參考文獻 |
Abdoulmoumine, N., Adhikari, S., Kulkarni, A., Chattanathan, S., 2015. A review on biomass gasification syngas cleanup. Appl. Energy. 155, 294-307.
Abdoulmoumine, N., Kulkarni, A., Adhikari, S., 2014. Effects of temperature and equivalence ratio on pine syngas primary gases and contaminants in a bench-scale fluidized bed gasifier. Ind. Eng. Chem. Res. 53, 5767-77.
Abu, E.R.Z., Bramer, E.A., Brem, G., 2004. Review of catalysts for tar elimination in biomass gasification processes. Ind. Eng. Chem. Res. 43, 6911-9.
Adnan, M.A., Adamu, S., Muraza, O., Hossain, M.M., 2018. Fluidizable NiO-Fe2O3/SiO2-Al2O3 for tar (toluene) conversion in biomass gasification. Process Saf. Environ. 116, 754-62.
Agricultural Department of Chiayi County, agriculture.cyhg.gov.tw (access date: 13 December 2016)
Ahmad, A.A., Zawawi, N.A., Kasim, F.H., Inayat, A., and Khasri, A., 2016. Assessing the gasification performance of biomass: A review on biomass gasification process conditions, optimization and economic evaluation. Renew. Sust. Energ. Rev. 53, 1333-47.
Al-Awadi, A.S., El-Toni, A.M., Al-Zahrani, S.M., Abasaeed, A.E., Alhoshan, M., Khan, A., Labis, J.P., Al-Fatesh, A., 2019. Role of TiO2 nanoparticle modification of Cr/MCM41 catalyst to enhance Cr-support interaction for oxidative dehydrogenation of ethane with carbon dioxide. Appl. Catal. A-Gen. 584.
Alcañiz-Monge, J., Cazorla-Amorós, D., Linares-Solano, A., 2001. Characterisation of coal tar pitches by thermal analysis, infrared spectroscopy and solvent fractionation. Fuel 80, 41-8.
Alothman, Z., 2012. A Review: Fundamental Aspects of Silicate Mesoporous Materials. Mater.5, 2874-902.
Al-Rahbi, A.S., Williams, P.T., 2017. Hydrogen-rich syngas production and tar removal from biomass gasification using sacrificial tyre pyrolysis char. Appl. Energy. 190, 501-9
Amin, R., Liu, B., Ullah, S., Biao, H.Z., 2017. Study of coking and catalyst stability over CaO promoted Ni-based MCF synthesized by different methods for CH4/CO2 reforming reaction. Int. J. Hydrogen Energ. 42, 21607-16.
Anuwattana, R., Phungngamphan, P., Chawakitchareon, P., 2018. The efficiency of carbon dioxide and hydrogen sulphide adsorption using impregnated granular activated carbon and zeolite. J. Phys. Sci. 29, 29-36.
Arena, U., 2012. Process and technological aspects of municipal solid waste gasification, A review. Waste Manage. 32, 625-39.
Artetxe, M., Alvarez, J., Nahil, M.A., Olazar, M., Williams, P.T., 2017. Steam reforming of different biomass tar model compounds over Ni/Al2O3 catalysts. Energy Convers. Manag. 136, 119-26.
Atmadeep, B., Anirban, D., Amitava, D., 2014. Exergy based performance analysis of hydrogen production from rice straw using oxygen blown gasification, Energy 69, 525-33.
Aydin, E.S., Yucel, O., Sadikoglu, H., 2019. Experimental study on hydrogen-rich syngas production via gasification of pine cone particles and wood pellets in a fixed bed downdraft gasifier. Int. J. Hydrog. Energy 44, 17389-96.
Bakar R.A., and Yahya, R., 2016. Production of high purity amorphous silica from rice husk, Procedia Chem. 19, 189-95.
Baker, E.G., and Mudge, L.K., 1987. Catalytic tar conversion in coal gasification systems. Ind. Eng. Chem. Res. 26, 1390-5.
Bandosz, T.J. 2002. On the adsorption/oxidation of hydrogen sulfide on activated carbons at ambient temperatures. J. Colloid Interface Sci. 246, 1-20.
Bartocci, P., Anca-Couce, A., Slopiecka, K., Nefkens, S., Evic, N., Retschitzegger, S., Barbanera, M., Buratti, C., Cotana, F., Bidini, G., Fantozzi, F., 2017b. Pyrolysis of pellets made with biomass and glycerol: Kinetic analysis and evolved gas analysis, Biomass Bioenerg. 97, 11-9.
Bartocci, P., Barbanera, M., D′Amico, M., Laranci, P., Cavalaglio, G., Gelosia, M., Ingles, D., Bidini, G., Buratti, C., Cotana, F., Fantozzi, F., 2017a. Thermal degradation of driftwood: Determination of the concentration of sodium, calcium, magnesium, chlorine and sulfur containing compounds, Waste Manage. 60, 151-7.
Bassani, A., Pirola, C., Maggio, E., Pettinau, A., Frau, C., Bozzano, G., Pierucci, S., Ranzi, E., Manenti, F., 2016. Acid gas to syngas (AG2S™) technology applied to solid fuel gasification: Cutting H2S and CO2 emissions by improving syngas production, Appl. Energ. 184, 1284-91.
Basu, P., 2013. Biomass gasification, pyrolysis and torrefaction: Practical design and theory. biomass gasification, pyrolysis and torrefaction: Practical design and theory.1-530.
Benhima, H., Chiban, M., Sinan, F., Seta, P., Persin, M., 2008. Removal of lead and cadmium ions from aqueous solution by adsorption onto micro-particles of dry plants, Colloid surface B. 61, 10-6.
Benito Abascal, M., Bläsing, M., Ninomiya, Y., Müller, M., 2016a. Influence of steam, hydrogen chloride, and hydrogen sulfide on the release and condensation of zinc in gasification, Ind. Eng. Chem. Res. 55, 6911-21.
Benito Abascal, M., Bläsing, M., Ninomiya, Y., Müller, M., 2016b. Influence of steam, hydrogen chloride, and hydrogen sulfide on the release and condensation of cadmium in gasification. Energ. Fuel. 30, 943-53.
Berrueco, C., Woolcock, P.J., Johnston, P.A., Brown, R.C., 2015. Experimental investigation of solid recovered fuel (SRF) gasification: Effect of temperature and equivalence ratio on process performance and release of minor contaminants. Energ. Fuel. 29, 7419-27.
Bhattacharya, A., Das, A., Datta, A., 2014. Exergy based performance analysis of hydrogen production from rice straw using oxygen blown gasification. Energy. 69, 525-33.
Björkman, E. and Strömberg, B. 1997. Release of chlorine from biomass at pyrolysis and gasification conditions1. Energ. Fuel. 11, 1026-32.
Bläsing, M., Nazeri, K., Müller, M., 2014. Release of alkali metal, sulphur and chlorine species during high-temperature gasification and co-gasification of hard coal, refinery residue, and petroleum coke, Fuel. 126, 62-8.
Bläsing, M., Zini, M., Müller, M., 2013. Influence of feedstock on the release of potassium, sodium, chlorine, sulfur, and phosphorus species during gasification of wood and biomass shells, Energ. Fuel. 27, 1439-45.
Blázquez, G., Pérez, A., Iáñez-Rodríguez, I., Martínez-García, C., Calero, M., 2019. Study of the kinetic parameters of thermal and oxidative degradation of various residual materials, Biomass Bioenerg. 124, 13-24.
Branca, C., and Di Blasi, C., 2003. Global kinetics of wood char devolatilization and combustion, Energ. Fuel. 17, 1609-15.
Brittain, H.G., and Bruce, R.D., 2006. Chapter 4: Thermal analysis. Comprehensive analytical chemistry, Elsevier. 47, 63-109.
Brunner, P.H., Monch, H., 1986. The flux of metals through municipal soild waste incineration, Waste Manag. Res. 4, 105-19.
