博碩士論文 107323091 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.144.43.13
姓名 張勝宣(Sheng-Hsuan Chang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以離散元素法模擬3D列印的粉末床溫度分佈
相關論文
★ 顆粒形狀對顆粒體在旋轉鼓內流動行為之影響★ 圓片顆粒體在振動床迴流現象之研究-電腦模擬與實驗之驗證
★ 水中顆粒體崩塌分析與電腦模擬比對★ 以離散元素法探討具有傾斜開槽之晶體結構在單軸拉力作用下的裂縫生成與傳播行為
★ 可破裂顆粒在單向度壓力及膨脹收縮 之力學行為★ 掉落體衝擊顆粒床之力學與運動行為的研究 : DEM的實驗驗證及內部性質探討
★ 掉落體衝擊不同材質與形狀顆粒床之運動及力學行為★ 顆粒體在具阻礙物滑道中流動行為研究:DEM的實驗驗證及傳輸性質與內部性質探討
★ 以物理實驗探討顆粒形狀 對顆粒體在振動床中傳輸性質的影響★ 以物理實驗探討顆粒形狀 對顆粒體在旋轉鼓中傳輸性質的影響
★ 一般顆粒體與可破裂顆粒體在單向度束制壓縮作用下之力學行為★ 以二相流離散元素電腦模擬與物理實驗探討液體中顆粒體崩塌行為
★ 振動床內顆粒體迴流機制的微觀探索與顆粒形狀效應★ 非球形顆粒體在剪力槽中的流動行為追蹤與分析
★ 以有限元素法模擬單向度束制壓縮下顆粒體與容器壁間的互制行為及摩擦效應的影響★ 以離散元素法分析苗栗縣南庄鄉鹿湖山區之土石崩塌行為及內部性質之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-12-15以後開放)
摘要(中) 本研究使用離散元素法(Discrete Element Method, DEM)模擬在選擇性雷射燒結或雷射熔融過程中粉末床的溫度分佈,發展考慮相變化的顆粒體熱傳理論與隨溫度變化的熱物理性質,建立相關的基準測試,並探討顆粒粒徑與雷射掃描路徑對粉末床溫度分佈的影響,研究結果顯示,在雷射掃描期間,顆粒床溫度的上升主要來自於雷射掃描的能量,而非來自傳熱機制。在製程參數與雷射掃描路徑相同條件下,表層平均溫度隨掃描時間呈線性增加,而且粒徑越小則溫度越高,溫度分佈較為均勻。在製程參數與雷射掃描時間相同情況下,短路徑掃描溫度略高於長路徑掃描溫度,而且短路徑掃描造成較集中的高溫區域,而長路徑掃描造成溫度比較廣泛的分佈範圍。此外,在雷射初始掃描過程中,顆粒床的溫度尚未達到材料熔點溫度時,考慮熱物理性質(熱傳導係數、密度與比熱)隨溫度變化的效應,對於顆粒床溫度預測有其影響性,但顆粒床的溫度超過材料熔點溫度時,由於相變化主控顆粒床的溫度,因此較無影響性。
摘要(英) The purpose of this study is to investigate the temperature distribution of powder beds during selective laser sintering or melting by using Discrete Element Method (DEM). The model of heat transfer for granular assemble was developed that consider phase change and temperature-dependent thermal physical properties of the materials. The benchmark tests were established to verify the proposed model of heat transfer. The effects of particle size and scanning pattern on the temperature distributions in the powder bed were explored. Numerical results show that during the laser scanning process, the rise of temperature in the powder beds is mainly caused by laser energy input, not by the heat transfer mechanism. Based on the same processing parameters, such as laser power, scanning speed, spot size, hatch space and scanning pattern, the average temperature in the surface of the powder bed increases linearly with the scanning time, and the powder beds with smaller particles exhibit higher temperature as well as more uniform temperature distribution. The temperature for the short track is slightly higher than that for the long track. The short track results in a more concentrated high-temperature area, while the long track results in a wider temperature distribution. Moreover, at the initial scanning stage of the laser heating (within the melting point of the materials), considering the temperature-dependent thermal physical properties is required in calculating the temperature field. However, beyond the melting point of the material, the temperature-dependent thermal physical properties takes a little effect, because the phase change dominates the rise of the temperature.
