參考文獻 |
[1] H. M. Fahad and M. M. Hussain "Are Nanotube Architectures More Advantageous Than Nanowire Architectures For Field Effect Transistors?" Sci. Rep. 2, No. 475, 2012.
[2] C. C. Wu et al., "High performance 22/20nm FinFET CMOS devices with advanced high-K/metal gate scheme," 2010 International Electron Devices Meeting, San Francisco, CA, 2010, pp. 27.1.1-27.1.4.
[3] J. A. Smith et al., "Investigation of electrically gate-all-around hexagonal nanowire FET (HexFET) architecture for 5 nm node logic and SRAM applications," 2017 47th European Solid-State Device Research Conference (ESSDERC), Leuven, 2017, pp. 188-191.
[4] G. Yeap, "Smart mobile SoCs driving the semiconductor industry: Technology trend, challenges and opportunities." In Proceedings of the Electron Devices Meeting (IEDM), 2013 IEEE International, Washington, DC, USA, 9–11 December 2013; pp. 1–3.
[5] I.R. Committee, "International Technology Road map for Semiconductors, " 2020 Edition. Semiconductor Industry Association.
[6] H. Fujiwara et al., "24.2 A 7nm 2.1GHz Dual-Port SRAM with WL-RC Optimization and Dummy-Read-Recovery Circuitry to Mitigate Read- Disturb-Write Issue,"2019 IEEE International Solid- State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2019, pp. 390-392.
[7] T. Song et al., "A 14 nm FinFET 128 Mb SRAM With Vmin Enhancement Techniques for Low-Power Applications," in IEEE Journal of Solid-State Circuits, vol. 50, no. 1, pp. 158-169, Jan. 2015.
[8] S. M. Salahuddin, K. A. Shaik, A. Gupta, B. Chava, M. Gupta, P. Weckx, J. Ryckaert and A. Spessot,"SRAM With Buried Power Distribution to Improve Write Margin and Performance in Advanced Technology Nodes," in IEEE Electron Device Letters, vol. 40, no. 8, pp. 1261-1264, Aug. 2019.
[9] Z. Guo, D. Kim, S. Nalam, J. Wiedemer, X. Wang and E. Karl, "A 23.6Mb/mm2 SRAM in 10nm FinFET technology with pulsed PMOS TVC and stepped-WL for low-voltage applications," 2018 IEEE International Solid - State Circuits Conference - (ISSCC), San Francisco, CA, 2018.
[10] T. Irisawa et al., "Demonstration of InGaAs/Ge Dual Channel CMOS Inverters with High Electron and Hole Mobility Using Staked 3D Integration," in VLSI Symp. Tech. Dig., 2013, pp. 56-57.
[11] P. Batude et al., "3-D Sequential Integration: A Key Enabling Technology for Heterogeneous Co-Integration of New Function With CMOS, " IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 2, no. 4, December 2012.
[12] Paul Besser, "BEOL Interconnect Innovations for Improving Performance", NCCAVS Symposium in San Jose, 2020.
[13] C. Shen et al., "Monolithic 3D chip integrated with 500ns NVM, 3ps logic circuits and SRAM," 2013 IEEE International Electron Devices Meeting, Washington, DC, 2013, pp. 9.3.1-9.3.4.
[14] S. Panth, S. Samal, Y. S. Yu and S. K. Lim, "Design challenges and solutions for ultra-high-density monolithic 3D ICs," 2014 SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), Millbrae, CA, 2014, pp. 1-2.
[15] J. Kang, W. Cao, X. Xie, D. Sarkar, W. Liu, and K. Banerfee, “Graphene and beyond-graphene 2D crystals for next-generation green electronics” SPIE, 2014, no. 908305.
[16] A. B. Sachid, M. Tosun, S. B. Desai, C. Y. Hsu, D.-H. Lien, S. R. Madhvapathy, Y.-Z. Chen, M. Hettick, J. S. Kang, Y. Zeng, J.-H. He, E. Y. Chang, Y.-L. Chueh, A. Javey, and C. Hu, “Monolithic 3D CMOS using layered semiconductors,” in Advanced Materials, vol. 28, pp. 2547-2554, Feb. 2015.