Cabuk, B., Duman, G., Yanik, J., Olgun, H., 2020. Effect of fuel blend composition on hydrogen yield in co-gasification of coal and non-woody biomass. Int. J. Hydrog. Energy 5, 3435-43.
Cai, J., Wang, Y., Zhou, L., Huang, Q., 2008. Thermogravimetric analysis and kinetics of coal/plastic blends during co-pyrolysis in nitrogen atmosphere, Fuel Process. Technol. 89, 21-7.
Calvo, L.F., Gil, M.V., Otero, M., Morán, A., García, A. I., 2012. Gasification of rice straw in a fluidized-bed gasifier for syngas application in close-coupled boiler-gasifier systems. Bioresour. Technol. 109, 206-14.
Chan, F.L., and Tanksale, A., 2014. Review of recent developments in Ni-based catalysts for biomass gasification. Renew. Sust. Energ. Rev. 38, 428-38.
Chanaka Udayanga, W.D., Veksha, A., Giannis, A., Lisak, G., Chang, V.W.C., Lim, T.T., 2018. Fate and distribution of heavy metals during thermal processing of sewage sludge. Fuel 226, 721-44.
Chang, S.S., Lee, W.J., Holsen, T.M., Li, H.W., Wang, L.C., Chang-Chien, G.P., 2014. Emissions of polychlorinated-p-dibenzo dioxin, dibenzofurans (PCDD/Fs) and polybrominated diphenyl ethers (PBDEs) from rice straw biomass burning. Atmos. Environ. 94, 573-81.
Chen, G., Li, J., Liu, C., Yan, B., Cheng, Z., Ma, W., Yao, J., Zhang, H., 2019. Low-temperature catalytic cracking of biomass gasification tar over Ni/HZSM-5. Waste biomass valori. 10, 1013-20.
Chen, H., Chen, X., Qin, Y., Wei, J., Liu, H., 2017. Effect of torrefaction on the properties of rice straw high temperature pyrolysis char: Pore structure, aromaticity and gasification activity, Bioresour. Technol. 228, 241-9.
Chen, W., Annamalai, K., Sun, J.F., Chen, Y.M., 2016. Chemical kinetics of bean straw biofuel pyrolysis using maximum volatile release method. Korean J. Chem. Eng. 33, 2330-6.
Chiang, K.Y., Chien, K.L., Lu, C.H., 2012. Hydrogen energy production from disposable chopsticks by a low temperature catalytic gasification. Int. J. Hydrog. Energy. 37, 15672-80.
Chiang, K.Y., Liao, C.K., Lu, C.H., 2016. The effects of prepared iron-based catalyst on the energy yield in gasification of rice straw. Int. J. Hydrog. Energy 41, 21747-54
Chiang, K.Y., Liao, C.K., Lu. C.H., 2016. The effects of prepared iron-based catalyst on the energy yield in gasification of rice straw. Int. J. Hydrog. Energy. 41, 21747-54.
Chiang, K.Y., Lin, M.H., Lu, C.H., Chien, K.L., Lin, Y.H., 2015. Improving the synthesis gas quality in catalytic gasification of rice straw by an integrated hot gas cleaning system. Int. J. Green Energy. 12, 1005-11.
Chiang, K.Y., Lin, Y.X., Lu, C.H., Chien, K.L., Lin, M.H., Wu, C.C., Ton, S.S., Chen, J.L., 2013a. Gasification of rice straw in an updraft gasifier using water purification sludge containing Fe/Mn as a catalyst, Int. J. Hydrog. Energy. 38, 12318-24.
Chiang, K.Y., Lu, C.H., Lin, M.H., Chien, K.L., 2013b. Reducing tar yield in gasification of paper-reject sludge by using a hot gas cleaning system. Energy. 50, 47-53.
Chin, B.L.F., Gorin, A., Chua, H. B., Twaiq, F., 2015. Experimental investigation on tar produced from palm shells derived syngas using zeolite HZSM-5 catalyst. J. Energy Inst. 89, 713-24.
Choi, Y.K., Cho, M.H., Kim, J.S., 2015. Steam/oxygen gasification of dried sewage sludge in a two-stage gasifier: Effects of the steam to fuel ratio and ash of the activated carbon on the production of hydrogen and tar removal, Energy. 91, 160-7.
Choi, Y.K., Cho, M.H., Kim, J.S., 2016. Air gasification of dried sewage sludge in a two-stage gasifier. Part 4: Application of additives including Ni-impregnated activated carbon for the production of a tar-free and H2-rich producer gas with a low NH3 content. Int. J. Hydrogen Energ. 41, 1460-7.
Choi, Y.K., Ko, J.H., Kim, J.S., 2017. A new type three-stage gasification of dried sewage sludge: Effects of equivalence ratio, weight ratio of activated carbon to feed, and feed rate on gas composition and tar, NH3, and H2S removal and results of approximately 5 h gasification. Energy 118, 139-46.
Chong, C.C., Setiabudi, H.D., Jalil, A.A., 2020. Dendritic fibrous SBA-15 supported nickel (Ni/DFSBA-15): A sustainable catalyst for hydrogen production. Int. J. Hydrogen Energ. 45, 18533-48.
Chyang, C.S., Han, Y.L., Zhong, Z.C., 2009. Study of HCl absorption by CaO at high temperature. Energy Fuel 23, 3948-53.
Cimino, S., Lisi, L., Erto, A., Deorsola, F.A., de Falco, G., Montagnaro, F., Balsamo, M., Cimino, S., 2020. Role of H2O and O2 during the reactive adsorption of H2S on CuO-ZnO/activated carbon at low temperature. Micropor. Mesopor. Mat. 295, 109949.
Clarke, L.B., 1993. The fate of trace elements during coal combustion and gasification: an overview, Fuel 72, 731-6.
Council of Agriculture, Executive Yuan R.O.C. http://eng.coa.gov.tw (access date: 13 December 2016).
Cui, H., Turn, S.Q., Keffer, V., Evans, D., Tran, T., Foley, M., 2013. Study on the fate of metal elements from biomass in a bench-scale fluidized bed gasifier, Fuel 108, 1-12.
Dabai, F., Paterson, N., Millan, M., Fennell, P., Kandiyoti, R., 2014. Tar formation and destruction in a fixed bed reactor simulating downdraft gasification: Effect of reaction conditions on tar cracking products. Energ. Fuel 28, 1970-82.
De Andrés, J.M., Narros, A., Rodríguez, M.E., 2011. Behavior of dolomite, olivine and alumina as primary catalysts in air–steam gasification of sewage sludge. Fuel 90, 521-27.
De Caprariis, B., Scarsella, M., Petrullo, A., De Filippis, P., 2015. Olive oil residue gasification and syngas integrated clean up system. Fuel 158, 705-10.
De Oliveira, L.H., Meneguin, J.G., Pereira, M.V., da Silva, E.A., Grava, W.M., do Nascimento, J.F., Arroyo, P.A., 2019. H2S adsorption on NaY zeolite. Micropor. Mesopor. Mat. 284, 247-57.
Deshmane, V.G., Abrokwah, R.Y., Kuila, D., 2015. Synthesis of stable Cu-MCM-41 nanocatalysts for H2 production with high selectivity via steam reforming of methanol. Inter. J. Hydrogen Energ. 40, 10439-52.
Di Giulio, N., Bosio, B., Cigolotti, V., Nam, S. W., 2012. Experimental and theoretical analysis of H2S effects on MCFCs. Int. J. Hydrog. Energy 37, 19329-36.
Diep, N.Q., Sakanishi, K., Nakagoshi, N., Fujimoto, S., Minowa, T., 2015. Potential for rice straw ethanol production in the Mekong Delta, Vietnam. Renew. Energy 74, 456-63.
Dingemans, G., Van Helvoirt, C.A.A., Pierreux, D., Keuning, W., Kesselsa, W.M.M., 2012. Plasma-assisted ALD for the conformal deposition of SiO2: Process, material and electronic properties. J. Electrochem. Soc. 159, 277-85.