關鍵字(中) ★ 離散元素法
★ 選擇性雷射燒結
★ 選擇性雷射熔融
★ 相變化
★ 熱傳效應
★ 溫度分佈
關鍵字(英) ★ Discrete element method
★ Selective laser sintering
★ Selective laser melting
★ Phase change
★ Heat transfer
★ Temperature distribution
論文目次 摘要...........................................i
Abstract.....................................ii
目錄.........................................iii
附表目錄........................................v
附圖目錄........................................vi
第一章 緒論......................................1
1.1 3D列印發展...................................1
1.2 3D列印的挑戰.................................1
1.3 文獻探討.....................................2
1.3.1 粉末床熔融成型(Powder Bed Fusion, PBF)....2
1.3.2 選擇性雷射燒結(SLS)模擬相關文獻............3
1.3.3 選擇性雷射熔融(SLM)模擬相關文獻............7
1.4 研究動機與目的...............................12
1.5 研究架構.....................................13
第二章 研究方法...................................14
2.1 離散元素法....................................14
2.1.1 離散元素法之架構............................14
2.1.2 三維剛體運動方程式...........................15
2.1.3 接觸力模型..................................16
2.1.4 顆粒體熱傳理論...............................17
2.2 離散元素法建模.................................20
2.2.1 雷射光束模型.................................20
2.2.2 相變化......................................20
2.2.3 材料的熱物理性質.............................21
2.2.4 粉末床模型建模...............................22
2.2.5 臨界時間步..................................22
第三章 結果與討論..................................24
3.1 數值模型的基準測試.............................24
3.1.1 粉末床加入熱物理性質的差異性..................24
3.1.2 顆粒受雷射掃描的溫度驗證......................25
3.1.3 在粉末床的熱擴散速度..........................25
3.1.4 新相變化模型.................................26
3.2 雷射掃描的粒徑參數分析..........................29
3.2.1 不同粒徑的粉末床沿粉末床高度方向的平均溫度圖....29
3.2.2 不同粒徑的粉末床溫度分佈比較圖.................29
3.2.3 不同高度的粉末層溫度分佈比較圖.................31
3.2.4 不同時間的溫度分佈圖..........................32
3.3 雷射掃描的路徑參數分析..........................33
3.3.1 路徑分析平均溫度沿粉末床不同方向的平均溫度圖....33
3.3.2 路徑分析粉末床溫度分佈比較圖...................34
3.4 巨觀熱傳導係數與微觀熱傳導係數的關聯性............36
第四章 結論與未來展望...............................37
參考文獻...........................................38
附表...............................................44
附圖...............................................57
參考文獻 [1] M. Pérez, D. Carou, E. M. Rubio, R. Teti, Current advances in additive manufacturing, Proc. CIRP., 88 (2020) 439-444.
[2] Standard, A. S. T. M. ISO/ASTM 52900: 2015 Additive manufacturing-General principles-terminology, ASTM F2792-10e1, (2012).
[3] L. Chen, Y. He, Y. Yang, S. Niu, H. Ren, The research status and development trend of additive manufacturing technology, Int. J. Adv. Manuf. Technol., 89 (2017) 3651-3660.
[4] 鄭正元,江卓培,林宗翰,林榮信,蘇威年,汪家昌,蔡明忠,賴維祥,鄭逸琳與洪基彬,3D列印積層製造技術與應用,全華圖書股份有限公司,新北市,2017。
[5] C. Shuai, P. Feng, C. Gao, Y. Zhou, S. Peng, Simulation of dynamic temperature field during selective laser sintering of ceramic powder, Math Comp Model Dyn., 19 (2013) 1-11.
[6] B. K. Panda, S. Sahoo, Thermo-mechanical modeling and validation of stress field during laser powder bed fusion of AlSi10Mg built part, Results pyhs., 12 (2019) 1372-1381.
[7] W. H. Lee, Y. Zhang, J. Zhang, Discrete element modeling of powder flow and laser heating in direct metal laser sintering process, Powder Technol., 315 (2017) 300-308.
