博碩士論文 105383003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:63 、訪客IP:3.142.249.101
姓名 石逸杰(Yi-Chieh Shih)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 模組化之多自由度干涉量測系統
(Modular Multi-dimensional Interferometric Measurement System)
相關論文
★ 自動平衡裝置在吊扇上之運用★ 以USB通訊界面實現X-Y Table之位置控制
★ 液體平衡環在立式轉動機械上之運用★ 液流阻尼裝置設計與特性之研究
★ 液晶電視喇叭結構共振異音研究★ 液態自動平衡環之研究
★ 抑制牙叉式機械臂移載時產生振幅之設計★ 立體拼圖式組合音箱共振雜音消除之設計
★ 電梯纜繩振動抑制設計研究★ 以機器學習導入電梯生產結果預測之研究
★ 新環保冷媒R454取代R410A冷媒迴轉式單缸壓縮機效能分析與可靠性驗證★ 高速銑削Al7475-T7351的銑削參數與基因演算法研究
★ 自動化鞋型切削機之設計與實現★ 以FPGA為基礎之精密位置控制IC
★ CNC三維圓弧插補器★ PID與模糊控制在營建工程自動化的探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-12-31以後開放)
摘要(中) 高精度的測長及定位是精密工程發展的關鍵要素,由於雷射干涉儀可於長行程的測量範圍同時保有高解析度之特性,因此廣泛地應用於機台線性軸的校正及微機電設備的定位。
然而,傳統干涉儀的量測穩定度易受環境擾動所影響,如欲實現高精度的量測性能,勢必需加強周遭環境條件的控制,故發展一高穩定且適用性高的干涉儀為一重要課題,根據以往的研究成果,共光程的Fabry-Pérot干涉結構具有較佳的抗環境擾動能力。因此,本文基於此一光路架構進行光機的設計與訊號處理的開發,以研製出兩種類型的Fabry-Pérot干涉位移量測模組,可滿足高精度的檢測需求及提升量測的準確度。
而根據技術的演進與產業的應用回顧,多自由度的幾何誤差檢測是可預期的發展趨勢,故本文以多功能檢測與模組化整合為開發導向,亦研製出直線度、俯仰與偏擺角度的光電檢測模組,可依據使用者的需求使用單一模組或整合多模組以進行應用,達到單軸多參數的檢測目的,此外,為提升量測的準確度與調校的便利性,本文亦提出光軸自動準直模組,改善檢測的效率。
隨著各項誤差檢測與自動準直模組的開發,已實現的量測性能如下:於長行程實驗測試,偏光式Fabry-Pérot位移量測模組的重複精度優於0.171 μm;偏光差動式Fabry-Pérot位移量測模組的重複精度優於0.120 μm。直線度量測模組的驗證結果顯示,其重複精度小於0.279 μm;角度量測模組的驗證結果顯示,測量的重複精度小於0.24 arcsec;經實驗結果評估,光軸自動準直模組可將餘弦誤差縮減至1 nm內;五自由度同時量測的結果顯示,差動式Fabry-Pérot干涉儀的位移重複精度為0.106 μm,水平與垂直直線度的重複精度小於0.252 μm,俯仰與偏擺角度的重複精度小於0.22 arcsec。
從上述測試結果顯示,透過精簡的光機設計,各模組皆可便利使用與靈活整合,無需複雜的光機調校,即可實現高效率與高精度的檢測。
摘要(英) High-precision length measurement and positioning are the essential key points for the development of precision engineering. Because laser interferometers possess the measuring characteristics of large measuring range and high resolution simultaneously, they are widely employed in the calibration of the linear axis in the machine tool and the micro-electromechanical device′s positioning.
However, the measurement stability of conventional interferometers is susceptible to environmental disturbances. To achieve high-precision measurement performance, it is necessary to strengthen the control of the surrounding environment′s conditions. For this reason, the development of an interferometer with high stability and applicability is a critical issue. According to the previous study, the interferometer with the common path structure is insensitive to environmental disturbances. Therefore, this study based on this optical structure implements the optomechanical design and the construction of the signal processing to develop two types of Fabry-Pérot interferometric displacement measurement modules, which can meet the inspection requirements with high precision and can enhance the measurement accuracy.
Additionally, according to the technological development and the review of industrial applications, the inspection of multi-degree-of-freedom geometric errors is the expectable trend of industrial development. Therefore, this study orientates itself in the development of multifunctional inspection and modular integration, and the corresponding photoelectric inspection modules are constructed to measure the straightness, pitch, and yaw angle. Each module can be utilized individually or integrated collectively according to the user’s demands to achieve the inspection purpose of axial multi-degree-of-freedom geometric errors. Furthermore, to improve the measurement accuracy and the alignment convenience, the automatic optical alignment module proposed in this study can also be integrated into other measurement modules to enhance the inspection efficiency.