Dong, J., Chi, Y., Tang, Y., Ni, M., Nzihou, A., Weiss-Hortala, E., Huang, Q., 2015. Partitioning of heavy metals in municipal solid waste pyrolysis, gasification, and incineration, Energ. Fuel 29, 7516-7525.
Dong, L., Asadullah, M., Zhang, S., Wang, X.S., Wu, H., Li, C.Z., 2013. An advanced biomass gasification technology with integrated catalytic hot gas cleaning: Part I. Technology and initial experimental results in a lab-scale facility. Fuel 108, 409-16.
Dong, L., Chunfei, W., Ling, H., Shi, J., Williams, P.T., Huang, J., 2017. Promoting hydrogen production and minimizing catalyst deactivation from the pyrolysis-catalytic steam reforming of biomass on Nano sized NiZnAlOx catalysts. Fuel 188, 610-20.
D′Orazio, A., Rapagnà, S., Foscolo, P.U., Gallucci, K., Nacken, M., Heidenreich, S., Di Carlo, A., Dell′Era, A., 2015. Gas conditioning in H2 rich syngas production by biomass steam gasification: Experimental comparison between three innovative ceramic filter candles. Int. J. Hydrog. Energy 40, 7282-90.
Dou, B., Gao, J., Baek, S.W., Sha, X., 2003. High-temperature HCl removal with sorbents in a fixed-bed reactor. Energy Fuel 17, 874-8.
Dou, B., Wang, K., Jiang, B., Song, Y., Zhang, C., Chen, H., 2016. Fluidized-bed gasification combined continuous sorption-enhanced steam reforming system to continuous hydrogen production from waste plastic. Int. J. Hydrog. Energy 4, 3803-10.
Dou, B.L., Gao, J.S., Sha, X.Z., 2001. A study on the reaction kinetics of HCl removal from high-temperature coal gas. Fuel Process. Technol. 72, 23-33.
Duan, L., Cui, J., Jiang, Y., Zhao, C., Anthony, E.J., 2017. Partitioning behavior of Arsenic in circulating fluidized bed boilers co-firing petroleum coke and coal, Fuel Process. Technol. 166, 107-14.
Dündar-Tekkaya, E. and Yürüm, Y., 2016. Mesoporous MCM-41 material for hydrogen storage: A short review. Int. J. Hydrog Energy 41, 9789-95.
El-Sayed, S.A., and Mostafa, M.E., 2015. Kinetic parameters determination of biomass pyrolysis fuels using TGA and DTA techniques, Waste Biomass Valori. 6, 401-15.
El-Sayed, Y., and Bandosz, T.J., 2004. Adsorption of valeric acid from aqueous solution onto activated carbons: role of surface basic sites. J. Colloid Interface Sci. 273, 64-72.
Fang, H., Huang, L., Wang, J., He, G., Reible, D., 2016. Environmental assessment of heavy metal transport and transformation in the Hangzhou Bay, China, J. Hazard. Mater. 302, 447-57.
Fang, S.W., Yu, Z.S., Lin, Y., Lin, Y.S., Fan, Y.L., Liao, Y.F., Ma, X.Q., 2017. A study on experimental characteristic of co-pyrolysis of municipal solid waste and paper mill sludge with additives, Appl. Therm. Eng. 111, 292-300.
Feng, W., Kwon, S., Borguet, E., Vidic, R., 2005. Adsorption of hydrogen sulfide onto activated carbon fibers: Effect of pore structure and surface chemistry. Environ. Sci. Technol. 39, 9744-9.
Fennell, P.S., Pacciani, R., Tennis, J.D., Davidson, J.F., Hayhurst, A.N., 2017. The effects of repeated cycles of calcination and carbonation on a variety of different limestones, as measured in a hot fluidized bed of sand. Energ. Fuel. 21, 2072-81.
Ferreira-Pinto, L., Silvarizi, M.P., Carvalho de Araújo, P.C., Zanette, A.F., Cardozo-Filho, L., 2019. Experimental basic factors in the production of H2 via supercritical water gasification. Int. J. Hydrog. Energy 44, 25365-83.
Fuente-Cuesta, A., Lopez-Anton, M.A., Diaz-Somoano, M., Zomeren, A.V., Cieplik, M., Martínez-Tarazona, M.R., 2013. The influence of temperature and steam on the yields of tar and light hydrocarbon compounds during devolatilization of dried sewage sludge in a fluidized bed, Fuel 108, 341-50.
Gai, C., Guo, Y.C., Liu, T.T., Peng, N.N., Liu, Z.G., 2016. Hydrogen-rich gas production by steam gasification of hydrochar derived from sewage sludge. Int. J. Hydrog. Energy 41, 3363-72
Gallucci, K., Stendardo, S., Foscolo, P.U., 2008. CO2 capture by means of dolomite in hydrogen production from syngas. Int. J. Hydrog. Energy 33, 3049-55.
Gao, J., Zhao, Y., Sun, S., Che, H., Zhao, G., Wu, J., 2016. Experiments and numerical simulation of sawdust gasification in an air cyclone gasifier. Chem. Eng. J. 213, 97-103.
Gao, N., Li, A., Quan, C., Qu, Y., Mao, L., 2012. Characteristics of hydrogen-rich gas production of biomass gasification with porous ceramic reforming. Int. J. Hydrog. Energy. 37, 9610-8.
García, G., Monzón, A., Bimbela, F., Sánchez, J.L., Ábrego, J., 2013. Desulfurization and catalytic gas cleaning in fluidized-bed co-gasification of sewage sludge-coal blends. Energ. Fuel 27, 2846-56.
Geng, Q., Wang, L.J., Yang, C., Zhang, H.Y., Zhao, Y.R., Fan, H.L., Huo, C., 2019. Room-temperature hydrogen sulfide removal with zinc oxide nanoparticle/molecular sieve prepared by melt infiltration. Fuel Process. Technol. 26-37.
Giuffrida, A., Romano, M.C., Lozza, G., 2013. Efficiency enhancement in IGCC power plants with air-blown gasification and hot gas clean-up. Energy 53, 221-9.
Greenwood, N.N., Earnshaw, A., 1997. Chemistry of the Elements, second ed. School of Chemistry University of Leeds, UK.
Guan, G., Kaewpanha, M., Hao, X., Abudula, A., 2016. Catalytic steam reforming of biomass tar: Prospects and challenges. Renew. Sust. Energ. Rev. 58, 450-61.
Guo, F., Zhong, Z., Xue, H., 2018. Partition of Zn, Cd, and Pb during co-combustion of sedum plumbizincicola and sewage sludge, Chemosphere. 197, 50-6.
Guo, L.F., Pan, K.L., Lee, H.M., Chang, M.B., 2015. High-temperature gaseous H2S removal by Zn–Mn-based sorbent. Ind. Eng. Chem. Res. 54, 11040-47.
Hagen J. 2006. Industrial Catalysis: A practical approach, the second edition. Chapter 2, 177-82
Hlina, M., Hrabovsky, M., Kavka, T., Konrad, M., 2014. Production of high quality syngas from argon/water plasma gasification of biomass and waste, Waste Manage. 34, 63-6.
Hong, Y.S., Sin, K.R., Pak, J.S., Kim, C.J., Liu, B.S., 2017. Kinetic analysis of H2S removal over mesoporous Cu-Mn mixed oxide/SBA-15 and La-Mn mixed oxide/KIT-6 sorbents during hot coal gas desulfurization using the deactivation kinetics model. Energy fuels 31, 9874-80.
HSC - Chemistry chemical reaction and equilibrium software version 5.1, UK, http://www.chemistry-software.com/general/13094.htm, 2018 (access date: 24 February 2018).