[8] A. Foroozmehr, M. Badrossamay, E. Foroozmehr, S. I. Golabi, Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder bed, Mater design., 89 (2016) 255-263.
[9] E. J. Parteli, T. Pöschel, Particle-based simulation of powder application in additive manufacturing, Powder Technol., 288 (2016) 96-102.
[10] V. Manvatkar, A. De, T. DebRoy, Spatial variation of melt pool geometry, peak temperature and solidification parameters during laser assisted additive manufacturing process, Mater. Sci. Tech. Ser., 31 (2015) 924-930.
[11] V. D. Manvatkar, A. A. Gokhale, G. J. Reddy, A. Venkataramana, A. De, Estimation of melt pool dimensions, thermal cycle, and hardness distribution in the laser-engineered net shaping process of austenitic stainless steel, Metall. Mater. Trans. A., 42 (2011) 4080-4087.
[12] T. Mukherjee, H. L. Wei, A. De, T. DebRoy, Heat and fluid flow in additive manufacturing—Part I: Modeling of powder bed fusion, Comp. Mater. Sci., 150 (2018) 304-313.
[13] I. A. Roberts, C. J. Wang, R. Esterlein, M. Stanford, D. J. Mynors, A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing, Int. J. Mach. Tools Manuf., 49 (2009) 916-923.
[14] S. Kolossov, E. Boillat, R. Glardon, P. Fischer, M. Locher, 3D FE simulation for temperature evolution in the selective laser sintering process, Int. J. Mach. Tools Manuf., 44 (2004) 117-123.
[15] L. Dong, A. Makradi, S. Ahzi, Y. Remond, Finite element analysis of temperature and density distributions in selective laser sintering process, In Mater. Sci. Forum, 553 (2007) 75-80.
[16] L. Ma, H. Bin, Temperature and stress analysis and simulation in fractal scanning-based laser sintering, Int. J. Adv. Manuf. Technol., 34 (2007) 898-903.
[17] Y. Gao, J. Xing, J. Zhang, N. Luo, H. Zheng, Research on measurement method of selective laser sintering (SLS) transient temperature, Optik, 119 (2008) 618-623.
[18] L. Dong, A. Makradi, S. Ahzi, Y. Remond, Three-dimensional transient finite element analysis of the selective laser sintering process, J. Mater. Process. Technol., 209 (2009) 700-706.
[19] J. D. Williams, C. R. Deckard, Advances in modeling the effects of selected parameters on the SLS process, Rapid Prototyping J., (1998).
[20] J. Ren, J. Liu, J. Yin, Simulation of transient temperature field in the selective laser sintering process of W/Ni powder mixture, In International Conference on Computer and Computing Technologies in Agriculture, 494-503 (2010), Springer, Berlin, Heidelberg.
[21] Z. Jian, L. Deying, Z. Longzhi, Z. Mingjuan, Simulation of temperature field in selective laser sintering of copper powder, In 2010 International Conference on Mechanic Automation and Control Engineering, (2010) 3282-3285, IEEE.
[22] H. W. Ouyang, Z. M. Liu, Q. Wang S. C. Huang, “Materials Science and Engineering of Powder Metallurgy,”14 (2009) 218–224.
[23] J. Zhang, D. Li, J. Li, L Zhao, Numerical simulation of temperature field in selective laser sintering, In International Conference on Computer and Computing Technologies in Agriculture, (2010) 474-479, Springer, Berlin, Heidelberg.
[24] J. Zhang, D. Y. Li, B. Qiu, L. Z. Zhao, Simulation of temperature field in selective laser sintering on PA6/Cu composite powders, Adv. Mat. Res., 213 (2011) 519-523, Trans Tech Publications Ltd.
[25] J. Yin, H. Zhu, L. Ke, W. Lei, C. Dai, Zuo, D, Simulation of temperature distribution in single metallic powder layer for laser micro-sintering, Comput. Mater. Sci., 53 (2012) 333-339.
[26] J. Xing, W. Sun, R. S. Rana, S. M. IEEE, 3D modeling and testing of transient temperature in selective laser sintering (SLS) process, Optik, 124 (2013) 301-304.
[27] R. Ganeriwala, T. I. Zohdi, Multiphysics modeling and simulation of selective laser sintering manufacturing processes. Proc. Cirp., 14 (2014). 299-304.