With this development of optical alignment and various inspection modules, the measurement performances can be realized in the following descriptions. The correlated measurement repeatability of the polarized Fabry-Pérot interferometer and the polarized differential Fabry-Pérot interferometer proposed in this study is less than 0.171 μm and 0.120 μm, respectively, during the large measuring range. The verification result of the straightness measurement module indicates that the repeatability is less than 0.279 μm. The verification result of the measurement module of the pitch and yaw angle indicates that the measurement repeatability is less than 0.24 arcsec. And by the evaluation of the experimental result for the optical alignment module, the cosine error can be reduced to less than 1 nm after the alignment procedure. The simultaneous measurement results of the five-degree-of-freedom laser interferometer system demonstrate that the repeatability of the linear displacement, straightness, and the tilt angle is less than 0.106 μm, 0.252 μm, and 0.22 arcsec, respectively.
The above testing results reveal that each module can be easily used and flexibly integrated through the streamlined optomechanical design. High-efficiency and high-precision inspection can be achieved without complicated optomechanical alignment.
關鍵字(中) ★ 多自由度檢測
★ 光軸自動準直
★ Fabry-Pérot干涉儀
★ 線性位移
★ 直線度
★ 俯仰與偏擺角度
★ 訊號處理
★ 可模組化
★ 彈性整合
關鍵字(英) ★ Multi-degree-of-freedom inspection
★ Automatic optical alignment
★ Fabry-Pérot laser interferometer
★ Linear displacement
★ Straightness
★ Pitch and yaw angle
★ Signal processing
★ Modularize
★ Flexible integration
論文目次 摘 要 i
ABSTRACT iii
Contents v
List of Figure vii
List of Table ix
Symbols List x
I. Introduction 1
1.1 Background and Motivation 1
1.2 Relevant References and Technological Development 3
1.2.1 Displacement Measurement 3
1.2.1.1 Optical Alignment 4
1.2.1.2 Micro-displacement Measurement 7
1.2.1.3 Displacement Measurement in Large Range 9
1.2.2 Axial Multi-degree-of-freedom Inspection 13
1.3 Brief Outlines 15
II. Principle and Method of Error Inspection 16
2.1 Six-degree-of-freedom Geometric Errors in A Linear Axis 16
2.2 Displacement Measurement 17
2.2.1 Polarized Fabry-Pérot Interferometer 17
2.2.2 Polarized Differential Fabry-Pérot Interferometer 22
2.2.3 Error Analysis 32
2.2.3.1 Nonlinearity Error of Signals 32
2.2.3.2 Tolerance Evaluation of Installation for Components in Optical Cavity 34
2.2.3.3 Assembly and Installation Errors of Instrument 35
2.3 Straightness Measurement 38
2.4 Measurement of Pitch and Yaw Angle 41
2.5 Automatic Optical Alignment 44
2.6 Inspection Specification 47
2.6.1 Calibration of a Transducer 48
2.6.2 Calibration of a Linear Axis in Machine Tool 48
III. System Structure 52
3.1 Module and Optomechanical Structure 52
3.1.1 Automatic Alignment Module for Optical Axes 52
3.1.2 Displacement Measurement Module 56
3.1.2.1 Polarized Structure 58
3.1.2.2 Polarized Differential Structure 61
3.1.3 Measurement Module of Straightness 64
3.1.4 Measurement Module of Pitch and Yaw Angle 66
3.2 Signal Processing 68
3.2.1 Displacement Measurement Module 68
3.2.1.1 Polarized Structure 68
3.2.1.2 Polarized Differential Structure 70
3.2.2 Position and Angle Measurement Module 71
3.3 Modular Integration 71
IV. Experimental Results and Analyses 75
4.1 Performance Verification of Measurement Modules 75
4.1.1 Automatic Optical Alignment 75
4.1.2 Displacement Measurement 78
4.1.2.1 Polarized Structure 79
4.1.2.2 Polarized Differential Measurement Module 86
4.1.3 Straightness Measurement 88
4.1.4 Measurement of Pitch and Yaw Angle 90
4.2 Measurement Results of Integrated Modules 96
4.2.1 Results of Linear Displacement Measurement in Single Axis 96
4.2.1.1 Calibration of a Piezo Transducer 96
4.2.1.2 Calibration of a Linear Axis 100
4.2.2 Results of Five-degree-of-freedom Inspection 101
V. Conclusion 107
Reference 110
參考文獻 [1] G. Jaeger, “Three-Dimensional Nanopositioning, Nanomeasuring Machine with a Resolution of 0.1 nm”, Optoelectronics, Instrumentation and Data Processing, Vol. 46, pp.318-323, 2010.