Hu, M., Gao, L., Chen, Z., Ma, C., Zhou, Y., Ma, S., Laghari, M., Xiao, B., Zhang, B., Guo, D., 2016. 2016. Syngas production by catalytic in-situ steam co-gasification of wet sewage sludge and pine sawdust. Energy Convers. Manag. 111, 409-416.
Hu, M., Laghari, M., Cui, B., Xiao, B., Zhang, B., Guo, D., 2018. Catalytic cracking of biomass tar over char supported nickel catalyst. Energy 145, 228-37.
Huang, H.J., and Yuan, X.Z., 2016. The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge, Bioresour. Technol. 200, 991-8.
Huggins, F., and Goodarzi, F., 2009. Environmental assessment of elements and polyaromatic hydrocarbons emitted from a Canadian coal-fired power plant, Int. J. Coal Geol. 77, 282-8.
In, J.B., Cho, K.R., Tran, T.X., Kim, S.M., Wang, Y., Grigoropoulos, C.P., Noy, A., Fornasiero, F., 2018. Effect of enhanced thermal stability of alumina support layer on growth of vertically aligned single-walled carbon nanotubes and their application in nano filtration membranes. Nanoscale Res. Lett. 13, 173.
International Rice Research Institute, irri.org/rice-today/rice-today-Asia (access date: 13 December 2016)
Jayaraman, K., Kok, M.V., Gokalp, I., 2017. Pyrolysis, combustion and gasification studies of different sized coal particles using TGA-MS, Appl. Therm. Eng. 125, 1446-55.
Jiang, L., Hu, S., Wang, Y., Su, S., Sun, L., Xu, B., 2015. Catalytic effects of inherent alkali and alkaline earth metallic species on steam gasification of biomass. Int. J. Hydrog. Energy. 40, 15460-69
Jin, F., Sun, H., Wu, C., Ling, H., Jiang, Y., Williams, P.T., Huang, J., 2018. Effect of calcium addition on Mg-AlOx supported Ni catalysts for hydrogen production from pyrolysis-gasification of biomass. Catal. Today 309, 2-10.
Jin, K., Ji, D.X., Xie, Q.L., Nie, Y., Yu, F.W., Ji, J.B., 2019. Hydrogen production from steam gasification of tableted biomass in molten eutectic carbonates. Int. J. Hydrog. Energy 44, 22919-25.
Jingde, L., Rundong, L., Zhihui, Z., Yanlong, L., Yun, Z., 2013. Influence of chlorine, sulfur and phosphorus on the volatilization behavior of heavy metals during sewage sludge thermal treatment, Waste Manag. Res. 31, 1012-18.
Johansen, F.M., Jakobsen, J.G., Frandsen, F.J., Glarborg, P., 2011. Release of K, Cl, and S during pyrolysis and combustion of high-chlorine biomass, Energ. Fuel. 25, 4961-71.
Judex, J.W., Gaiffi, M., Burgbacher, H.C., 2012. Gasification of dried sewage sludge: Status of the demonstration and the pilot plant, Waste Manage. 32, 719-23.
Karnjanakom, S., Guan, G.P., Asep, B.Y., Du, X., Hao, X.G., Samart, C., Abudula, A., 2015. Catalytic steam reforming of tar derived from steam gasification of sunflower stalk over ethylene glycol assisting prepared Ni/MCM-41. Energy Convers. Manag. 98, 359-68.
Kim, K.D., Jeon, S.M., Hasolli, N., Lee, K., Lee, J.R., Han, J.W., Kim, H.T., Park, Y.O., 2018. HCl removal characteristics of calcium hydroxide at the dry-type sorbent reaction accelerator using municipal waste incinerator flue gas at a real site. Korean J. Chem. Eng. 34, 747-56.
Knudsen, J.N., Jensen, P.A., Lin, W., Frandsen, F.J., Dam J.K., 2004. Sulfur transformations during thermal conversion of herbaceous biomass. Energ. Fuel. 18, 810-9.
Korzun, E.A., Heck, H.H., 1990. Sources and fates of lead and cadmium in municipal solid waste, J. Air Waste Manag. Assoc. 40, 1220-6.
Krerkkaiwan, S., Tsutsumi, A., Kuchonthara, P., 2013. Biomass derived tar decomposition over coal char bed. Science Asia. 39, 511-9.
Krishnamoorthy, V., Pisupati, S.V., 2016. Fate of sulfur during entrained-flow gasification of pittsburgh no. 8 coal: Influence of particle size, sulfur forms, and temperature. Energ. Fuel. 30, 3241-50.
Kuramochi, H., Wu, W., Kawamoto, K., 2005. Prediction of the behaviors of H2S and HCl during gasification of selected residual biomass fuels by equilibrium calculation, Fuel. 84, 377-87.
Kurian, V., Gupta, R., 2016. Distribution of vanadium, nickel, and other trace metals in soot and char from asphaltene pyrolysis and gasification, Energ. Fuel. 30, 1605-15.
Kurkela, E., Kurkela, M., Hiltunen, I., 2016. Steam–oxygen gasification of forest residues and bark followed by hot gas filtration and catalytic reforming of tars: Results of an extended time test. Fuel Process. Technol. 141, 148-58.
Laprune, D., Farrusseng, D., Schuurman, Y., Meunier, F.C., Pieterse, J.A.Z., Steele, A.M., Thorpe, S., 2018. Effects of H2S and phenanthrene on the activity of Ni and Rh-based catalysts for the reforming of a simulated biomass-derived producer gas. Appl. Catal. B. 221, 206-14.
Lee, C.H., Truc, T.T.T., Lee, B.K., Mitoma, Y., Mallampati, S.R., 2015. Evaluation of heavy metals in hazardous automobile shredder residue thermal residue and immobilization with novel nano-size calcium dispersed reagent, J. Hazard. Mater. 296, 239-47.
Lee, T., Zubir, Z.A., Jamil, F.M., Matsumoto, A., Yeoh, F.Y., 2014. Combustion and pyrolysis of activated carbon fibre from oil palm empty fruit bunch fibre assisted through chemical activation with acid treatment, J. Anal. Appl. Pyrol. 110, 408-18.
Li, B., Yang, H., Wei, L., Shao, J., Wang, X., Chen, H., 2017. Absorption-enhanced steam gasification of biomass for hydrogen production: Effects of calcium-based absorbents and NiO-based catalysts on corn stalk pyrolysis-gasification. Int. J. Hydrogen Energ. 42, 5840-48.
Li, L., Xu, Z.R, Zhang, C.L., Bao, J.P., Dai, X.X., 2012. Quantitative evaluation of heavy metals in solid residues from sub- and super-critical water gasification of sewage sludge, Bioresour. Technol. 121, 69-75.
Li, Q., Meng, A., Jia, J., Zhang, Y., 2010. Investigation of heavy metal partitioning influenced by flue gas moisture and chlorine content during waste incineration, J. Environ. Sci-China. 22, 760-8.
Li, Y., Lin, Y., Xu, Z., Wang, B., Zhu, T.L, 2019. Oxidation mechanisms of H2S by oxygen and oxygen-containing functional groups on activated carbon. Fuel Process. Technol. 189, 110-9.
Lian, Y., Wang, H., Fang, W., Yang, Y., 2010. Water gas shift activity of Co-Mo/MgO-Al2O3 catalysts presulfided with ammonium sulfide. J. Nat. Gas. Chem. 9, 61-6.
Lin, G.M., and Chyang, C.S., 2017, Removal of HCl in flue gases by calcined limestone at high temperatures. Energy Fuel 31, 12417-24.
Lind, F., Seemann, M., Thunman, H., 2011. Continuous catalytic tar reforming of biomass derived raw gas with simultaneous catalyst regeneration. Ind. Eng. Chem. Res. 50, 11553-62.
Liu, L., Liu, Y., Song, J., Ahmad, S., Liang, J., Sun, Y., 2019. Plasma-enhanced steam reforming of different model tar compounds over Ni-based fusion catalysts. J. Hazard. Mater. 377, 24-33.
