博碩士論文 106326010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:104 、訪客IP:18.191.200.47
姓名 王志聖(Jhihs-heng Wang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 離子液體預處理對生廚餘厭氧甲烷產率之影響
(Effect of ionic liquid pretreatment on anaerobic methane production of Uncooked food waste)
相關論文
★ 埔心溪補助灌溉水水質與渠道底泥重金屬含量調查分析★ 桃園航空城三所國小周界大氣PAHs濃度探討
★ 無塵室揮發性有機氣體異味調查探討 -以某晶圓級封裝廠為例★ 利用土壤植栽與固相微萃取探討植作對非離子態有機污染物之吸收模式
★ 零價鐵與硫酸鹽的添加對於水田根圈環境汞 之生物有效性與菌相組成的影響★ 以紫外光/二氧化鈦光催化降解程序去除水溶液相內分泌干擾物質壬基苯酚之研究
★ 異化性鐵還原狀態下非生物性汞氧化還原 作用及其對地下水水質之影響★ 水溶液相中多壁奈米碳管分散懸浮與抑菌效果之相關性探討
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用-以北投垃圾焚化爐為例★ 以淨水污泥灰及廢玻璃為矽鋁源合成MCM-41並應用於重鉻酸鹽吸附之研究
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用 -以台中火力發電廠為例★ 細胞固定化影響厭氧氨氧化程序脫氮效能之研究
★ 藉由非抗性模式細菌對鎘之攝取機制探討量子點的生態毒性潛勢★ 利用生物性聚合物交聯所成穿透式網絡結構穩定污染土壤中之重金屬(鉛、鉻、鎘)
★ 蚯蚓處理加速堆肥廚餘去化可行性評估-以臺北市為例★ 氣相層析三段四極柱串聯質譜儀應用於多溴二苯醚環境樣品之分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 生廚餘由富含木質纖維素之蔬果所組成,此結構在天然環境能有效抵抗病蟲害,然而在厭氧消化過程中會降低微生物對其之利用。本論文評估生廚餘經離子液體[Bmim]Cl預處理是否能溶解木質素與提升厭氧消化產甲烷效率,以及[Bmim]Cl經多次回收再利用對木質素溶解與甲烷產率的趨勢變化。本研究生廚餘之木質纖維素分析顯示,木質素含量普遍都低於10 %,與文獻中常用於離子液體預處理之生質物相比有一段落差。經預處理後生廚餘質量損失約50 %,從生廚餘水解特性實驗研判此批生廚餘易於水解,因此造成質量損失過高。預處理溶劑以雙水相系統進行[Bmim]Cl回收,隨著[Bmim]Cl回收再利用次數增加,回收率呈現下降趨勢,木質素溶解率與生廚餘質量損失率則沒有呈現一定的趨勢。生廚餘經預處理後木質素溶解率除了第一批生廚餘之第三次[Bmim]Cl預處理沒有明顯跡象,其餘生廚餘組別木質素均呈現被溶解跡象。將經預處理與原生餘進行厭氧消化比較,發現每組生廚餘預處理與未預處理之組別甲烷累積產氣量無明顯差別,以ANOVA分析結果P值均大於0.05。研判本論文生廚餘本身木質素含量過低,即使不經預處理也不會改變厭氧消化甲烷產率。根據預處理實驗可知生廚餘經離子液體預處理後質量會大量損失,推測經預處理後[Bmim]Cl與磷酸鉀水溶液具有厭氧消化產甲烷潛能,並搭配COD分析判斷溶解態生廚餘經雙水相系統分布情況。結果顯示兩種經預處理與回收之溶液均無法提升甲烷產率,研判主因為上述實驗並不是即時分析,導致兩種溶劑經長時間擺放造成有機物質被消耗殆盡。本研究結果顯示以[Bmim]Cl對生廚餘進行預處理並無法提升厭氧甲烷產氣量,然而離子液體種類盛多,因此可藉由不斷測試來尋找出最能提升甲烷產率與經濟之種類。經預處理[Bmim]Cl與回收所得磷酸鉀溶液也無法完全排除並無產甲烷潛能,假如能完整掌握此資訊,或許能進一步分析當離子液體失去預處理能力時與回收後磷酸鉀溶液是否能轉成厭氧消化的進料物。
摘要(英) Uncooked food waste is primarily composed of raw fruits and vegetables rich in lignocellulose. This structure can effectively resist pests and diseases in the natural environment, but it can also reduce its potential for biodegradation during anaerobic digestion. The objectives of this study are (i) to examine whether lignin in uncooked food waste can be effectively destroyed by the ionic liquid [Bmim]Cl resulting in enhanced methane production in a subsequent anaerobic digestion process, and (ii) to assess whether the ionic liquid [Bmim]Cl can be recycled and reused. Results of lignocellulose analysis show that the lignin content in the uncooked food waste samples was generally less than 10%, which is a bit lower than the biomass used for ionic liquids pretreatment in the