[2] W.D. Pozzo, “Inference of cosmological parameters from gravitational waves: Applications to second generation interferometers”, Physical review. D, Particles and fields, Vol. 86, pp.3011, 2011.
[3] G. Raina, “Atomic Force Microscopy as a Nanometrology Tool: Some Issues and Future Targets”, Journal of Metrology Society of India, Vol. 28, pp.311-319, 2013.
[4] J.C. Lee, K.I. Lee, S.H. Yang, “Development of compact three-degrees-of-freedom compensation system for geometric errors of an ultra-precision linear axis”, Mechanism and machine theory, Vol. 99, pp.72-82, 2016.
[5] R. Ramesh, M.A. Mannan, and A.N. Poo, “Error compensation in machine tools — a review Part I: geometric, cutting-force induced and fixture-dependent errors”, International journal of machine tools & manufacture, Vol. 40, pp.1235-1256, 2000.
[6] F. Viprey, H. Nouira, S. Lavernhe, and C. Tournier, “Novel multi-feature bar design for machine tools geometric errors identification”, Precision engineering, Vol. 46, pp.323-338, 2016.
[7] K.K. Tana, S.N. Huang, T.H. Lee, “Dynamic S-function for geometrical error compensation based on neural network approximations”, Measurement, Vol. 34, pp.143-156, 2003.
[8] H.F.F. Castro, and M. Burdekin, “Dynamic calibration of the positioning accuracy of machine tools and coordinate measuing machines using a laser interferometer” International journal of machine tools & manufacture, Vol. 43, pp.947-954, 2003.
[9] P. Rabinowitz, S. F. Jacobs, T. Shultz, and G. Gould, “Cube-corner Fabry-Perot interferometer”, Journal of the Optical Society of America, Vol. 52, pp.452-453, 1962.
[10] K. A. R. B. Pietraszewski, “Recent Developments in Fabry-Perot Interferometer”, ASP Conference Series, Vol. 195, pp.591-596, 2000.
[11] J. R. Lawall, “Fabry-Perot metrology for displacements up to 50 mm”, Journal of the Optical Society of America. A, Optics, image science, and vision, Vol. 22, pp.2786-2798, 2005.
[12] Y.C. Wang, L.H. Shyu, and C.P. Chang, “The Comparison of Environmental Effects on Michelson and Fabry-Perot Interferometers Utilized for the Displacement Measurement”, Sensors, Vol. 10, pp.2577-2586, 2010.
[13] J.M. Vaughan, “Fabry–Perot interferometer history theory practice and applications”, Adam Hilger, pp. 1-43, 1989.
[14] Renishaw XL-80 Laser Measurement System. Available online: https://www.renishaw.com/media/pdf/en/5d15dd21874642ba986dbdefb6ede174.pdf (accessed on 3 June 2020).
[15] Keysight Technologies 5530 Dynamic Calibrator. Available online: https://www.keysight.com/main/redirector.jspx?action=ref&cname=EDITORIAL&ckey=1750511& c=cht&cc=TW&nfr=-536900386.0.00 (accessed on 3 June 2020).
[16] Renishaw XM-60 Multi-Axis Calibrator. Available online: http://resources.renishaw.com/en/details/brochure-xm-60-multi-axis-calibrator--111830 (accessed on 3 June 2020).
[17] Q. Huang, X. Liu, and L. Sun, “Homodyne laser interferometric displacement measuring system with nanometer accuracy”, In Proceedings of the Ninth International Conference on Electronic Measurement & Instruments, Beijing, China, 16–19, August 2009.
[18] W.Y. Jywe, T.H. Hsieh, P.Y. Chen, and M.S. Wang, “An Online Simultaneous Measurement of the Dual-Axis Straightness Error for Machine Tools”, Applied Sciences, Vol. 8, Issue 11, 2018.
[19] T.H. Hsieh, P.Y. Chen, W.Y. Jywe, G.W. Chen, and M.S. Wang, “A Geometric Error Measurement System for Linear Guideway Assembly and Calibration”, Applied Sciences, Vol. 9, Issue 3, 2019.
[20] A. Sacconi, G.B. Picotto, and W. Pasin, “The IMGC Calibration Setup”, IEEE Transactions on Instrumentation and Measurement, Vol. 48, pp.385-386, 1999.