Lopes, T., Paganin, V.A., Gonzalez, E.R., 2011. The effects of hydrogen sulfide on the polymer electrolyte membrane fuel cell anode catalyst: H2S–Pt/C interaction products. J. Power Sources 196, 6256-63.
Ma, Z.Q., Chen, D.Y., Gu, J., Bao, B.F., Zhang, Q.S., 2015. Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA–FTIR and model-free integral methods, Energy Convers. Manag. 89, 251-9.
Mancinelli, E., Baltrėnaitė, E., Baltrėnas, P., Paliulis, D., Passerini, G., 2016. Trace metals in biochars from biodegradable by-products of industrial processes, Water Air Soil Pollut. 227, 1-21.
Mansaray K.G., and Ghaly, A.E., 1999. Determination of reaction kinetics of rice husks in air using thermogravimetric analysis, Energ. Source. 21, 899-911.
Marani, D., Braguglia, C.M., Mininni, G., Maccioni, F., 2003. Behaviour of Cd, Cr, Mn, Ni, Pb, and Zn in sewage sludge incineration by fluidised bed furnace, Waste Manage. 23, 117-24.
Martinez, A., Gerdes, K., Gemmen, R., Poston, J., 2010. Thermodynamic analysis of interactions between Ni-based solid oxide fuel cells (SOFC) anodes and trace species in a survey of coal syngas. J. of Power Sources, 195, 5206-12.
Matsuzaki, Y., Yasuda, I., 2000. The poisoning effect of sulfur-containing impurity gas on a SOFC anode: Part I. Dependence on temperature, time, and impurity concentration. Solid State Ion. 132, 261-9.
Meij, R., 1994. Trace element behavior in coal-fired power plants, Fuel Process Technol. 39, 199-217.
Mendiburu, A.Z., Carvalho, J.A., Coronado, C.J.A., 2014. Thermochemical equilibrium modeling of biomass downdraft gasifier: Stoichiometric models, Energy. 66, 189-201.
Menezes, R.L.C.B., Moura, K.O., de Lucena, S.M.P., Azevedo, D.C.S., Bastos-Neto, M., 2018. Insights on the mechanisms of H2S retention at low concentration on impregnated carbons. Ind. Eng. Chem. Res. 57, 2248-57.
Meng, X., de Jong, W., Pal, R., Verkooijen, A.H.M., 2010. In bed and downstream hot gas desulphurization during solid fuel gasification: A review. Fuel Process. Technol. 91, 964-81.
Micoli, L., Bagnasco, G., Turco, M., 2013. HCl removal from biogas for feeding MCFCs: Adsorption on microporous materials. Int. J. Hydrog. Energy 38, 447-52.
Moon, J., Jo, W., Jeong, S., Bang, B., Choi, Y., Hwang, J., Lee, U., 2017. Gas cleaning with molten tin for hydrogen sulfide and tar in producer gas generated from biomass gasification. Energy. 130, 318-26.
Mopoung, S., Moonsri, P., Palas, W., Khumpai, S., 2015. Characterization and properties of activated carbon prepared from tamarind seeds by KOH activation for Fe(III) adsorption from aqueous solution, Sci. World J. 415961, 9 pages.
Morselli, L., Zappoli, S., Militerno, S., 1993. The presence and distribution of heavy metals in municipal solid waste incinerators, Toxicol. Environ. Chem. 37, 139-45.
Mun, T.Y., Kim, J.W., Kim, J.S., 2013. Air gasification of dried sewage sludge in a two-stage gasifier: Part 1. The effects and reusability of additives on the removal of tar and hydrogen production. Int. J. Hydrog. Energy. 38, 5226-34.
Murakami, K., Kasai, K., Kato, T., Sugawara, K., 2012a. Conversion of rice straw into valuable products by hydrothermal treatment and steam gasification. Fuel. 93, 37-43.
Murakami, K., M. Sato, T. Kato and K. Sugawara., 2012b. Influence of difference in chemical compositions of rice straw on hydrogen formation in nickel-catalyzed steam gasification. Fuel Process. Technol. 95, 78-83.
Murakami. T., Yasuda, H., Norisada, K., 2018. Comparison of tar components in syngas generated by gasification conditions of lignite in a fluidized bed gasifier, Energ. Fuel. 32, 1110-14.
Nam, H., Wang, Z., Shanmugam, S.R., Adhikari, S., Abdoulmoumine, N., 2018. Chemical looping dry reforming of benzene as a gasification tar model compound with Ni- and Fe-based oxygen carriers in a fluidized bed reactor. Int. J. Hydrogen Energ. 43, 18790-800.
Ngoc Lan Thao, N.T. and Chiang, K.Y., 2020. The migration, transformation and control of trace metals during the gasification of rice straw, Chemosphere 260, 127540.
Ngoc Lan Thao, N.T., Chiang, Liu, C.F., K.Y., Wan, H.P., Hung, W.C., 2019. Enhanced trace pollutants removal efficiency and hydrogen production in rice straw gasification using hot gas cleaning system, Int. J. Hydrog. Energy. 44, 3363-72.
Ngoc Lan Thao, N.T., Chiang, Liu, C.F., K.Y., Wan, H.P., Hung, W.C., 2020. Hydrogen production enhancement using hot gas cleaning system combined with prepared Ni-based catalyst in biomass gasification.
Nguyen, H.N.T., Seemann, M., Thunman, H., 2018. Fate of polycyclic aromatic hydrocarbons during tertiary tar formation in steam gasification of biomass, Energ. Fuel. 32, 3499-509.
Nzihou, A. and Stanmore, B., 2013. The fate of heavy metals during combustion and gasification of contaminated biomass-A brief review, J. Hazard. Mater. 256-257, 56-66.
Ohtsuka, Y., Tsubouchi, N., Kikuchi, T., Hashimoto, H., 2009. Recent progress in Japan on hot gas cleanup of hydrogen chloride, hydrogen sulfide and ammonia in coal-derived fuel gas. Powder Technol. 190, 340-47.
Osman, A.I., Abu-Dahrieh, J.K., Rooney, D.W., Halawy, S.A., Mohamed, M.A., Abdelkader, A., 2012, Effect of precursor on the performance of alumina for the dehydration of methanol to dimethyl ether. Appl. Catal B-Environ. 127, 307-15.
Oudghiri, F., García-Morales, J.L., Rodríguez-Barroso, M.R., 2016. Novel use of TGA–FTIR technique to predict the pollution degree in marine sediments, Int. J. Hydrog. Energy. 41, 8154-58.
Ozekmekci, M., Salkic, G., Fellah, M.F., 2015. Use of zeolites for the removal of H2S: A mini-review. Fuel Process Technol.139, 49-60.
Parihar, A.K.S., Hammer, T., Sridhar. G., 2015. Development and testing of tube type wet ESP for the removal of particulate matter and tar from producer gas. Renew. Energy. 74, 875-83.
Park, J., Lee,Y., Ryu, C., Park, Y.K., 2014. Slow pyrolysis of rice straw: Analysis of products properties, carbon and energy yields. Bioresour. Technol. 155, 63-70.
Parshetti, G.K., Quek, A., Betha, R., Balasubramanian, R., 2014. TGA–FTIR investigation of co-combustion characteristics of blends of hydrothermally carbonized oil palm biomass (EFB) and coal, Fuel Process. Technol. 118, 228-34.
Pavageau, M.P., Morin, A., Séby, F., Guimon, C., Krupp, E., Pécheyran, C., Poulleau, J., Donard, O.F.X., 2004. Partitioning of metal species during an enriched fuel combustion experiment: Speciation in the gaseous and particulate phases, Environ. Sci. Technol. 38, 2252-63.
Phuphuakrat, T., Namioka, T., Yoshikawa, K., 2010. Tar removal from biomass pyrolysis gas in two-step function of decomposition and adsorption. Appl. Energy. 87, 2203-11.
