博碩士論文 106521048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:164 、訪客IP:18.216.32.116
姓名 陳衍祐(Yen-Yu Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於IEEE 802.3bp™-2016車用乙太網路收發機之等化器、回音消除器與時序回復電路設計與整合
(Design and Integration of Equalizer, Echo Canceller and Timing Recovery Circuit for IEEE 802.3bp™-2016 Automotive Ethernet Transceiver)
相關論文
★ 應用於2.5G/5GBASE-T乙太網路傳收機之高成本效益迴音消除器★ 應用於IEEE 802.3bp車用乙太網路之硬決定與軟決定里德所羅門解碼器架構與電路設計
★ 適用於 10GBASE-T 及 IEEE 802.3bz 之高速低密度同位元檢查碼解碼器設計與實現★ 基於蛙跳演算法及穩定性準則之高成本效益迴音消除器設計
★ 運用改良型混合蛙跳演算法設計之近端串音干擾消除器★ 運用改良粒子群最佳化演算法之近端串擾消除器電路設計
★ 應用於多兆元網速乙太網路接收機 類比迴音消除器之最小均方演算法電路設計★ 應用於數位視頻廣播系統之頻率合成器及3.1Ghz寬頻壓控震盪器
★ 地面數位電視廣播基頻接收器之載波同步設計★ 適用於通訊系統之參數化數位訊號處理器核心
★ 以正交分頻多工系統之同步的高效能內插法技術★ 正交分頻多工通訊中之盲目頻域等化器
★ 兆元位元率之平行化可適性決策回饋等化器設計與實作★ 應用於數位視頻廣播系統中之自動增益放大器 及接受端濾波器設計
★ OFDM Symbol Boundary Detection and Carrier Synchronization in DVB-T Baseband Receiver Design★ 適用於億元位元率混合光纖與銅線之電信乙太接取網路技術系統之盲目等化器和時序同步電路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-31以後開放)
摘要(中) 隨著行車安全、自動駕駛以及各項行車產品電子化的蓬勃發展,實時AI影像辨識及各項設備間的訊號傳輸需求越來越受重視。本論文依據IEEE 802.3bp™-2016規範標準[1],設計出車用Gigabit乙太網路傳輸之數位基頻收發機晶片。本論文針對車用乙太網路的環境開發專屬的數位濾波器演算法,著重在通道等化器、回音消除器以及時序回復電路(Timing Recovery Circuit)之演算法及數位電路設計。由於有線車用乙太網路通道屬於擴散通道,因此在等化器演算法採用改良後之較低複雜度的定值模數演算法(Constant Modulus Algorithm, CMA)及決策導向(Decision Directed, DD)演算法來克服通道效應。通道等化器包含前饋等化器(Feedforward Equalizer, FFE)及決策回饋等化器(Decision Feedback Equalizer, DFE),分別用來消除針對前符碼間的干擾及後符碼間的干擾。由於單一雙絞線全雙工傳輸的回音干擾現象,經由演算法推導及模擬結果分析回音消除器之必要性,因而系統更加設計了數位回音消除器。時序回復電路用來克服時脈不匹配效應,透過採用穆勒與姆勒演算法(Mueller and Muller, M&M)的相位檢測方法,加上改良後的可適性消除等化器(Adaptive Canceler Equalizer, ACE),使得的相位檢測器獲得的通道資訊更接近理想通道響應sinc function。關於硬體實現,先使用Verilog HDL描述與模擬,透過SMIMS VeriEnterprise Xilinx FPGA驗證電路功能,最後經由Design Compiler與IC Compiler來驗證在製程為TSMC-40nm下之電路功能。
摘要(英) Due to the vigorous development of autonomous vehicles, driving safety and various electrical automotive products, real-time AI image recognition and signal transmission between devices have become increasingly important.