[28] R. Ganeriwala, T. I. Zohdi, A coupled discrete element-finite difference model of selective laser sintering, Granul Matter, 18 (2016) 21.
[29] S. A. Khairallah, A. Anderson, Mesoscopic simulation model of selective laser melting of stainless steel powder, J. Mater. Process. Technol., 214 (2014) 2627-2636.
[30] D. Moser, S. Pannala, J. Murthy, Computation of effective thermal conductivity of powders for selective laser sintering simulations, Journal of Heat Transfer, 138 (2016).
[31] S. C. Cheng, R. I. Vachon, Thermal conductivity of packed beds and powder beds, Int. J. Heat Mass Transf., 12 (1969) 1201-1206.
[32] K. Bala, P. R. Pradhan, N. S. Saxena, M. P Saksena, Effective thermal conductivity of copper powders, J. Phys. D, 22 (1989) 1068.
[33] G. Widenfeld, Y. Weiss, H. Kalman, The effect of compression and preconsolidation on the effective thermal conductivity of particulate beds, Powder Technol., 133 (2003) 15-22.
[34] H. Xin, W. Sun, J. Fish, Discrete element simulations of powder-bed sintering-based additive manufacturing, Int. J. Mech. Sci., 149 (2018) 373-392.
[35] M. Sabelle, M. Walczak, J. Ramos-Grez, Scanning pattern angle effect on the resulting properties of selective laser sintered monolayers of Cu-Sn-Ni powder, Opt. Laser. Eng., 100 (2018) 1-8.
[36] M. Masoomi, S. M. Thompson, N. Shamsaei, A. Elwany, L. Bian, An experimental-numerical investigation of heat transfer during selective laser melting, In 26th International Solid Freeform Fabrication Symposium, (2015) 1-14.
[37] M. Badrossamay, T. H. C. Childs, Further studies in selective laser melting of stainless and tool steel powders, Int. J. Mach. Tools Manuf., 47 (2007) 779-784.
[38] J. Song, W. Wu, L. Zhang, B. He, L. Lu, X. Ni, Q. Long, G Zhu, Role of scanning strategy on residual stress distribution in Ti-6Al-4V alloy prepared by selective laser melting, Optik, 170 (2018) 342-352.
[39] W. Pei, W. Zhengying, C. Zhen, L. Junfeng, Z. Shuzhe, D. Jun, Numerical simulation and parametric analysis of selective laser melting process of AlSi10Mg powder, Appl. Physa—mater., 123 (2017) 540.
[40] M. Matsumoto, M. Shiomi, K. Osakada, F. Abe, Finite element analysis of single layer forming on metallic powder bed in rapid prototyping by selective laser processing, Int. J. Mach. Tools Manuf., 42 (2002) 61-67.
[41] R. Li, Y. Shi, J. Liu, H. Yao, W. Zhang, Effects of processing parameters on the temperature field of selective laser melting metal powder, Powder. Metall. Met. C+., 48 (2009) 186-195.
[42] W. X. Zhang, Y. S. Shi, J. H. Liu, Z. L. Lu, G. Q. Chen, S. H. Huang, Type HRMP-ii machine for selective laser melting process, In 3rd International Conference on Advanced Research in Virtual and Rapid Prototyping. Leiria, PORTUGAL (2007) 541-544.
[43] Y. Li, D. Gu, Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder, Mater Design., 63 (2014) 856-867.
[44] Y. Huang, L. J. Yang, X. Z. Du, and Y. P. Yang, Finite element analysis of thermal behavior of metal powder during selective laser melting, Int. J. Therm. Sci., 104 (2016) 146-157.
[45] P. Fischer, M. Locher, V. Romano, H. P. Weber, S. Kolossov, R. Glardon, Temperature measurements during selective laser sintering of titanium powder, Int. J. Mach. Tools Manuf., 44 (2004) 1293-1296.
[46] H. Hu, X. Ding, L. Wang, Numerical analysis of heat transfer during multi-layer selective laser melting of AlSi10Mg, Optik, 127 (2016) 8883-8891.
