博碩士論文 106521080 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:3.142.54.136
姓名 蔡文千(Wen-Chien Tsai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 缺血性中風之異常腦功能網路分析
(Disrupted brain functional connectivity networks in ischemic stroke patients)
相關論文
★ 電子式基因序列偵測晶片之原型★ 眼動符號表達系統之可行性研究
★ 利用網印碳電極以交流阻抗法檢測糖化血紅素★ 電子式基因序列偵測晶片可行性之研究
★ 電腦化肺音擷取系統★ 眼寫鍵盤和眼寫滑鼠
★ 眼寫電話控制系統★ 氣喘肺音監測系統之可行性研究
★ 肺音聽診系統之可行性研究★ 穿戴式腳趾彎曲角度感測裝置之可行性研究
★ 注音符號眼寫系統之可行性研究★ 英文字母眼寫系統之可行性研究
★ 數位聽診器之原型★ 使用角度變化率為基準之心電訊號壓縮法
★ 電子式基因微陣列晶片與應用電路研究★ 電子聽診系統應用於左右肺部比較之臨床研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 缺血性腦中風倖存病人往往面臨到程度不一上下肢偏癱的困擾,中風後三到六個月間是復原的關鍵。本研究欲透過靜息態功能性磁振照影 (resting-state functional magnetic resonance imaging , rs-fMRI) 搭配圖論的拓樸特性分析來了解復原機制。由於過去文獻較少探討網路的動態變化,本研究蒐集了三個時間點 (中風後數天、1個月、3個月) 的rs-fMRI以及運動功能量表,並搭配機器學習來開發上肢運動預後模型。研究結果顯示病患與健康組功能性網路皆呈現小世界網路特性、兩者間全域特性沒有差異,然而病患具異常的區域拓樸特性,發生於中風後1個月前後,此時間點也是兩半球不對稱活化、病患組間差異最明顯的時期。患者組間的樞紐變化情形相近,腦島、扣帶區域內樞紐顯著增加、感覺運動皮質區略為增加。與右半球相比,左半球出現更大規模的功能性網路重組,說明兩半球之間的復原機制可能有所不同。值得注意的是當運動功能下降時,跨半球間的扣帶迴與運動皮質區的連接強度上升、跨半球運動皮質間連接強度下降。本研究將功能性連接視為特徵所提出新的上肢預後模型具有高度預測力,適用於單側偏癱患者。以上結果將爲亞急性缺血性患者的動態功能性網路重組帶來新的見解。
摘要(英) Hemiparesis are common in survivors of ischemic stroke patients, days to three to six months of recovery after stroke is crucial. By using resting-state functional magnetic resonance imaging and graph theoretical analysis, we investigated the topology properties underlying the functional networks to interpret the recovery mechanism. Since little is known about the dynamic alterations during this period, we assessed three time points (i.e. days, 1 month, and 3 months after stroke) scans and motor function evaluations in this study. Following by the acquired information, we aimed to develop a machine learning model for upper limb prognosis. Results showed that functional networks of patients and normal controls (NC) were both small-world organization, and there was no significant global topologies difference among the groups. Both the local dysfunctions and the most asymmetrical distribution of homotopic hubs occurred at 1 month after stroke. Alterations of hub regions across patient groups were approximately consistent, suggesting the number of hubs tend to considerably increased within insula, cingulate, and slightly increased in sensorimotor regions among ischemic stroke patients. Compared with right hemisphere, a larger-scale of reorganizations appeared in the left hemisphere, indicating there were possibly different recovery processes. It is worth noting that the inter-hemispheric functional connections between PCG.R and M1 regions were negatively correlated with FMA-UE while the inter-hemispheric ones between M1 regions and M1 regions were positively correlated with FMA-UE. A new method with the affiliated funciotnal connections specified as features, highly predictive Machine Learning models applied to unilateral hemiparesis patients were proposed in this study. These findings provide insights into dynamic brain reorganization of subacute ischemic stroke patients.
