshold voltage shift are observed under different quiescent biases.
In the second part of this thesis, power amplifiers operated in 3.5 GHz for 5G communcication system are discussed, including a class-AB power amplifier and a Doherty power amplifier. The class-AB power amplifier is consisted of a single transistor and input/output matching networks with an estimated output power of 40 dBm. However, the output power is measured only 34.5 dBm and PAE is 25.1 %. As for Doherty power amplifier, the low-Q output circuit is designed to obtain a wide bandwidth. In addition, the transmission line is replaced with lumped circuit to reduce the size of a chip. Although the maximum efficiency at its saturated output and power back-off does not appear in the measured result as a typical one, there is no considerable change in power gain within the band.
關鍵字(中) ★ 氮化鎵
★ 高速電子遷移率電晶體
★ 蕭特基二極體
★ 5G 行動通訊
★ 功率放大器
★ Doherty 功率放大器
關鍵字(英) ★ GaN
★ HEMT
★ Schottky Diode
★ 5G Mobile Communication
★ Power Amplifier
★ Doherty Power Amplifier
論文目次 中文摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 研究發展現況及文獻回顧 2
1.2.1. 氮化鎵材料特性 2
1.2.2. 氮化鎵磊晶基板與背向通孔製程應用 5
1.2.3. 氮化鎵功率放大器發展現況 9
1.3 研究動機與論文架構 12
第二章 氮化鎵之元件佈局特性分析 13
2.1 前言 13
2.2 元件佈局設計介紹 13
2.3 直流測量比較和討論 15
2.4 脈衝動態特性分析 19
2.5 本章結論 28
第三章 氮化鎵單石微波積體電路之3.5 GHz功率放大器設計 29
3.1 前言 29
3.2 class-AB單級功率放大器 29
3.2.1. 功率放大器基本原理 29
3.2.2. class-AB單級功率放大器設計與量測 35
3.3 Doherty功率放大器 40
3.3.1. Doherty功率放大器操作原理 40
3.3.2. Doherty功率放大器設計與量測 43
3.4 本章結論 52
第四章 結論 53
參考文獻 54
參考文獻 [1] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J.
Schaff, and L. F. Eastman, “Two-dimensional electron gases induced by spontaneous and
piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures”J. Appl.
Phys., vol. 85, no. 6, pp. 3222-3233, Mar. 1999.
[2] L. F. Eastman and U. K. Mishra, “The toughest transistor yet [GaN transistors],”
IEEE Spectrum, vol. 39, no. 5, pp. 28-33, May 2002.
[3] Jungwan Cho, Daniel Francis, David H. Altman, Mehdi Asheghi, and Kenneth E.
Goodson, “Phonon conduction in GaN-diamond composite substrates,”J. Appl. Phys., vol.
121, no. 5, Feb. 2017
[4] 高仲山, “以氫化物氣相磊晶技術在獨立式氮化鎵基板上再成長氮化鎵厚膜”
碩士論文, 國立交通大學, 民國98 年。
[5] Kyu-Won Jang, In-Tae Hwang, Hyun-Jung Kim, Sang-Heung Lee, Jong-Won Lim
and Hyun-Seok Kim, “Thermal Analysis and Operational Characteristics of an
AlGaN/GaN High Electron Mobility Transistor with Copper-Filled Structures: A
Simulation Study,” Micromachines, vol. 11, no. 53, Dec. 2019
[6] Ya-Hsi Hwang, Tsung-Sheng Kang, Fan Rena and Stephen J. Pearton, “Novel
approach to improve heat dissipation of AlGaN/GaN high electron mobility transistors
with a Cu filled via under device active area,” J. Vac. Sci. Technol. B, vol. 32, no. 6,
Nov./Dec. 2014
[7] M. Mußer, F. van Raay, P. Br¨uckner, W. Bronner, R. Quay, M. Mikulla and O.
Ambacher, “Individual Source Vias for GaN HEMT Power Bars,” Proc. Eur. Microw. Int.
Circuits Conf., pp. 184-187,Oct. 2013
54
[8] D. Y. C. Lie , J. C.Mayeda and J. Lopez, “Highly Efficient 5G Linear Power
Amplifiers (PA) Design Challenges,” 2017 International Symposium on VLSI Design,
Automation and Test (VLSI-DAT), Apr. 2017
[9] Qorvo QPA3503 Datasheet, 3 W, 28 V, 3.4 – 3.6 GHz GaN PA Module, Online:
https://www.qorvo.com/products/p/QPA3503
[10] CREE CMPA2060025D Datasheet, 25 W, 2.0 - 6.0 GHz, GaN MMIC, Power
Amplifier, Online: https://www.wolfspeed.com/media/downloads/303/CMPA2060025DRev2_
0.pdf
[11] Juyeon Lee, Seunghoon Jee, Bonghyuk Park, Cheol Ho Kim and Bumman Kim,
“GaN MMIC Broadband Saturated Power Amplifier,” 2013 Asia-Pacific Microwave
Conference Proceedings (APMC), pp. 606-608, Nov. 2013
[12] Sih-Han Li, Shawn S. H. Hsu , Jie Zhang and Keh-Ching Huang, “Design of a
Compact GaN MMIC Doherty Power Amplifier and System Level Analysis With XParameters
for 5G Communications,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 12,
pp. 5676-5684, Dec. 2018
[13] Andres Seidel, Jens Wagner and Frank Ellinger, “3.6 GHz Asymmetric Doherty PA
MMIC in 250 nm GaN for 5G Applications,” 2020 German Microwave Conference