[47] L.Wang, X. Jiang, Y. Zhu, X. Zhu, J. Sun, B. Yan, An approach to predict the residual stress and distortion during the selective laser melting of AlSi10Mg parts, Int. J. Adv. Manuf. Technol., 97 (2018) 3535-3546.
[48] A. Olleak, Z. Xi, Finite element modeling of the selective laser melting process for Ti-6Al-4V, Solid freeform fabrication 2018: Proceedings of the 29th Annual International, (2018) 1710-1720.
[49] J. J. S. Dilip, S. Zhang, C. Teng, K. Zeng, C. Robinson, D. Pal, B. Stucker, Influence of processing parameters on the evolution of melt pool, porosity, and microstructures in Ti-6Al-4V alloy parts fabricated by selective laser melting, Progress in Additive Manufacturing, 2 (2017) 157-167.
[50] D. Pal, N. Patil, K. H. Kutty, K. Zeng, A. Moreland, A. Hicks, D. Beeler, B. Stucker, A generalized feed-forward dynamic adaptive mesh refinement and derefinement finite-element framework for metal laser sintering—part II: nonlinear thermal simulations and validations, J. Manuf. Sci. E., 138 (2016).
[51] T. H. C. Childs, M. Berzins, G. R. Ryder, A. Tontowi, Selective laser sintering of an amorphous polymer—simulations and experiments, Proc. Inst. Mech. Eng. B. J. Eng. Manuf., 213 (1999). 333-349.
[52] S. M. Tawfik, M. N. Nasr, H. A. El Gamal, Finite element modelling for part distortion calculation in selective laser melting, Alexandria Engineering Journal, 58 (2019) 67-74.
[53] H. Liu, Numerical analysis of thermal stress and deformation in multi-layer laser metal deposition process, Missouri University of Science and Technology, (2014).
[54] Y. Du, X. You, F. Qiao, L. Guo, Z. Liu, A model for predicting the temperature field during selective laser melting, Results Phys., 12 (2019) 52-60.
[55] M. J. Ansari, D. S. Nguyen, H. S. Park, Investigation of SLM Process in Terms of Temperature Distribution and Melting Pool Size: Modeling and Experimental Approaches, Materials, 12 (2019) 1272.
[56] I. Yadroitsev, P. Krakhmalev, I. Yadroitsava, Selective laser melting of Ti6Al4V alloy for biomedical applications: Temperature monitoring and microstructural evolution, J. Alloy. Compd, 583 (2014) 404-409.
[57] 林沐禾, 掉落體衝擊顆粒床之力學與運動行為的研究 : DEM的實驗驗證及內部性質探討, 國立中央大學, 碩士論文, (2016)。
[58] P. A. Cundall, O. D. Strack, A discrete numerical model for granular assemblies, Grotechnique, 29 (1979) 47-65.
[59] H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, 2th Ed. London: Oxford Press, (1959).
[60] F. P. Incropera, A. S. Lavine, T. L. Bergman, D. P DeWitt, Principles of heat and mass transfer Wiley, (2013).
[61] C. Bonacina, G. Comini, A. Fasano, M. 1 Primicerio, Numerical solution of phase-change problems, Int. J. Heat Mass Transf., 16 (1973) 1825-1832.
[62] M. Muhieddine, E. Canot, R. March, Various approaches for solving problems in heat conduction with phase change, (2009).
[63] K. C. Mills, Recommended values of thermophysical properties for selected commercial alloys, Woodhead Publishing, (2002).
[64] C. Thornton, C. W. Randall, Applications of theoretical contact mechanics to solid particle system simulation, In Studies in Applied Mechanics, 20 (1988) 133-142. Elsevier.
[65] C. O′Sullivan, J. D. Bray, Selecting a suitable time step for discrete element simulations that use the central difference time integration scheme, Eng. Computation., (2004).
[66] J. Crank, The mathematics of diffusion, Oxford university press, (1979).
[67] E. Zhelezina, I. S. Jones, A. B. Movchan, Singular perturbation analysis of dynamic fields in a thermoelastic solid with a small surface-breaking crack, Acta. Mech. Sinica., 22 (2006) 449-454.
指導教授 鍾雲吉(Yun-Chi Chung) 審核日期 2020-11-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明