literature. After ionic liquid pretreatment, the weight of uncooked food waste was lost by about 50%, presumably due to the higher hydrolysis nature of the sample resulting in excessive mass quantity loss during the pretreatment. [Bmim]Cl was recovered in the pretreatment solvent using an aqueous biphasic system, and as the repeat number of [Bmim]Cl recovery and reuse increased, it is observed that the recovery rates decreased, but the lignin dissolution rate and uncooked food waste mass loss rate did not exhibit a distinct pattern. Lignin dissolution was observed for most of the uncooked food waste samples after pretreatment with [Bmim]Cl, except for the third-time [Bmim]Cl pretreatment on the first batch of the collected uncooked food waste samples. Comparing the anaerobic digestion of pretreated and untreated samples, it was found that differences in the cumulative methane production were not significant (p < 0.05 by ANOVA analysis). This might be attributed to the low lignin content of food waste samples that led to similar methane production even without pretreatment. According to the pretreatment experiment, it can be seen that the weight of uncooked food waste will be greatly lost after ionic liquid pretreatment. It is speculated that [Bmim]Cl and potassium phosphate aqueous solution have the potential of anaerobic digestion to produce methane after pretreatment, and combined with COD analysis to determine the dissolved uncooked food waste distribution through the aqueous biphasic systems. The results showed that the two pretreated and recovered solutions could not increase the methane production. The main reason for the research was that the above experiment was not realtime analysis, which caused the two solvents to be used for a long time and the organic matter was consumed.
The results of this study show that pretreatment of uncooked food waste with [Bmim]Cl does not increase the production of anaerobic methane production. However, there are many types of ionic liquids, so continuous testing can be used to find the most efficient and economical method for improving methane production. species. The potassium phosphate solution obtained after pretreatment with [Bmim]Cl and recovery can not be completely ruled out and has no potential for methanogenesis. If this information can be fully grasped, it may be possible to further analyze when the ionic liquid lost pre-treatment capacity and the recovered potassium phosphate solution can be converted into anaerobic digestion of the feed.