This thesis will present the algorithms and circuits for channel equalization, echo cancellation, and timing recovery to develop an IEEE 802.3bp™-2016 compatible next generation gigabit Ethernet digital baseband transceiver dedicated to an automotive environment. Harmful Inter-Symbol Interference (ISI) will be mitigated by the use of a feedforward equalizer and a decision feedback equalizer, which will deal with the pre-cursor and post-cursor of ISI respectively. At first, the Modified Constant Modulus Algorithm (MCMA) is employed at feedforward equalizer due to the lower complexity, and after the preliminary converge the Decision-Directed algorithm will be applied to both the feedforward equalizer and the decision feedback equalizer. To account for the physical layer specifications of point-to-point full duplex 1 Gb/s Ethernet operations over single balanced twisted-pair copper cables, this system is also designed to include a digital echo canceller. The necessity of the echo canceller is analyzed through algorithm derivation and simulation results. In the part of timing recovery circuit, Phase-Lock Loop (PLL) with the Mueller and Müller algorithm is used to overcome the clock mismatch effect between AD/DA converters. Furthermore, the improved adaptive cancellation equalizer (ACE) is adopted so that the channel information obtained by the phase detector is closer to the ideal channel response.
The hardware is simulated through Verilog HDL. The function is then verified by using SMIMS VeriEnterprise Xilinx FPGA, and implemented in the process of TSMC-40nm through Design Compiler and IC Compiler.
關鍵字(中) ★ 車用乙太網路
★ 通道等化器
★ 回音消除器
★ 時序回復電路
關鍵字(英) ★ automotive ethernet
★ channel qualizer
★ echo canceller
★ timing recovery
論文目次 目錄
摘要 i
Abstract ii
圖目錄 vii
表目錄 x
第一章 緒論 1
1.1背景 1
1.2 研究動機 1
1.3 論文貢獻 2
第二章 等化器架構介紹 3
2.1 線性等化器(LE) 5
2.2 決策回授等化器(DFE) 6
2.3 可適性等化器(AE) 7
2.4 可適性消除等化器(ACE) 8
第三章 等化器演算法介紹 9
3.1 非盲目等化器演算法 9
3.1.1 最小均方(LMS)演算法 9
3.2.1 決策導向(DD)演算法 11
3.2.2 延遲最小均根(Delay-LMS) 12
3.2.3 定值模數演算法(CMA) 14
3.2.4 適用於可適性消除等化器(ACE)演算法 17
第四章回音消除器電路介紹 18
4.1回音消除器電路系統概要 18
4.2回音消除器電路架構與演算法分析 19
4.2.1回音消除器電路架構 19
4.2.2回音消除器演算法 20
第五章 時序回復電路介紹 31
5.1 基本介紹 31
5.2時序回復電路系統概要 32
5.2.1 相位檢測器(PD) 33
5.2.2 低通濾波器(LPF) 35
5.2.3 壓控振盪器(VCO) 36
5.3時序回復電路分析 36
第六章 系統架構與模擬結果 38
6.1 系統環境 38
6.2系統架構 39
6.3 模擬環境 40
6.3.1 零公尺模擬環境 40
6.3.2 十五公尺模擬環境 41
6.3.3 四十公尺模擬環境 42
6.4 等化器模擬結果 43
6.4.1 零公尺模擬環境等化器模擬結果 43
6.4.2 十五公尺模擬環境等化器模擬結果 45
6.4.3 四十公尺模擬環境等化器模擬 47
6.4 回音消除器電路模擬結果 49
6.4.1 初步模擬 49
6.4.2零公尺模擬環境回音消除器電路模擬結果 53
6.4.3十五公尺模擬環境回音消除器電路模擬結果 55
6.4.4四十公尺模擬環境回音消除器電路模擬結果 57
6.6時序回復電路模擬結果 59
6.6.1零公尺模擬環境時序回復電路模擬結果 59
6.6.1十五公尺模擬環境時序回復電路模擬結果 61
6.6.1四十公尺模擬環境時序回復電路模擬結果 63
6.7系統驗證 65
第七章 電路架構與晶片實現 66
7.1 電路設計流程 66
7.2硬體電路介紹 67
7.2.1等化器電路 67
7.2.2回音消除器電路 69
7.2.3時序回復電路 70
7.3模擬驗證 71
7.4晶片設計結果 73
第八章 結論與未來展望 75
參考文獻 76
參考文獻 參考文獻
[1] IEEE Std 802.3bp™, 30 June 2016, “Standard for Ethernet Amendment 4: Physical Layer Specifications and Management Parameters for 1 Gb/s Operation over a Single Twisted Pair Copper Cable”
[2] N. J. Fiege, “Multirate digital signal processing: multirate systems, filter banks, wavelets”, 1994.