[17] C.-C. Yang, K.-C. Chiu, C.-T. Chou, C.-N. Liao, M.-H. Chuang, T.-Y. Hsieh, W.-H. Huang, C.-H. Shen, J.-M. Shieh, W.-K. Yeh, Y.-H. Chen, M.-C. Wu, and Y.-H. Lee, “Enabling monolithic 3D image sensor using large-area monolayer transition metal dichalcogenide and logic/memory hybrid 3D+IC,” in Proc. Symp. VLSI Tech., June 2016, pp 1-2.
[18] J. Jiang, K. Parto, W. Cao, and D. Banerfee, “Ultimate monolithic-3D integration with 2D materials: rationale, prospects and challenges,” in IEEE Journal of the Electron Devices Society, vol.7, pp. 878-887, 2019.
[19] W. Cao, W. Liu, J. Kang, and K. Banerfee, “An ultra-short channel monolayer MoS2 FET defined by the curvature of a thin nanowire,” in IEEE Electron Device Letters, vol. 37, pp. 1497, 2016.
[20] S. Mouri, Y. Miyauchi, and K. Matsuda, "Tunable Photoluminescence of Monolayer MoS2 via Chemical Doping, " in Nano Letters 2013, 13, 5944–5948.
[21] M. Clinton, R. Singh, M. Tsai, S. Zhang, B. Sheffield and J. Chang, "A 5GHz 7nm L1 cache memory compiler for high-speed computing and mobile applications," 2018 IEEE International Solid - State Circuits Conference - (ISSCC), San Francisco, CA, 2018, pp. 200-201.
[22] J. Chang et al., "12.1 A 7nm 256Mb SRAM in high-k metal-gate FinFET technology with write-assist circuitry for low-VMIN applications," 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, 2017, pp. 206-207.
[23] T. Song et al., "A 7nm FinFET SRAM using EUV lithography with dual write-driver-assist circuitry for low-voltage applications," 2018 IEEE International Solid - State Circuits Conference - (ISSCC), San Francisco, CA, 2018, pp. 198-200.
[24] Sentaurus TCAD, O-2018-6 Manual
[25] T. Sakurai, "Approximation of wiring delay in MOSFET LSI," in IEEE Journal of Solid-State Circuits, vol. 18, no. 4, pp. 418-426, Aug. 1983.
[26] Soon-Moon Jung et al., "Highly cost effective and high performance 65nm S3 (stacked single-crystal Si) SRAM technology with 25F2, 0.16um2 cell and doubly stacked SSTFT cell transistors for ultra high density and high speed applications," Digest of Technical Papers. 2005 Symposium on VLSI Technology, 2005., Kyoto, Japan, 2005, pp. 220-221.
[27] K. Yu, M. Fan, P. Su and C. Chuang, "Evaluation of Monolithic 3-D Logic Circuits and 6T SRAMs With InGaAs-n/Ge-p Ultra-Thin-Body MOSFETs," in IEEE Journal of the Electron Devices Society, vol. 4, no. 2, pp. 76-82, March 2016.
[28] I.R. Committee, "International Technology Road map for Semiconductors, " 2017 Edition. Semiconductor Industry Association.
[29] I. Ciofi et al., "Impact of Wire Geometry on Interconnect RC and Circuit Delay," in IEEE Transactions on Electron Devices, vol. 63, no. 6, pp. 2488-2496, June 2016.
[30] A. Karandikar and K. K. Parhi, "Low power SRAM design using hierarchical divided bit-line approach," Proceedings International Conference on Computer Design. VLSI in Computers and Processors (Cat. No.98CB36273), Austin, TX, USA, 1998, pp. 82-88.
[31] C.-H. Yu, M.-L. Fan, K.-C. Yu, V. P.-H. Hu, Pin Su, and C.-T. Chuang, "Evaluation of Monolayer and Bilayer Two-Dimensional Transition Metal Dichalcogenide (TMD) Devices for SRAM Applications," IEEE Transactions on Electron Devices, vol. 63, no. 2, pp. 625-630, February 2016.