關鍵字(中) ★ 缺血性中風
★ 靜息態磁振照影
★ 腦網路
★ 上肢運動功能
關鍵字(英) ★ ischemic stroke
★ rs-fMRI
★ brain network
★ upper-limb motor function
論文目次 摘要 I
ABSTRACT II
誌謝 IV
目錄 V
圖目錄 VIII
表目錄 XIII
第一章 緒論 1
1-1 靜息態磁振照影的原理與分析方法 3
1-1-1 功能性磁振照影的掃描原理 3
1-1-2 靜息態磁振照影的興起 4
1-1-3 影像前處理與分析方法 5
1-2 腦網路的探討―圖論應用於功能性網路分析 8
1-2-1 圖論的觀點 8
1-2-2 腦網路的建構 10
1-2-3 拓樸特性的統計分析 12
1-3 上肢運動功能與預後影響因子 14
1-3-1 運動皮質與皮質脊隨束 14
1-3-2 上肢運動預後與預後影響因子 16
1-4 研究目的 19
第二章 文獻回顧 20
2-1 中風後的異常功能特性 20
2-2 圖論應用於中風患者的功能性網路分析 22
2-3 上肢運動預後模型探討 27
第三章 研究方法 31
3-1 研究設計 31
3-2 受試者來源 35
3-3 影像與前處理 36
3-4 相關係數矩陣 38
3-5 受試者特徵 39
3-6 拓樸特性分析―節點的 43
3-6-1 拓樸特性 43
3-6-2 拓樸特性分析 44
3-6-3 拓樸特性統計檢驗與相似度計算 45
3-7 拓樸特性分析―邊的 48
3-7-1 上肢運動相關子網路分析 48
3-7-2 機器學習―回歸器建模 49
第四章 實驗結果 51
4-1 節點的 51
4-1-1 健康受試者原始的/正規化的全域拓樸特性 51
4-1-2 全域拓樸特性的組間比較 52
4-1-3 區域拓樸特性的組間比較 52
4-1-4 樞紐分布與統計檢驗 55
4-2 邊的 62
4-2-1 上肢運動功能復原趨勢 62
4-2-2 子網路與上肢運動功能量表相關性分析 65
4-2-3 回歸模型訓練結果 69
第五章 討論 80
5-1節點的 80
5-2 邊的 83
5-3 研究限制 86
第六章 結論 87
參考文獻 88
附錄 94
參考文獻 1. 衛生福利部. 107年國人死因統計結果. Available from: https://www.mohw.gov.tw/cp-16-48057-1.html.
2. Organization., W.H., Cerebrovascular disorders : a clinical and research classification. WHO offset publication, no. 43. 1978, Albany, N.Y.: Geneva : World Health Organization.
3. BOLD and Brain Activity. Available from: http://mriquestions.com/does-boldbrain-activity.html.
4. Lee, M.H., C.D. Smyser, and J.S. Shimony, Resting-state fMRI: a review of methods and clinical applications. AJNR Am J Neuroradiol, 2013. 34(10): p. 1866-72.
5. Biswal, B., et al., Functional connectivity in the motor cortex of resting human brain using echo‐planar MRI. Magnetic resonance in medicine, 1995. 34(4): p. 537-541.
6. Soares, J.M., et al., A Hitchhiker′s Guide to Functional Magnetic Resonance Imaging. Front Neurosci, 2016. 10: p. 515.
7. Zang, Y., et al., Regional homogeneity approach to fMRI data analysis. Neuroimage, 2004. 22(1): p. 394-400.
8. Zou, Q.H., et al., An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J Neurosci Methods, 2008. 172(1): p. 137-41.
9. Wold, S., K. Esbensen, and P. Geladi, Principal component analysis. Chemometrics and intelligent laboratory systems, 1987. 2(1-3): p. 37-52.
10. Jutten, C. and J. Herault, Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture. . Signal processing, 1991. 24(1): p. 1-10.
11. Mezer, A., et al., Cluster analysis of resting-state fMRI time series. Neuroimage, 2009. 45(4): p. 1117-25.
12. Rubinov, M. and O. Sporns, Complex network measures of brain connectivity: uses and interpretations. Neuroimage, 2010. 52(3): p. 1059-69.