關鍵字(中) ★ 離子液體
★ 生廚餘
★ 木質素溶解
★ 厭氧消化
★ 甲烷產量
關鍵字(英) ★ ionic liquids
★ uncooked food waste
★ lignin dissolution
★ anaerobic digestion
★ methane production
論文目次 摘要…………………………………………………………………………….i
Abstract…………………………………………………………………...…..iii
致謝…………………………………………………………………………....v
目錄……………………………………………………………………….…..vi
圖目錄……………………………………………………………….....……..ix
表目錄…………………………………………………………………...…...xii
第一章 前言…………………………………………………………………..1
1.1 研究緣起……………………………………………………………...…..1
1.2 研究目的………………………………………………………………….2
第二章 文獻回顧……………………………………………………………..4
2.1 生廚餘現狀……………………………………………………………….4
2.2 木質纖維素構成之探討………………………………………………….5
2.3 含木質纖維素生質物之預處理………………………………………….8
2.3.1 蒸氣爆炸預處理…………………………………………………..9
2.3.2 生物預處理………………………………………………………..9
2.3.3 物理預處理……………………………………………………....10
2.3.4 化學預處理………………………………………………………11
2.4 離子液體………………………………………………………………...14
2.4.1 基本特性…………………………………………………………14
2.4.2 離子液體對含木質纖維素之生質物之預處理…………………15
2.4.3 經預楚後離子液體之回收方法…………………………………18
2.5 厭氧消化………………………………………………………………...21
2.6 厭氧消化限制因子……………………………………………………...24
2.6.1 溫度………………………………………………………………24
2.6.2 揮發性脂肪酸………………………………………….……...…26
2.6.3 pH…………………………………………………………………26
2.6.4 C/N………………………………………………………………..27
第三章 實驗步驟與方法……………………………………………………28
3.1 實驗流程……………………………………………………………...…28
3.2 實驗材料……………………………………………………………...…30
3.3 生廚餘前處理…………………………………………………………...30
3.4 基本特性分析…………………………………………………………...33
3.4.1 水份分析…………………………………………………………33
3.4.2 灰份分析…………………………………………………………33
3.4.3 揮發性固體分析…………………………………………………33
3.4.4 元素分析…………………………………………………………34
3.4.5 COD……………………………………………………………….35
3.4.6 纖維素、半纖維素與木質素分析………………………….…...36
3.5 生廚餘預處理…………………………………………………………...39
3.6 離子液體回收再利用…………………………………………………...41
3.7 生廚餘厭氧消化………………………………………………………...45
3.8 經預處理後離子液體與磷酸鉀水溶液之COD與厭氧消化分析.……48
3.8.1 厭氧消化………………………………………………………….48
3.8.2 COD分析…………………………………………………………50
第四章 結果與討論…………………………………………………………51
4.1 生廚餘基本特性分析……………….………………………………......51
4.2 離子液體對生廚餘進行預處理之結果………………………………...53
4.3 厭氧消化結果…………………………………………………………...61
4.3.1 厭氧污泥系統檢測分析………………………………………....61
4.3.2 預處理生廚餘之厭氧消化分析………………………………....65
4.4 經預處理後離子液體與磷酸鉀水溶液之後續分析…………………...77
4.4.1 厭氧消化分析……………………………………………………77
4.4.2 COD分析………………………………………………………....92
第五章 結論與建議………………………………………………………....94
5.1 結論……………………………………………………………………...97
5.2 建議……………………………………………………………………...95
參考文獻……………………………………………………………………..96
附錄………………………………………………………………………….108
參考文獻 Ademark, Pia, Arthur Varga, József Medve, Vesa Harjunpää, Torbjörn Drakenberg, Folke Tjerneld, and Henrik Stålbrand. 1998. ′Softwood hemicellulose-degrading enzymes from Aspergillus niger: purification and properties of a β-mannanase′, Journal of biotechnology, 63: 199-210.
Akutsu, Yohei, Yu-You Li, Madan Tandukar, Kengo Kubota, and Hideki Harada. 2008. ′Effects of seed sludge on fermentative characteristics and microbial community structures in thermophilic hydrogen fermentation of starch′, International journal of hydrogen energy, 33: 6541-48.
Allison, Brittany J, Juan Canales Cádiz, Nardrapee Karuna, Tina Jeoh, and Christopher W Simmons. 2016. ′The effect of ionic liquid pretreatment on the bioconversion of tomato processing waste to fermentable sugars and biogas′, Applied biochemistry and biotechnology, 179: 1227-47.
Antonopoulou, Georgia, Katerina Stamatelatou, and Gerasimos Lyberatos. 2010. "Exploitation of rapeseed and sunflower residues for methane generation through anaerobic digestion: the effect of pretreatment." In Proceedings of the 2nd International Conference of Industrial Biotechnology.
Appels, Lise, Jan Baeyens, Jan Degreve, and Raf Dewil. 2008. ′Principles and potential of the anaerobic digestion of waste-activated sludge′, Progress in energy and combustion science, 34: 755-81.