Piatkowski, N., and Steinfeld, A., 2010. Reaction kinetics of the combined pyrolysis and steam-gasification of carbonaceous waste materials, Fuel. 89, 1133-40.
Pinto, F., André, R., Miranda, M., Neves, D., Varela, F., Santos, J., 2016. Effect of gasification agent on co-gasification of rice production wastes mixtures. Fuel. 180, 407-16.
Poskrobko, S., Król, D., Łach, J., 2012. Hydrogen chloride bonding with calcium hydroxide in combustion and two-stage combustion of fuels from waste. Energ. Fuel 26, 842-53.
Prabhansu., Karmakar, M.K., Chandra, P., Chatterjee, P.K., 2015. A review on the fuel gas cleaning technologies in gasification process. J. Environ. Chem. Eng. 3, 689-702.
Pudasainee, D., Paur, H.R., Fleck, S., Seifert, H., 2014. Trace metals emission in syngas from biomass gasification, Fuel Process. Technol. 120, 54-60.
Raheem, A., Dupont, V., Channa, A.O., Zhao, X., Vuppaladadiyam, A.K., Taufiq-Yap, Y.H., Zhao, M., Harun, R., 2017. Parametric characterization of air gasification of chlorella vulgaris biomass, Energ. Fuel. 31, 2959-69.
Rakesh, N., Dasappa, S., 2018. A critical assessment of tar generated during biomass gasification - Formation, evaluation, issues and mitigation strategies, Renew. Sust. Energ. Rev. 91, 1045-64.
Ramachandran, S., Ha, J.H., Kim, D.K., 2007. Hydrogen storage characteristics of metal oxide doped Al–MCM-41 mesoporous materials. Catal. Commun 8, 1934-8.
Rapagnà, S., Gallucci, K., Di Marcello, M., Matt, M., Nacken, M., Heidenreich, S., Foscolo, P.U., 2010. Gas cleaning, gas conditioning and tar abatement by means of a catalytic filter candle in a biomass fluidized-bed gasifier. Bioresour. Technol. 101, 7123-30.
Reed, G.P., Dugwell, D.R., Kandiyoti, R., 2001. Control of trace elements in a gasifier hot gas filter: A comparison with predictions from a thermodynamic equilibrium model. Energ. Fuel. 15, 1480-7.
Reyes-Labarta J.A., and Marcilla, A., 2008. Kinetic study of the decompositions involved in the thermal degradation of commercial azodicarbonamide, J. Appl. Polym. Sci. 107, 339-46.
Rondón ,W., Freire, D., Benzo, Z., Sifontes, A., González, Y., Valero, M., Brito, J., 2013. Application of 3A zeolite prepared from venezuelan kaolin for removal of Pb (II) from wastewater and its determination by flame atomic absorption spectrometry, Am. J. Analyt. Chem. 4, 584-93.
Rong, L., Maneerung, T., Ng, J.C., Neoh, K.G., Bay, B.H., Tong, Y.W., Dai, Y., Wang, C.H., 2015. Co-gasification of sewage sludge and woody biomass in a fixed-bed downdraft gasifier: Toxicity assessment of solid residues, Waste Manage. 36, 241-55.
Sağ, Y., Akçael, B., Kutsal, T., 2002. Ternary biosorption equilibria of chromium(VI), copper(II), and cadmium(II) on Rhizopus arrhizus, Sep. Sci. Technol. 37, 279-309.
Said, M., Cassayre, L., Dirion, J.L., Nzihou, A., Joulia, X., 2015. Behavior of heavy metals during gasification of phytoextraction plants: Thermochemical modelling, Comput. Aided Chem. Eng. 37, 341-6.
Salema, A.A., Afzal, M.T., Motasemi, F., 2014. Is there synergy between carbonaceous material and biomass during conventional pyrolysis? A TG-FTIR approach, J. Anal. Appl. Pyrol. 105, 217-26.
Schmid, M., Beirow, M., Schweitzer, D., Waizmann, G., Spörl, R., Scheffknecht, G., 2018. Product gas composition for steam-oxygen fluidized bed gasification of dried sewage sludge, straw pellets and wood pellets and the influence of limestone as bed material, Biomass Bioenergy. 117, 71-7.
Seville, J., 1993. Rigid Ceramic Filters for Hot Gas Cleaning. KONA Powder Part. J. 11, 41-56.
Shabbar, S., and Janajreh, I., 2013. Thermodynamic equilibrium analysis of coal gasification using Gibbs energy minimization method, Energy Convers. Manag. 65, 755-63.
Shah, M., Bordoloi, A., Nayak, A.K., Mondal, P., 2019. Effect of Ti/Al ratio on the performance of Ni/TiO2 -Al2O3 catalyst for methane reforming with CO2. Fuel Process Technol. 192, 21-35.
Shahabuddin, M., Alam, M.T., Krishna, B.B., Bhaskar, T., Perkins, G., 2020. A review on the production of renewable aviation fuels from the gasification of biomass and residual wastes. Bioresour. Technol. 312, 123596.
Shang, G., Shen, G., Liu, L., Chen, Q., Xu, Z., 2013. Kinetics and mechanisms of hydrogen sulfide adsorption by biochars. Bioresour. Technol. 133, 495-9.
Shao, J.G., Yan, R., Chen, H.P., Wang, B.W., Lee, D.H., Liang, D.T., 2008. Pyrolysis characteristics and kinetics of sewage sludge by thermogravimetry fourier transform infrared analysis, Energ. Fuel. 22, 38-45.
Sharma, R., Segato, T., Delplancke, M.P., Terryn, H., Baron, G.V., Denayer, J.F.M., Cousin-Saint-Remi, J., 2020. Hydrogen chloride removal from hydrogen gas by adsorption on hydrated ion-exchanged zeolites. Chem. Eng. J. 381, 122512.
Shen, Y., Wang, J., Ge, X., Chen, M., 2016. By-products recycling for syngas cleanup in biomass pyrolysis - An overview. Renew. Sust. Energ. Rev. 59, 1246-68.
Shen, Y., Yoshikawa, K., 2013. Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis-a review. Renew. Sust. Energ. Rev. 21, 371-92.
Shen, Y., Zhao, P., Shao, Q., Ma, D., Takahashi, F., Yoshikawa, K., 2014. In-situ catalytic conversion of tar using rice husk char-supported nickel-iron catalysts for biomass pyrolysis/gasification, Appl. Catal. B. 152–153, 140-51.
Shi, X., Zhang, K., Cheng, Q., Song, G., Fan, G., Li, J., 2018. Promoting hydrogen-rich syngas production through catalytic cracking of rape straw using Ni-Fe/PAC-/γAl2O3 catalyst. Renew. Energy 140, 32-8.
Siefert, N.S., Shekhawat, D., Litster, S., Berry, D.A., 2013. Steam–coal gasification using CaO and KOH for in situ carbon and sulfur capture. Energ. Fuel 27, 4278-89.
Sigot, L., Ducom, G., Germain, P., 2016. Adsorption of hydrogen sulfide (H2S) on zeolite (Z): Retention mechanism. Chem. Eng. J. 287, 47-53.
Simell, P., Kurkela, E., Ståhlberg, P., Hepola, J., 1996. Catalytic hot gas cleaning of gasification gas. Catal. Today 27, 55-62.
Simell, P.A., Hepola, J.O., Krause, A.O.I., 1997. Effects of gasification gas components on tar and ammonia decomposition over hot gas cleanup catalysts. Fuel 76, 1117-7.
Singh, S., Wu, C.F., Williams, P.T., 2012. Pyrolysis of waste materials using TGA-MS and TGA-FTIR as complementary characterization techniques, J. Anal. Appl. Pyrol. 107, 94-99.
Sricharoenchaikul, V., Atong, D., Sornkade, P., Nisamaneenate, J., 2017. Performance of Ni/dolomite pellet catalyst on gas distribution from cassava rhizome gasification with a modular fixed-bed gasifier. Environ. Technol. 38, 1176-83.