13. Erdős, P. and A. Rényi, Some further statistical properties of the digits in Cantor′s series. Acta Mathematica Academiae Scientiarum Hungarica, 1959. 10(1-2): p. 21-29.
14. Watts, D.J. and S.H. Strogatz, Collective dynamics of ‘small-world’networks. nature, 1998. 393(6684): p. 440-442.
15. Barabási, A.L. and R. Albert, Emergence of scaling in random networks. science, 1999. 286(5439): p. 509-512.
16. Maslov, S. and K. Sneppen, Specificity and stability in topology of protein networks. Science, 2002. 296(5569): p. 910-3.
17. Bullmore, A.F.A.Z.E., Fundamentals of Brain Network Analysis. 2016: Academic Press.
18. Zalesky, A., A. Fornito, and E.T. Bullmore, Network-based statistic: identifying differences in brain networks. Neuroimage, 2010. 53(4): p. 1197-207.
19. Hopcroft, J. and R. Tarjan, Algorithm 447: efficient algorithms for graph manipulation. Communications of the ACM, 1973. 16(6): p. 372-378.
20. Brodmann, K., Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, 1909.
21. Tzourio-Mazoyer, N., et al., Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 2002. 15(1): p. 273-89.
22. The Anatomy Of Movement. Available from: https://brainconnection.brainhq.com/2013/03/05/the-anatomy-of-movement/.
23. Nichols-Larsen, D.S., et al., Factors influencing stroke survivors′ quality of life during subacute recovery. Stroke, 2005. 36(7): p. 1480-4.
24. L., W.-D.S., J.I. Williams, and S.H. Shapiro, Examining outcome measures in a clinical study of stroke. Stroke, 1990. 21(5): p. 731-739.
25. Duncan, P.W., et al., Measurement of motor recovery after stroke. Outcome assessment and sample size requirements. Stroke, 1992. 23(8): p. 1084-1089.
26. Coupar, F., et al., Predictors of upper limb recovery after stroke: a systematic review and meta-analysis. Clin Rehabil, 2012. 26(4): p. 291-313.
27. Santisteban, L., et al., Upper Limb Outcome Measures Used in Stroke Rehabilitation Studies: A Systematic Literature Review. PLoS One, 2016. 11(5): p. e0154792.
28. Duncan, P.W., S.M. Lai, and J. Keighley, Defining post-stroke recovery: implications for design and interpretation of drug trials. Neuropharmacology, 2000. 39(5): p. 835-841.
29. Pang, M.Y., J.E. Harris, and J.J. Eng, A community-based upper-extremity group exercise program improves motor function and performance of functional activities in chronic stroke: a randomized controlled trial. Arch Phys Med Rehabil, 2006. 87(1): p. 1-9.
30. Michaelsen, S.M., et al., Effect of trunk restraint on the recovery of reaching movements in hemiparetic patients. Stroke, 2001. 32(8): p. 1875-1883.
31. Golestani, A.M., et al., Longitudinal evaluation of resting-state FMRI after acute stroke with hemiparesis. Neurorehabil Neural Repair, 2013. 27(2): p. 153-63.
32. Werring, D.J., et al., Diffusion tensor imaging can detect and quantify corticospinal tract degeneration after stroke. Journal of Neurology, Neurosurgery & Psychiatry, 2000. 69(2): p. 269-272.
33. Yin, D., et al., Functional reorganization associated with outcome in hand function after stroke revealed by regional homogeneity. Neuroradiology, 2013. 55(6): p. 761-70.
34. Zhu, J., et al., Frequency-dependent changes in the regional amplitude and synchronization of resting-state functional MRI in stroke. PLoS One, 2015. 10(4): p. e0123850.
35. Park, C.H., et al., Longitudinal changes of resting-state functional connectivity during motor recovery after stroke. Stroke, 2011. 42(5): p. 1357-62.
36. Zhu, Y., et al., Disrupted brain connectivity networks in acute ischemic stroke patients. Brain Imaging Behav, 2017. 11(2): p. 444-453.
37. Zhang, J., et al., Disrupted structural and functional connectivity networks in ischemic stroke patients. Neuroscience, 2017. 364: p. 212-225.