Appels, Lise, Ado Van Assche, Kris Willems, Jan Degrève, Jan Van Impe, and Raf Dewil. 2011. ′Peracetic acid oxidation as an alternative pre-treatment for the anaerobic digestion of waste activated sludge′, Bioresource technology, 102: 4124-30.
Arato, Claudio, E Kendall Pye, and Gordon Gjennestad. 2005. ′The lignol approach to biorefining of woody biomass to produce ethanol and chemicals′, Applied biochemistry and biotechnology, 123: 871-82.
Batstone, DJ, J Keller, RB Newell, and M Newland. 2000. ′Modelling anaerobic degradation of complex wastewater. I: model development′, Bioresource technology, 75: 67-74.
Belay, Negash, Ramaraj Boopathy, and Gijs Voskuilen. 1997. ′Anaerobic Transformation of Furfural by Methanococcus deltae (Delta) LH′, Appl. Environ. Microbiol., 63: 2092-94.
Berlin, Alex, Mikhail Balakshin, Neil Gilkes, John Kadla, Vera Maximenko, Satoshi Kubo, and Jack Saddler. 2006. ′Inhibition of cellulase, xylanase and β-glucosidase activities by softwood lignin preparations′, Journal of biotechnology, 125: 198-209.
Brandt, Agnieszka, John Gräsvik, Jason P Hallett, and Tom Welton. 2013. ′Deconstruction of lignocellulosic biomass with ionic liquids′, Green chemistry, 15: 550-83.
Bruni, Emiliano, Anders Peter Jensen, and Irini Angelidaki. 2010. ′Comparative study of mechanical, hydrothermal, chemical and enzymatic treatments of digested biofibers to improve biogas production′, Bioresource technology, 101: 8713-17.
Carrère, H, C Dumas, A Battimelli, DJ Batstone, JP Delgenès, JP Steyer, and I Ferrer. 2010. ′Pretreatment methods to improve sludge anaerobic degradability: a review′, Journal of hazardous materials, 183: 1-15.
Chen, Wen-Hsing, and Yi-Hxuan Li. 2018. ′Methylimidazolium-based ionic liquids influence the biobutanol production by solvent-producing Clostridium′, International biodeterioration & biodegradation, 129: 163-69.
Cheng, Gang, Patanjali Varanasi, Chenlin Li, Hanbin Liu, Yuri B Melnichenko, Blake A Simmons, Michael S Kent, and Seema Singh. 2011. ′Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis′, Biomacromolecules, 12: 933-41.
Chum, Helena L, LJ Douglas, DA Feinberg, and HA Schroeder. 1985. "Evaluation of pretreatments of biomass for enzymatic hydrolysis of cellulose.[Organosolv process, wet oxidation, and steam explosion of wood chips]." In.: Solar Energy Research Inst., Golden, CO (USA); Colorado State Univ., Fort ….
Deshavath, Narendra Naik, V Venkata Dasu, VV Goud, and P Srinivasa Rao. 2017. ′Development of dilute sulfuric acid pretreatment method for the enhancement of xylose fermentability′, Biocatalysis and agricultural biotechnology, 11: 224-30.
Eastman, John A, and John F Ferguson. 1981. ′Solubilization of particulate organic carbon during the acid phase of anaerobic digestion′, Journal (Water Pollution Control Federation): 352-66.
Edwiges, Thiago, Laercio Frare, Bruna Mayer, Leonardo Lins, Jin Mi Triolo, Xavier Flotats, and Mônica Sarolli Silva de Mendonça Costa. 2018. ′Influence of chemical composition on biochemical methane potential of fruit and vegetable waste′, Waste Management, 71: 618-25.
Eskicioglu, Cigdem, Nicolas Terzian, Kevin J Kennedy, Ronald L Droste, and Mohamed Hamoda. 2007. ′Athermal microwave effects for enhancing digestibility of waste activated sludge′, Water Research, 41: 2457-66.
Forster-Carneiro, T, M Pérez, and LI Romero. 2008. ′Influence of total solid and inoculum contents on performance of anaerobic reactors treating food waste′, Bioresource technology, 99: 6994-7002.