[32] A. B. Sachid, M. Tosun, S. B. Desai, C. Y. Hsu, D.-H. Lien, S. R. Madhvapathy, Y.-Z. Chen, M. Hettick, J. S. Kang, Y. Zeng, J.-H. He, E. Y. Chang, Y.-L. Chueh, A. Javey, and C. Hu, “Monolithic 3D CMOS using layered semiconductors,” Adv. Mater., vol. 28, pp. 2547-2554, Feb. 2015.
[33] C.-C. Yang, K.-C. Chiu, C.-T. Chou, C.-N. Liao, M.-H. Chuang, T.-Y. Hsieh, W.-H. Huang, C.-H. Shen, J.-M. Shieh, W.-K. Yeh, Y.-H. Chen, M.-C. Wu, and Y.-H. Lee, “Enabling monolithic 3D image sensor using large-area monolayer transition metal dichalcogenide and logic/memory hybrid 3D+IC,” in Proc. Symp. VLSI Tech., June 2016, pp 1-2.
[34] J. Jiang, K. Parto, W. Cao, and D. Banerjee, “Ultimate monolithic-3D integration with 2D materials: rationale, prospects and challenges,” in the IEEE Journal of the Electron Devices Society, vol.7, pp. 878-887, 2019.
[35] W. Cao, J. Jiang, X. Xie, A. Pal, J. H. Chu, J. Kang, and K. Banerjee, "2-D Layered Materials for Next-Generation Electronics: Opportunities and Challenges," in IEEE Transactions on Electron Devices, vol. 65, no. 10, pp. 4109-4121, Oct. 2018.
[36] Liu, Y., Guo, J., Zhu, E. et al, “Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions,” Nature, vol. 557, pp. 696–700, May 2018.
[37] Y. T. Tang, K. S. Li, L. J. Li, M. Y. Li, C. H. Lin, Y.-J. Chen, C. C. Chen, C. J. Su, B. W. Wu, C. S. Wu, M. C. Chen, J. M. Shieh, W. K. Yeh, P. C. Su, T. Wang, F. L. Yang and C. Hu, “A Numerical Study of Si-TMD Contact with n/p Type Operation and Interface Barrier Reduction for Sub-5 nm Monolayer MoS2 FET”, IEEE International Electron Devices Meeting (IEDM), 2016, pp. 14.3.1–14.3.4.
[38] W. Lan, P.-C. Chen, Y.-Y. Lin, M.-Y. Li, L.-J. Li, Y.-L. Tu, F.-L. Yang, M.-C. Chen and K.-S. Li, “Scalable fabrication of a complementary logic inverter based on MoS2 fin-shaped field effect transistors,” Nanoscale Horizons, 2019, 4, 683.
[39] W. Cao, W. Liu, J. Kang, and K. Banerjee, “An ultra-short channel monolayer MoS2 FET defined by the curvature of a thin nanowire,” in IEEE Electron Device Letters, vol. 37, pp. 1497, 2016.
[40] L. Yu, D. El-Damak, U. Radhakrishna, X. Ling, A. Zubair, Y. Lin, Y. Zhang, M.-H. Chuang, Y.-H. Lee, D. Antoniadis, J. Kong, A. Chandrakasan, and T. Palacios, “Design, modeling, and fabrication of chemical vapor deposition grown MoS2 circuits with E-mode FETs for large-area electronics,” in Nano Letters 2016, 16, 10, 6349-6356.
[41] S. Chuang, C. Battaglia, A. Azcatl, S. McDonnell, J. S. Kang, X. T. Yin, M. Tosun, R. Kapadia, H. Fang, R. M. Wallace, and A. Javey, “MoS2 P-type Transistors and Diodes Enabled by High Work Function MoOx Contacts,” in Nano Letters 2014 14 (3), 1337-1342.