Srivastava, V.C., Mall, I.D., Mishra, I.M., 2008. Antagonistic competitive equilibrium modeling for the adsorption of ternary metal ion mixtures from aqueous solution onto bagasse fly ash, Ind. Eng. Chem. Res. 47, 3129-37.
Stephen, J.L., and Periyasamy, B., 2018. Innovative developments in biofuels production from organic waste materials: A review, Fuel. 214, 623-33.
Striūgas, N., Skvorčinskienė, R., Paulauskas, R., Zakarauskas, K., Vorotinskienė, L., 2017. Evaluation of straw with absorbed glycerol thermal degradation during pyrolysis and combustion by TG-FTIR and TG-GC/MS, Fuel. 204, 227-235.
Subramanyam, V., Gorodetsky, A., 2017. Chapter 5 - Municipal wastes and other potential fuels for use in IGCC systems, in integrated gasification combined cycle (IGCC) technologies. Woodhead Publishing. 181-219.
Sukitprapanon, T., Suddhiprakarn, A., Kheoruenromne, I., Gilkes, R.J., 2018. Partitioning and potential mobilization of aluminum, arsenic, iron, and heavy metals in tropical active and post-active acid sulfate soils: Influence of long-term paddy rice cultivation, Chemosphere. 197, 691-702.
Sun, T., Shen, Y., Jia, J., 2014. Gas cleaning and hydrogen sulfide removal for COREX coal gas by sorption enhanced catalytic oxidation over recyclable activated carbon desulfurizer. Environ. Sci. Technol. 48, 2263-72.
Sun, Y. and Han, S., 2015. Diffusion of N2, O2, H2S and SO2 in MFI and 4A zeolites by molecular dynamics simulations. Mol. Simulat. 41, 1095-109.
Šyc, M., Pohořelý, M., Jeremiáš, M., Vosecký, M., Kameníková, P., Skoblia, S., Svoboda, K., Punčochář, M., 2011. Behavior of heavy metals in steam fluidized bed gasification of contaminated biomass, Energ. Fuel. 25, 2284-91.
Taiwan Council of Agricultural, Executive Yuan, http://www.coa.gov.tw (access date: 13 December 2016)
Tan, R.S., Tuan, A., Tuan, A., Mahmud, S.A., Md, Z.R., Md, I.K., 2019. Catalytic steam reforming of complex gasified biomass tar model toward hydrogen over dolomite promoted nickel catalysts. Int. J. Hydrogen Energ. 44, 21303-14.
Tao, K., Ohta, N., Liu, G., Yoneyama, Y., Wang, T., Tsubaki, N., 2013. Plasma enhanced catalytic reforming of biomass tar model compound to syngas. Fuel. 104, 53-57.
Taufiq-Yap, Y.H., and Yap, D.K.Y., 2016. Catalytic flash gasification of EFB for hydrogen production using zeolite supported metal oxide catalysts. Key Eng. Mater. 707, 166-74.
Theofanidis, S.A, Galvita, V.V., Poelman, H., Batchu, R., Buelens, L.C, Detavernier, C., Marin, G.B., 2018. Mechanism of carbon deposits removal from supported Ni catalysts. Appl. Catal. B-Environ. 239, 502-12.
Vähä-Savo, N., DeMartini, N., Hupa, M., 2013. Fate of char nitrogen in catalytic gasification - Formation of alkali cyanate, Energ. Fuel. 27, 7108-14.
Valmet, Finland, biomass gasification, www.valmet.com (access date: 13 December 2016)
Van de Velden, M., Dewil, R., Baeyens, J., Josson, L., Lanssens, P., 2008. The distribution of heavy metals during fluidized bed combustion of sludge (FBSC), J. Hazard. Mater. 151, 96-102.
Vasile C., and Brebu, M.A., 2007. Thermal valorization of biomass and of synthetic polymer waste. Upgrading of pyrolysis oils, Cell Chem. Technol. 40, 489-512.
Veksha, A., Giannis, A., Oh, W.D., Chang, V.W.C., Lisak, G., Lim, T.T., 2018. Catalytic activities and resistance to HCl poisoning of Ni-based catalysts during steam reforming of naphthalene. Appl Catal A: Gen. 557, 25-38.
Viinikainen, T., Kauppi, I., Korhonen, S., Lefferts, L., Kanervo, J., Lehtonen, J., 2018. Molecular level insights to the interaction of toluene with ZrO2-based biomass gasification gas clean-up catalysts. Appl. Catal. B-Environ. 142–143, 769-79.
Vogg, H., Braun, H., Metzger, M., Schneider, J., 1986. The specific role of cadmium and mercury in municipal solid waste incineration, Waste Manag. Res. 4, 65-74.
Wang, G., Xu, S., Wang, C., Zhang, J., Fang, Z., 2017. Desulfurization and tar reforming of biogenous syngas over Ni/olivine in a decoupled dual loop gasifier. Int. J. Hydrogen Energ. 42, 15471-8.
Wang, J., Zhang, J., Zhong, H., Wang, H., Ma, K., Pan, L., 2020a. Effect of support morphology and size of nickel metal ions on hydrogen production from methane steam reforming. Chem. Phys. Lett. 746, 137-291.
Wang, K.S., Chiang, K.Y., Tsai, C.C., Sun, C.J., Tsai, C.C., Lin, K., 2001. The effects of FeCl3 on the distribution of the heavy metals Cd, Cu, Cr, and Zn in a simulated multimetal incineration system. Environ. Int. 26, 257-263.
Wang, S., Nam, H., Nam, H., 2020b. Preparation of activated carbon from peanut shell with KOH activation and its application for H2S adsorption in confined space. J. Environ. Chem. Eng. 8, 103683.
Wang, S., Wang, Q., Hu, Y.M., Xu, S.N., He, Z.X., Ji, H.S., 2015c. Study on the synergistic co-pyrolysis behaviors of mixed rice husk and two types of seaweed by a combined TG-FTIR technique, J. Anal. Appl. Pyrol. 114, 109-18.
Wang, W., Padban, N., Ye, Z., Olofsson, G., Andersson, A., Bjerle, I., 2000. Catalytic hot gas cleaning of fuel gas from an air-blown pressurized fluidized-bed gasifier. Ind. Eng. Chem. Res. 39, 4075-81.
Wang, Y., Pang. S., 2018. The effects of temperature and gas species on ammonia removal in the simulated producer gas of biomass gasification by H2-reduced titanomagnetite. Energ. Fuel 32, 5134-44.
Wang, Y.G, Sun, J.L, Zhang, H.Y., Chen, Z.D., Lin, X.C., Zhang, S., Gong, W.B., Fan, M.H., 2015d. In situ catalyzing gas conversion using char as a catalyst/support during brown coal gasification. Energ. Fuel. 29, 1590-96.
Wei, J., Guo, Q., Chen, H., Chen, X., Yu, G., 2016. Study on reactivity characteristics and synergy behaviours of rice straw and bituminous coal co-gasification, Bioresour. Technol. 220, 509-15.
Wei, J.T., Gong, Y., Guo, Q.H., Ding, L., Wang, F.C., Yu, G.S., 2017. Physicochemical evolution during rice straw and coal co-pyrolysis and its effect on co-gasification reactivity. Bioresour. Technol. 227, 345-52.
Wei, M., and Wang, D., 2020. A novel utilized method of tar derived from biomass gasification for fabricating binder-free all-solid-state hybrid supercapacitors. Int. J. Hydrogen Energ. 45, 4793-803.
Wen, W.Y., and Cain, E., 1984. Catalytic pyrolysis of a coal tar in a fixed-bed reactor. Ind. Eng. Chem. Process Des. Dev. 23, 627-37.
Woolcock, P.J., Brown R.C., 2013. A review of cleaning technologies for biomass-derived syngas. Biomass Bioenerg. 52: 54-84.