Gallert, C, S Bauer, and JJAM Winter. 1998. ′Effect of ammonia on the anaerobic degradation of protein by a mesophilic and thermophilic biowaste population′, Applied microbiology and biotechnology, 50: 495-501.
Gao, Jing, Li Chen, and Zong C Yan. 2014. ′Extraction of dimethyl sulfoxide using ionic-liquid-based aqueous biphasic systems′, Separation and Purification Technology, 124: 107-16.
Gao, Jing, Li Chen, Zongcheng Yan, and Lin Wang. 2013. ′Effect of ionic liquid pretreatment on the composition, structure and biogas production of water hyacinth (Eichhornia crassipes)′, Bioresource technology, 132: 361-64.
Gao, Jing, Li Chen, Ke Yuan, Hemao Huang, and Zongcheng Yan. 2013. ′Ionic liquid pretreatment to enhance the anaerobic digestion of lignocellulosic biomass′, Bioresource technology, 150: 352-58.
Ghosh, S, MP Henry, A Sajjad, MC Mensinger, and JL Arora. 2000. ′Pilot-scale gasification of municipal solid wastes by high-rate and two-phase anaerobic digestion (TPAD)′, Water Science and Technology, 41: 101-10.
Gomec, Cigdem Y, Moonil Kim, Y Ahn, and Richard E Speece. 2002. ′The role of pH in mesophilic anaerobic sludge solubilization′, Journal of Environmental Science and Health, Part A, 37: 1871-78.
Grethlein, Hans E. 1985. ′The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates′, Bio/technology, 3: 155-60.
I Nyoman, Widiasa, and Johari Seno. 2010. ′The kinetic of biogas production rate from cattle manure in batch mode′, International Journal of chemical and biological Engineering, 3: 39-45.
Izumi, Kouichi, Yu-ki Okishio, Norio Nagao, Chiaki Niwa, Shuichi Yamamoto, and Tatsuki Toda. 2010. ′Effects of particle size on anaerobic digestion of food waste′, International biodeterioration & biodegradation, 64: 601-08.
Jackowiak, David, David Bassard, André Pauss, and Thierry Ribeiro. 2011. ′Optimisation of a microwave pretreatment of wheat straw for methane production′, Bioresource technology, 102: 6750-56.
Jędrzejczyk, Marcin, Emilia Soszka, Martyna Czapnik, Agnieszka M Ruppert, and Jacek Grams. 2019. ′Physical and chemical pretreatment of lignocellulosic biomass.′ in, Second and Third Generation of Feedstocks (Elsevier).
Kataria, Rashmi, Annemerel Mol, Els Schulten, Anton Happel, and Solange I Mussatto. 2017. ′Bench scale steam explosion pretreatment of acid impregnated elephant grass biomass and its impacts on biomass composition, structure and hydrolysis′, Industrial Crops and Products, 106: 48-58.
Kawai, Minako, Norio Nagao, Nobuaki Tajima, Chiaki Niwa, Tatsushi Matsuyama, and Tatsuki Toda. 2014. ′The effect of the labile organic fraction in food waste and the substrate/inoculum ratio on anaerobic digestion for a reliable methane yield′, Bioresource technology, 157: 174-80.
Kim, Jung Kon, Baek Rock Oh, Young Nam Chun, and Si Wouk Kim. 2006. ′Effects of temperature and hydraulic retention time on anaerobic digestion of food waste′, Journal of Bioscience and bioengineering, 102: 328-32.
Kim, Sehoon, and Mark T Holtzapple. 2005. ′Lime pretreatment and enzymatic hydrolysis of corn stover′, Bioresource technology, 96: 1994-2006.
Kim, Sehoon, and Mark T Holtzapple. 2006. ′Effect of structural features on enzyme digestibility of corn stover′, Bioresource technology, 97: 583-91.
Kivaisi, Amelia K, and S Eliapenda. 1994. ′Pretreatment of bagasse and coconut fibres for enhanced anaerobic degradation by rumen microorganisms′, Renewable energy, 5: 791-95.