[21] L. Bruno, P. Mainieri, and A. Poggialini, “Design and calibration of a low-cost open-loop PZT actuator for phase-shifting speckle interferometry”, Proc. of SPIE, Vol. 4933, pp.317-322, Speckle Metrology 2003.
[22] L. Bruno, A. Poggialini, and G. Felice, “Design and calibration of a piezoelectric actuator for interferometric applications”, Optics and Lasers in Engineering, Vol. 45, Issue 12, pp.1148–1156, 2007.
[23] F.D.A.A Barbosa, G. Nader, R.T. Higuti, and C. Kitano, “A Simple Interferometric Method To Measure The Calibration Factor And Displacement Amplification In Piezoelectric Flextensional Actuators”, Revista Controle & Automação, Vol. 21, pp.577–587, 2010.
[24] K.A. Murphy, M.F. Gunther, A.M. Vengsarkar, R.O. Claus, “Quadrature phase-shifted, extrinsic Fabry–Perot optical fiber sensors”, Optics Letters, Vol. 16, No. 4, pp. 273–275, 1991.
[25] L. H. Shyu, Y. C. Wang, C. P. Chang, P. C. Tung, and E. Manske, “Investigation on displacement measurements in the large measuring range by utilizing multibeam interference”, Sensor Letter, Vol. 10, pp. 1109-1112, 2012.
[26] C.P. Chang, P.C. Tung, L.H. Shyu, Y.C. Wang, and E. Manske, “Fabry-Perot displacement interferometer for the measuring range up to 100 mm”, Measurement, Vol. 46, pp. 4094-4099, 2013.
[27] Y.C. Wang, L.H. Shyu, C.P. Chang, H.T. Shih and E. Manske, “A Signal Interpolation Method for Fabry-Perot Interferometer Utilized in Mechanical Vibration Measurement”, Measurement, Vol. 92, pp. 83-88, 2016.
[28] C.P. Chang, P.C. Tung, L.H. Shyu, Y.C. Wang, and E. Manske, “Modified Fabry-Perot interferometer for displacement measurement in ultra large measuring range”, Review of Scientific Instruments, Vol. 84, pp. 053105, 2013.
[29] J.E. Griffith, “Dimensional metrology with scanning probe microscopes”, Journal of Applied Physics, Vol. 74, Issue 9, 1993.
[30] G. Raina, “Atomic Force Microscopy as a Nanometrology Tool: Some Issues and Future Targets”, Journal of Metrology Society of India, Vol. 28, Issue 4, pp. 311-319, 2013.
[31] W.D. Pozzo, “Inference of cosmological parameters from gravitational waves: Applications to second generation interferometers”, Physical review D: Particles and fields, Vol. 86, Issue 4, pp. 3011, 2011.
[32] API XD LASER. Available online: https://apimetrology.com/machine-tool-brochure-form/213 (accessed on 3 June 2020).
[33] Y.T. Chen, W.C. Lin, C.S. Liu, “Design and experimental verification of novel six-degree-of freedom geometric error measurement system for linear stage”, Optics and lasers in engineering, Vol. 92, pp. 94-104, 2017.
[34] S. Shimizu, H.S. Lee, and N. Imai, “Simultaneous measuring method of table motion errors in 6 degrees of freedom”, International Journal of the Japan Society for Precision Engineering, Vol. 28, pp. 273-274, 1994.
[35] J. Ni, P.S. Huang, and S.M. Wu, “A multi-degree-of-freedom measurement system for CMM geometric errors”, Journal of Manufacturing Science and Engineering, Vol. 114, Issue 3, pp. 362-369, 1992.
[36] P.S. Huang, J. Ni, “On-line error compensation of coordinate measuring machine”, International Journal of Machine Tools and Manufacture, Vol. 35, Issue 5, pp. 725-738, 1995.
[37] K.C. Fan, and M.J. Chen, “A 6-degree-of-freedom measurement system for the accuracy of XY stages,” Precision engineering, Vol. 24, Issue 1, pp. 15-23, 2000.
[38] K.C. Fan, M.J. Chen, and W. Huang, “A six-degree-of-freedom measurement system for the motion accuracy of linear stages,” International Journal of Machine Tools and Manufacture, Vol. 38, Issue 3, pp. 155-164, 1998.
[39] C. Kuang, Q. Feng, B. Zhang, B. Liu, S. Chen, Z. Zhang, “A four-degree-of-freedom laser measurement system (FDMS) using a single-mode fiber-coupled laser module,” Sensors and Actuators A: Physical, Vol. 125, Issue 1, pp. 100-108, 2005.