Wu, C.F., Dupont, V., Nahil, M.A., Dou, B., Chen, H.S., Williams, P.T., 2017. Investigation of Ni/SiO2 catalysts prepared at different conditions for hydrogen production from ethanol steam reforming. J. Energy Inst. 90, 276-84.
Wu, C.F., Wang, L.Z., Williams, P.T., Shi, J., Huang, J., 2011. Hydrogen production from biomass gasification with Ni/MCM-41 catalysts: Influence of Ni content. Appl. Catal. B-Environ 108-109, 6-13.
Wu, H., La, P.V., Pantaleo, G., Puleo, F.P., Venezia, A.M., Liotta, L.F., 2013. Ni-based catalysts for low temperature methane steam reforming: Recent results on Ni-Au and comparison with other bi-metallic systems. Catalyst 3, 563-83.
Wu, M.H., Lin, C.L., Zeng, W.Y., 2008. Effects of gasification temperature and catalyst ratio on hydrogen production from catalytic steam pyrolysis-gasification of polypropylene, Energ. Fuel. 22, 4125-32.
Wu, Z., Li, Y., Zhang, B., Yang, W., Yang, B., 2019. Co-pyrolysis behavior of microalgae biomass and low-rank coal: Kinetic analysis of the main volatile products, Bioresour. Technol. 271, 202-9.
Wu, Z.S., Mi, T., We, Q.X., Chen, Y.F., Li, X.H., 2010. The thermal cracking experiment research of tar from rice hull gasification for power generation, in proceedings of the 20th International conference on fluidized bed combustion, G. Yue, et al., Editors. Springer Berlin Heidelberg: Berlin, Heidelberg, 642-7.
Xie, L.F., Duan, P.G., Jiao, J.L., Xu, Y.P., 2019. Hydrothermal gasification of microalgae over nickel catalysts for production of hydrogen-rich fuel gas: Effect of zeolite supports. Int. J. Hydrog. Energy 44, 5114-24.
Xie, X., Li, Y.J., Liu, C.T., Wang, W.J., 2015. HCl absorption by CaO/Ca3Al2O6 sorbent from CO2 capture cycles using calcium looping. Fuel Process. Technol. 138, 500-8.
Xu, C.F., Hu, S., Xiang, J., Zhang, L.Q., Sun, L.S., Shuai, C., Chen, Q.D., He, L.M., Edreis, E.M.A., 2014. Interaction and kinetic analysis for coal and biomass co-gasification by TG–FTIR, Bioresour. Technol. 154, 313-21.
Xue, G., Kwapinska, M., Horvat, A., Li, Z.L., Dooley, S., Kwapinski, W., 2014. Gasification of miscanthus x giganteus in an air-blown bubbling fluidized bed: a preliminary study of performance and agglomeration. Energ. Fuel. 28, 1121-31
Yan, F., Luo, S.Y., Hu, Z.Q., Xiao, B., Cheng, G., 2010. Hydrogen-rich gas production by steam gasification of char from biomass fast pyrolysis in a fixed-bed reactor: influence of temperature and steam on hydrogen yield and syngas composition. Bioresour. Technol. 101, 5633-7.
Yang, C., Florent, M., de Falco, G., Fan, H., Bandosz, T.J. 2020. ZnFe2O4/activated carbon as a regenerable adsorbent for catalytic removal of H2S from air at room temperature. Chem. Eng. J. 394, 124906.
Yang, K., Su, B., Shi, L., Wang, H., Cui, Q., 2018. Adsorption mechanism and regeneration performance of 13X for H2S and SO2. Energy Fuels 32, 12742-12749.
Yang, X., Liu, X., Guo, T., Liu, C., 2019. Effects of Cu and Fe additives on low-temperature catalytic steam reforming of toluene over Ni/AC catalysts. Catal. Surv. from Asia 23, 54-63.
Yao, D.D., Yang, K.P., Chen, H.P., Williams, P.T., 2018. Investigation of nickel-impregnated zeolite catalysts for hydrogen/syngas production from the catalytic reforming of waste polyethylene. Appl. Catal. B-Environ. 227, 477-87.
Ye, M.J., Tao, Y.W., Jin, F.Z., Ling, H.J., Wu, C.F., Williams, P.T., Huang, J., 2018. Enhancing hydrogen production from the pyrolysis-gasification of biomass by size-confined Ni catalysts on acidic MCM-41 supports. Catalysis Today 307, 154-61.
Yoshiie, R., Taya, Y., Ichiyanagi, T., Ueki, Y., Naruse, I., 2013. Emissions of particles and trace elements from coal gasification, Fuel 8, 67-72.
Yu, J., Sun, L., Xiang, J., Hu, S., Su, S., Qiu, J., 2012. Vaporization of heavy metals during thermal treatment of model solid waste in a fluidized bed incinerator, Chemosphere. 86, 1122-1126.
Yung, M.M., and Kuhn, J.N., 2010. Deactivation mechanisms of Ni-based tar reforming catalysts as monitored by X-ray absorption spectroscopy. Langmuir 26, 16589-94.
Zeng, X., Wang, F., Wang, Y.G., Li, A.M., Yu, J., Xu, G.W., 2014. Characterization of char gasification in a micro fluidized bed reaction analyzer, Energ Fuel. 28, 1838-45.
Zha, J., Huang, Y., Xia, W., 2018. Effect of mineral reaction between calcium and aluminosilicate on heavy metal behavior during sludge incineration, Fuel. 229, 241-7.
Zhang, S., Zhu, S., Zhang, H., Liu, X., Xiong, Y., 2019. High quality H2-rich syngas production from pyrolysis-gasification of biomass and plastic wastes by Ni–Fe@Nanofibers/Porous carbon catalyst. Int. J. Hydrog. Energy 44, 26193-203.
Zhang, S.Q., Yue, X.M., Yin, Z.Y., Pan, T.T., Dong, M.J., Sun, T.Y., 2009. Study of the co-pyrolysis behavior of sewage-sludge/rice-straw and the kinetics, Procedia Earth Planet Sc. 1, 661-6.
Zhang, X., Lei, H., Zhu, L., Zhu, X., Qian, M., Yadavalli, G., Wu, J., Chen, S., 2016. Thermal behavior and kinetic study for catalytic co-pyrolysis of biomass with plastics, Bioresour. Technol. 220, 233-8.
Zhao, H., Song, Q., Yao, Y., 2016. HCl capture by rice straw char and its influence on the transformation of alkali and alkaline earth metallic species during pyrolysis. Energ. Fuels. 30, 5854-61.
Zhao, H.B., Song, Q., Wu, X.Y., Yao, Q., 2018. Transformation of alkali and alkaline earth metallic species during pyrolysis and CO2 gasification of rice straw char, J. Fuel Chem. Technol. 46, 27-33.
Zhao, P., Chen, H., Ge, S., Yoshikawa, K., 2013. Effect of the hydrothermal pretreatment for the reduction of NO emission from sewage sludge combustion. Appl. Energy. 11, 199-205.
Zhong, D.X., Zhong, Z.P., Wu, L.H., Song, Z.W., Luo, Y.M., 2015. Thermal characteristics and fate of heavy metals during thermal treatment of sedum plumbizincicola, a zinc and cadmium hyperaccumulator, Fuel Process. Technol. 131, 125-32.
Zhou, L., Zhang, G., Reinmöller, M., Meyer, B., 2019. Effect of inherent mineral matter on the co-pyrolysis of highly reactive brown coal and wheat straw, Fuel. 239, 1194-203.
Zhu, H.M., Jiang, X.G., Yan, J.H., Chi, Y., Cen, K.F., 2008. TG-FTIR analysis of PVC thermal degradation and HCl removal. J. Anal. Appl. Pyrolysis 82, 1-9.
Zhu, H.M., Jiang, X.G., Yan, J.H., Chi, Y., Cen, K.F., 2008. TG-FTIR analysis of PVC thermal degradation and HCl removal. J Anal Appl Pyrolysis 82, 1-9. |