[3] Bernard, Skliar, “Digital Communication Fundamentals and Applications,” Prentice Hall,1996.
[4] C. A. Belfiore J. H. Park "Decision feedback equalization" Proc. IEEE vol. 67 pp. 1143-1156 Aug. 1979.
[5] Fertner. A, “Improvement of bit-error-rate in decision feedback equalizer by preventing decision-error propagation,” Signal Processing, IEEE Transactions on vol. 467, pp.1872-1877, July 1998.
[6] B. Widrow and S. D. Stearns, Adaptive Signal Processing, Englewood Cliffs: Prentice Hall, 1985.
[7] Y. Sato, “A method of self-recovering equalization for multi-level amplitude modulation,” IEEE Trans. Commun., Vol. COM-23, NO. 6, pp. 679-682, June 1975.
[8] D. N. Godard, “Self-recovering equalization and carrier tracking in two-dimensional data communication systems,” IEEE Trans. Commun., vol. COM-28, NO. 11, pp. 1867-1875, Nov. 1980.
[9] Inseop Lee and W. Kenneth Jenkins, “Adaptive canceler-equalizer for digital communication channels,” Proceedings of 41st Midwest Symposium on Circuits and Systems, Notre Dame, IN, Aug 1998.
[10] Inseop Lee and W. Kenneth Jenkins, “A comparison of two adaptive equalizers DFE and ACE,” 1999 IEEE International Symposium on Circuits and Systems, Orlando, FL, 1999, Vol. IV, pp. 435-438.
[11] N. Verhoeckx, H. van den Elzen, F. Snijders and P. van Gerwen, “Digital echo cancellation for baseband data transmission,” IEEE Trans. on Acoustics, Speech, and Signal Processing, Vol.27, pp. 768-781, Dec 1979.
[12] P.J.W. Melsa, R.C. Younce and C.E. Rohrs, “Impulse response shortening for discrete multitone transceivers,” IEEE Trans. Commun., Vol. 44, pp.1662-1672, Dec 1996.
[13] Vijitha Weerakody and Saleem A.Kassam, “Dual-Mode type Algorithm for blind equalization,” IEEE Trans. Commun., Vol. 42, pp. 22-28, Jan 1994.
[14] K. N. Oh and Y. O. Chin, “New Blind Equalization techniques based on constant modulus algorithm,” Proc. 1995 IEEE Int. Conf. Commun., vol. 1, pp. 865-869, Seattle, WA, June 1995.
[15] K. H. Mueller and M. Müller, “Timing recovery in digital synchronous data receivers,” IEEE Trans. Commun., vol. COM-24, pp. 516-531, May 1976.
[16] Y. P. Lin, “Implementation of Equalizer and Timing Recovery Circuit for 1Gbps Automotive Ethernet Transmission,” Jan 2019.
[17] C. H. Yao, “Design of Equalizer and Timing Recovery Circuit for IEEE Std 802.3bwTM-2015 Automotive Ethernet Receiver,” Jan 2019.
指導教授 薛木添(Muh-Tian Shiue) 審核日期 2021-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明