[42] Y. T. Tang, K. S. Li, L. J. Li, M. Y. Li, C. H. Lin, Y.-J. Chen, C. C. Chen, C. J. Su, B. W. Wu, C. S. Wu, M. C. Chen, J. M. Shieh, W. K. Yeh, P. C. Su, T. Wang, F. L. Yang and C. Hu, “A Numerical Study of Si-TMD Contact with n/p Type Operation and Interface Barrier Reduction for Sub-5 nm Monolayer MoS2 FET”, IEEE International Electron Devices Meeting (IEDM), 2016, pp. 14.3.1–14.3.4.
[43] Liu, Y., Guo, J., Zhu, E. et al, “Approaching the Schottky–Mott limit in van der Waals metal-semiconductor junctions,” Nature, vol. 557, pp. 696–700, May 2018.
[44] V. P. -H. Hu et al., "Energy-Efficient Monolithic 3-D SRAM Cell With BEOL MoS2 FETs for SoC Scaling," in IEEE Transactions on Electron Devices, vol. 67, no. 10, pp. 4216-4221, Oct. 2020.
[45] Q. Smets, G. Arutchelvan, J. Jussot, D. Verreck, I. Asselberghs, A. N. Mehta, A. Gaur, D. Lin, S. E. Kazzi, B. Groven, M. Caymax, and I. Radu, “Ultra-scaled MOCVD MoS2 MOSFET with 42 nm contact pitch and 250 A/m drain current,” in IEDM Tech Dig., Dec. 2019, pp. 23.2.1-23.2.4.
[46] L. Yang, R.T.P. Lee, S.S. Papa Rao, W. Tsai, and P.D. Ye, “10nm nominal channel length MoS2 FETs with EOT 2.5 nm and 0.52 mA/m drain current,” in 2015 73rd Annual Device Research Conference (DRC), June 2015, pp. 237-238.
[47] A. Nourbakhsh, A. Zubair, A. Tavakkoli, R. Sajjad, X. Ling, M. Dresselhaus, J. Kong, K. K. Berggren, D. Antoniadis, and T. Palacios, “Serially connected monolayer MoS2 FETs with channel patterned by a 7.5 nm resolution directed self-assembly lithography,” in Proc. Symp. VLSI Tech., June 2016, pp. 1-2
[48] International Roadmap for Devices and Systems (2018). [Online]. Available: https://irds.ieee.org/
[49] I. Ciofi, P. J. Roussel, Y. Saad, V. Moroz, C.-Y. Hu, R. Baert, K. Croes, A. Contino, K. Vdandersmissen, W. Gao, P. Matagne, M. Badaroglu, C. J. Wilson, D. Mocuta, and Z. Tökei, “Modeling of via resistance for advanced technology nodes,” in IEEE Trans. Electron Devices, vol. 64, no. 5, pp. 2306-2313, May 2017.
[50] K. Han, A. B. Kahng, H. Lee, and L. Wang, “Performance- and energy-aware optimization of BEOL interconnect stack geometry in advanced technology nodes,” in International Symposium on Quality Electronic Design (ISQED), Mar. 2017, pp. 104-110.
[51] D. Bhattacharya and N. K. Jha, "Ultra-High Density Monolithic 3-D FinFET SRAM With Enhanced Read Stability," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 8, pp. 1176-1187, Aug. 2016.
[52] K.-I. Seo et al., "A 10nm platform technology for low power and high performance application featuring FINFET devices with multi workfunction gate stack on bulk and SOI," 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers, Honolulu, HI, 2014, pp. 1-2.
[53] S. Wu et al., "A 7nm CMOS platform technology featuring 4th generation FinFET transistors with a 0.027um2 high density 6-T SRAM cell for mobile SoC applications," 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 2016, pp. 2.6.1-2.6.4.
[54] W. Liu, J. Kang, W. Cao, D. Sarkar, Y. Khatanmi, D. Jena, and K. Banerjee, “High-performance few-layer-MoS2 field-effect-transistor with record low contact-resistance,” in IEDM Tech. Dig., Dec. 2013, pp. 499–502. |