38. Yin, D., et al., Altered topological properties of the cortical motor-related network in patients with subcortical stroke revealed by graph theoretical analysis. Hum Brain Mapp, 2014. 35(7): p. 3343-59.
39. Wang, L., et al., Dynamic functional reorganization of the motor execution network after stroke. Brain, 2010. 133(Pt 4): p. 1224-38.
40. Straathof, M., et al., Differences in structural and functional networks between young adult and aged rat brains before and after stroke lesion simulations. Neurobiol Dis, 2019. 126: p. 23-35.
41. Lee, J., et al., Modulating Brain Connectivity by Simultaneous Dual-Mode Stimulation over Bilateral Primary Motor Cortices in Subacute Stroke Patients. Neural Plast, 2018. 2018: p. 1458061.
42. Bournonville, C., et al., Identification of a specific functional network altered in poststroke cognitive impairment. Neurology, 2018. 90(21): p. e1879-e1888.
43. Baliki, M.N., E.M. Babbitt, and L.R. Cherney, Brain network topology influences response to intensive comprehensive aphasia treatment. NeuroRehabilitation, 2018. 43(1): p. 63-76.
44. Carter, A.R., et al., Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Ann Neurol, 2010. 67(3): p. 365-75.
45. Carter, A.R., et al., Upstream dysfunction of somatomotor functional connectivity after corticospinal damage in stroke. Neurorehabil Neural Repair, 2012. 26(1): p. 7-19.
46. Au-Yeung, S.S. and C.W. Hui-Chan, Predicting recovery of dextrous hand function in acute stroke. Disabil Rehabil, 2009. 31(5): p. 394-401.
47. Prabhakaran, S., et al., Inter-individual variability in the capacity for motor recovery after ischemic stroke. Neurorehabil Neural Repair, 2008. 22(1): p. 64-71.
48. Shelton, F.D., B.T. Volpe, and M. Reding, Motor impairment as a predictor of functional recovery and guide to rehabilitation treatment after stroke. Neurorehabil Neural Repair, 2001. 15(3): p. 229-37.
49. Stinear, C.M., et al., The PREP algorithm predicts potential for upper limb recovery after stroke. Brain, 2012. 135(Pt 8): p. 2527-35.
50. Hoonhorst, M.H., et al., How Do Fugl-Meyer Arm Motor Scores Relate to Dexterity According to the Action Research Arm Test at 6 Months Poststroke? Arch Phys Med Rehabil, 2015. 96(10): p. 1845-9.
51. Waller, L., et al., GraphVar 2.0: A user-friendly toolbox for machine learning on functional connectivity measures. J Neurosci Methods, 2018. 308: p. 21-33.
52. Sakai, K. and K. Yamada, Machine learning studies on major brain diseases: 5-year trends of 2014-2018. Jpn J Radiol, 2019. 37(1): p. 34-72.
53. Norman, K.A., et al., Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn Sci, 2006. 10(9): p. 424-30.
54. Zeng, L.L., et al., Identifying major depression using whole-brain functional connectivity: a multivariate pattern analysis. Brain, 2012. 135(Pt 5): p. 1498-507.
55. Guo, H., et al., Machine learning classifier using abnormal brain network topological metrics in major depressive disorder. Neuroreport, 2012. 23(17): p. 1006-11.
56. Dosenbach, N.U., et al., Prediction of individual brain maturity using fMRI. Science, 2010. 329(5997): p. 1358-1361.
57. Rehme, A.K., et al., Identifying Neuroimaging Markers of Motor Disability in Acute Stroke by Machine Learning Techniques. Cereb Cortex, 2015. 25(9): p. 3046-56.
58. Rehme, A.K., et al., Individual prediction of chronic motor outcome in the acute post-stroke stage: Behavioral parameters versus functional imaging. Hum Brain Mapp, 2015. 36(11): p. 4553-65.
59. Mohanty, R., et al., Early Findings on Functional Connectivity Correlates of Behavioral Outcomes of Brain-Computer Interface Stroke Rehabilitation Using Machine Learning. Front Neurosci, 2018. 12: p. 624.