(GeMiC), pp. 1-4, Mar. 2020
[14] GaN25 Technology Introduction, WIN Semiconductors Corp., Aug. 2017
[15] Eric J. Wyers, T. Robert Harris, W. Shep Pitts, Jordan E. Massad, and Paul D. Franzon,
“Characterization of the Mechanical Stress Impact on Device Electrical Performance in
the CMOS and III-V HEMT/HBT Heterogeneous Integration Environment,” 2015
International 3D Systems Integration Conference (3DIC), Aug./Sep 2015
[16] Masahiro Hikita, Manabu Yanagihara, Kazushi Nakazawa, Hiroaki Ueno, Yutaka
Hirose, Tetsuzo Ueda, Yasuhiro Uemoto, Tsuyoshi Tanaka, Daisuke Ueda and Takashi
55
Egawa, “AlGaN/GaN Power HFET on Silicon Substrate With Source-Via Grounding
(SVG) Structure,” IEEE Trans. Electron Devices, pp. 1963-1968, vol. 52, no. 9, Sept. 2005
[17] Aleš Chvála, Daniel Donoval, Alexander Šatka, Marián Molnár, Juraj Marek and
Patrik Príbytný, “Advanced Methodology for Fast 3-D TCAD Device/Circuit
Electrothermal Simulation and Analysis of Power HEMTs,” IEEE Trans. Electron Devices,
pp. 828-834, vol. 62, no. 3, Mar. 2015
[18] M. Meneghini, D. Bisi, D. Marcon, S. Stoffels, M. Van Hove, T.-L. Wu, S. Decoutere,
“Trapping in GaN-based metal-insulatorsemiconductor transistors: Role of high drain bias
and hot electrons,” Appl. Phys. Lett., pp. 1-4, vol. 104, issue 14, Mar. 2014
[19] Chuan Zhang, Maojun Wang, Bing Xie, Cheng P. Wen, Jinyan Wang, Yilong Hao,
Wengang Wu, Kevin J. Chen and Bo Shen, “Temperature Dependence of the Surface- and
Buffer-Induced Current Collapse in GaN High-Electron Mobility Transistors on Si
Substrate,” IEEE Trans. Electron Devices, pp. 2475-2480, vol. 62, no. 8, Aug. 2015
[20] J. Nilsson, N. Billstrom, N. Rorsman, and P. Romanini, “S-Band discrete and MMIC
GaN power amplifiers,” Proc. Eur. Microw. Int. Circuits Conf., pp. 495–498, Sep. 2009.
[21] E. M. Suijker, M. Sudow, M. Fagerlind, N. Rorsman, A. P. de Hek, and F. E. van Vliet,
“GaN MMIC power amplifiers for S-band and X-band,” Proc. Eur. Microw. Conf., pp.
297–300, Oct. 2008.
[22] M. A. Gonzalez-Garrido, J. Grajal, P. Cubilla, A. Cetronio, C. Lanzieri, and M. Uren,
“2-6 GHz GaN MMIC power amplifiers for electronic warfare applications,” Proc. Eur.
Microw. Int. Circuits Conf., pp. 83–86, Oct. 2008.
[23] Hwiseob Lee, Wonseob Lim, Jongseok Bae, Wooseok Lee, Hyunuk Kang,Keum
Cheol Hwang, Kang-Yoon Lee,Cheon-Seok Park, and Youngoo Yang,“Highly Efficient
Fully Integrated GaN-HEMTDoherty Power Amplifier Based on Compact Load Network,”
IEEE Trans. Microw. Theory Tech., pp. 5203-5211, vol. 65, no. 12, Dec. 2017
56
[24] Dan Kuylenstierna, Sten E. Gunnarsson, and Herbert Zirath, “Lumped-Element
Quadrature Power Splitters Using Mixed Right/Left-Handed Transmission Lines,” IEEE
Trans. Microw. Theory Tech., pp. 2616-2621, vol. 53, no. 8, Aug. 2005
[25] Daehyun Kang, Dongsu Kim, Yunsung Cho, Byungjoon Park, Jooseung Kim, and
Bumman Kim, “Design of Bandwidth-Enhanced Doherty Power Amplifiers for Handset
Applications,” IEEE Trans. Microw. Theory Tech., pp. 3474-3483,vol. 59, no. 12, Dec.
2011
[26] Guansheng Lv, Wenhua Chen, Xin Liu, Fadhel M. Ghannouchi, and Zhenghe Feng,
“A Fully Integrated C-band GaN MMIC Doherty Power Amplifier With High Efficiency
and Compact Size for 5G Application,” IEEE Access., pp. 1-9, vol. 20,May. 2019
[27] Ryo Ishikawa, Yoichiro Takayama, and Kazuhiko Honjo, “Fully Integrated
Asymmetric Doherty Amplifier Based on Two-Power-Level Impedance Optimization,”
13th Eur. Microw. Int. Circuit Conf., pp. 253–256, Sept. 2018
[28] Cheol Ho Kim, Seunghoon Jee, Gweon-Do Jo, Kwangchun Lee, and Bumman Kim,
“A 2.14-GHz GaN MMIC Doherty Power Amplifier for Small-Cell Base Stations” IEEE
Microw. Wireless Compon. Lett., pp. 263-265, Apr. 2014
[29] Hwiseob Lee, Wonseob Lim, Jongseok Bae, Wooseok Lee, Hyunuk Kang, and
Youngoo Yang, “2.6 GHz GaN-HEMT Doherty Power Amplifier Integrated Circuit with
55.5% Efficiency Based on a Compact Load Network” IEEE MTT-S Int’l Microw. Symp.
(IMS), pp. 774-777, Jun. 2017
指導教授 辛裕明(Yue-Ming Hsin) 審核日期 2020-11-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明