[40] L.H. Shyu, C.P. Chang, Y.C. Wang, “Influence of Intensity Loss in the Cavity of a Folded Fabry-Perot Interferometer on Interferometric Signals”, Review of Scientific Instruments, Vol. 82, pp. 063103, 2011.
[41] Y.C. Wang, L.H. Shyu, P.C Tung, H.T. Shih, J.C. Lin, B.Y. Lee, and J.S. Li, “Optimization of the optical parameters in Fabry-Perot interferometer”, Ilmenau Scientific Colloquium, Vol. 59, 2017.
[42] Y.C. Shih, P.C. Tung, W.Y. Jywe, C.P. Chang, L.H. Shyu, and T.H. Hsieh, 2020, Investigation on the Differential Quadrature Fabry–Pérot Interferometer with Variable Measurement Mirrors, Applied sciences, Vol. 10, No. 18, pp. 6191.
[43] J. Cui, Z. He, Y. Jiu, J. Tan, and T. Sun, “Homodyne laser interferometer involving minimal quadrature phase error to obtain subnanometer nonlinearity”, Applied Optics, Vol. 55, 2016.
[44] T. Keem, S. Gonda, I. Misumi, Q. Huang, and T. Kurosawa, “Removing nonlinearity of a homodyne interferometer by adjusting the gains of its quadrature detector systems”, Applied Optics, Vol. 43, Issue 12, pp. 2443-2448, 2004.
[45] P. Hu, J. Zhu, X. Zhai, and J. Tan, “DC-offset-free homodyne interferometer and its nonlinearity compensation”, Optics EXPRESS, Vol. 23, Issue 7, pp. 8399-8408, 2015.
[46] P. L. M. Heydemann, “Determination and correction of quadrature fringe measurement errors in interferometers”, Applied Optics, Vol. 20, Issue 19, pp. 3382-3384, 1981.
[47] T.B. Eom, J.Y. Kim and K. Jeong, “The dynamic compensation of nonlinearity in a homodyne laser interferometer”, Measurement Science and Technology, Vol. 12, pp. 1734-1738, 2001.
[48] H.T. Shih, P.C. Tung, Y.C. Wang, L.H. Shyu, C.P. Chang, E. Manske, B.Y. Lee, and J.C. Lin, 2018, Measurement module based on a common-path Fabry-Pérot interferometer for determining three-degree-of-freedom motion parameters, euspen’s 18th International Conference & Exhibition, Venice, Italy.
[49] International Standard: ISO230-1, “Test Code for Machine Tools-Part 1: Geometric accuracy of machines operating under no-load or quasi-static conditions”, Third edition, 2012.
[50] H.T. Shih, P.C. Tung, Y.C. Wang, L.H. Shyu, and C.P. Chang, 2018, “five-degree-of-freedom measurement system based on a common-path Fabry-Perot laser interferometer”, International Conference on Smart Sensors and 21st Nano Engineering and Microsystem Technology Conference, Fullon Hotel, Shenkeng District, Taipei.
[51] Y.C. Shih, P.C. Tung, Y.C. Wang, L.H. Shyu, and M. Eberhard, 2020, Linear Displacement Calibration System Integrated with a Novel Auto-Alignment Module for Optical Axes, Sensors, Vol. 20, No. 9, pp. 2462.
[52] International Standard: ASTM-E2309, “Standard Practices for Verification of Displacement Measuring Systems and Devices Used in Material Testing Machines”, Reapproved 2011.
[53] International Standard: ISO230-2, “Test for Machine Tools-Part 2: Determination of Accuracy and Repeatability of Positioning Numerically Controlled Axes”, Third edition, 2006.
[54] Measurement Computing DAQ USB-2537. Available online: http://www.mccdaq.com/usb-data acquisition/USB-2537.aspx (accessed on 24 December 2020).
[55] H.T. Shih, Y.C. Wang, L.H. Shyu, P.C Tung, C.P. Chang, W.Y. Jywe, and J.H. Chen, “Automatic calibration system for micro-displacement devices”, Measurement Science and Technology, Vol. 29, pp. 084003, 2018.
[56] Lih-Horng Shyu, Yung-Cheng Wang, Chung-Ping Chang, Hung-Ta Shih, Eberhard Manske, 2016, “A signal interpolation method for Fabry–Perot interferometer utilized in mechanical vibration measurement”, Measurement, Vol.92, Pages 83-88.
指導教授 董必正(Pi-Cheng Tung) 審核日期 2020-12-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明