60. Chao-Gan, Y. and Z. Yu-Feng, DPARSF: A MATLAB Toolbox for "Pipeline" Data Analysis of Resting-State fMRI. Front Syst Neurosci, 2010. 4: p. 13.
61. William D. Penny, K.J.F., John T. Ashburner, Stefan J. Kiebel, Thomas E. Nichols, Statistical Parametric Mapping: The Analysis of Functional Brain Images. 2011: Elsevier.
62. Alemán-Gómez, Y. IBASPM: toolbox for automatic parcellation of brain structures. in 12th Annual Meeting of the Organization for Human Brain Mapping. June 11-15, 2006. Florence, Italy. 2006.
63. Song, X.W., et al., REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One, 2011. 6(9): p. e25031.
64. Kruschwitz, J.D., et al., GraphVar: a user-friendly toolbox for comprehensive graph analyses of functional brain connectivity. J Neurosci Methods, 2015. 245: p. 107-15.
65. van den Heuvel, M.P., et al., Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis. J Neurosci, 2010. 30(47): p. 15915-26.
66. Regression Learner App. 2019 [cited 2020; Available from: https://www.mathworks.com/help/releases/R2019a/stats/regression-learner-app.html.
67. Choose Regression Model Options. 2019 [cited 2020; Available from: https://www.mathworks.com/help/releases/R2019a/stats/choose-regression-model-options.html?container=jshelpbrowser.
68. Farras-Permanyer, L., et al., Age-related changes in resting-state functional connectivity in older adults. Neural Regen Res, 2019. 14(9): p. 1544-1555.
69. Zalesky, A., A. Fornito, and E. Bullmore, On the use of correlation as a measure of network connectivity. Neuroimage, 2012. 60(4): p. 2096-106.
70. Farinelli, M., et al., Brain and behaviour in post-acute stroke: Reduction in seeking and posterior cingulate neuronal variability. J Clin Exp Neuropsychol, 2020. 42(6): p. 584-601.
71. Matsuoka, K., et al., Delayed atrophy in posterior cingulate cortex and apathy after stroke. Int J Geriatr Psychiatry, 2015. 30(6): p. 566-72.
72. Bullmore, E. and O. Sporns, The economy of brain network organization. Nat Rev Neurosci, 2012. 13(5): p. 336-49.
73. Liao, X., A.V. Vasilakos, and Y. He, Small-world human brain networks: Perspectives and challenges. Neurosci Biobehav Rev, 2017. 77: p. 286-300.
74. D′Esposito, M., et al., The role of prefrontal cortex in sensory memory and motor preparation: an event-related fMRI study. Neuroimage, 2000. 11(5 Pt 1): p. 400-8.
75. Fernandez-Seara, M.A., et al., Continuous performance of a novel motor sequence leads to highly correlated striatal and hippocampal perfusion increases. Neuroimage, 2009. 47(4): p. 1797-808.
76. Meehan, S.K., et al., Implicit sequence-specific motor learning after subcortical stroke is associated with increased prefrontal brain activations: an fMRI study. Hum Brain Mapp, 2011. 32(2): p. 290-303.
77. Gheysen, F., et al., Hippocampal contribution to early and later stages of implicit motor sequence learning. Exp Brain Res, 2010. 202(4): p. 795-807.
78. Albouy, G., et al., Hippocampus and striatum: dynamics and interaction during acquisition and sleep-related motor sequence memory consolidation. Hippocampus, 2013. 23(11): p. 985-1004.
79. van Duinen, H., et al., Effects of motor fatigue on human brain activity, an fMRI study. Neuroimage, 2007. 35(4): p. 1438-49.
80. Damoiseaux, J.S. and M.D. Greicius, Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity. Brain Struct Funct, 2009. 213(6): p. 525-33.
81. Hedna, V.S., et al., Hemispheric differences in ischemic stroke: is left-hemisphere stroke more common? J Clin Neurol, 2013. 9(2): p. 97-102.
指導教授 蔡章仁(Jang-Zern Tsai) 審核日期 2021-1-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明