Komemoto, K, YG Lim, N Nagao, Y Onoue, C Niwa, and T Toda. 2009. ′Effect of temperature on VFA’s and biogas production in anaerobic solubilization of food waste′, Waste Management, 29: 2950-55.
Lan, Wu, Chuan-Fu Liu, and Run-Cang Sun. 2011. ′Fractionation of bagasse into cellulose, hemicelluloses, and lignin with ionic liquid treatment followed by alkaline extraction′, Journal of agricultural and food chemistry, 59: 8691-701.
Larsen, HE, B Munch, and Jørgen Schlundt. 1994. ′Use of indicators for monitoring the reduction of pathogens in animal waste treated in biogas plants′, Zentralblatt fur Hygiene und Umweltmedizin= International journal of hygiene and environmental medicine, 195: 544-55.
Liu, Guangqing, Ruihong Zhang, Hamed M El-Mashad, and Renjie Dong. 2009. ′Effect of feed to inoculum ratios on biogas yields of food and green wastes′, Bioresource technology, 100: 5103-08.
Lv, Yuxia, Jin Wu, Jinming Zhang, Yanhua Niu, Chen-Yang Liu, Jiasong He, and Jun Zhang. 2012. ′Rheological properties of cellulose/ionic liquid/dimethylsulfoxide (DMSO) solutions′, Polymer, 53: 2524-31.
Møller, Henrik B, Sven Gjedde Sommer, and Birgitte Kiær Ahring. 2004. ′Methane productivity of manure, straw and solid fractions of manure′, Biomass and bioenergy, 26: 485-95.
Mamar, S Ait Si, and A Hadjadj. 1990. ′Radiation pretreatments of cellulose materials for the enhancement of enzymatic hydrolysis′, International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry, 35: 451-55.
Martín-Sampedro, R, ME Eugenio, JC García, F Lopez, JC Villar, and MJ Diaz. 2012. ′Steam explosion and enzymatic pre-treatments as an approach to improve the enzymatic hydrolysis of Eucalyptus globulus′, Biomass and bioenergy, 42: 97-106.
Meine, Niklas, Flavio Benedito, and Roberto Rinaldi. 2010. ′Thermal stability of ionic liquids assessed by potentiometric titration′, Green chemistry, 12: 1711-14.
Mertens, David R. 2002. ′Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study′, Journal of AOAC international, 85: 1217-40.
Monlau, Florian, Eric Latrille, Aline Carvalho Da Costa, Jean-Philippe Steyer, and Hélène Carrère. 2013. ′Enhancement of methane production from sunflower oil cakes by dilute acid pretreatment′, Applied energy, 102: 1105-13.
Neumann, Jennifer, Chul-Woong Cho, Stephanie Steudte, Jan Köser, Marc Uerdingen, Jorg Thöming, and Stefan Stolte. 2012. ′Biodegradability of fluoroorganic and cyano-based ionic liquid anions under aerobic and anaerobic conditions′, Green chemistry, 14: 410-18.
Neumann, Jennifer, Olav Grundmann, Jorg Thöming, Michael Schulte, and Stefan Stolte. 2010. ′Anaerobic biodegradability of ionic liquid cations under denitrifying conditions′, Green chemistry, 12: 620-27.
Neves, L, Rosário Oliveira, and MM Alves. 2004. ′Influence of inoculum activity on the bio-methanization of a kitchen waste under different waste/inoculum ratios′, Process Biochemistry, 39: 2019-24.
Padrino, Beatriz, Marta Lara-Serrano, Silvia Morales-delaRosa, José M Campos-Martín, José Luis García Fierro, Fernando Martínez, Juan Antonio Melero, and Daniel Puyol. 2018. ′Resource recovery potential from lignocellulosic feedstock upon lysis with ionic liquids′, Frontiers in bioengineering and biotechnology, 6: 119.
Pagliaccia, Pamela, Agata Gallipoli, Andrea Gianico, Fausto Gironi, Daniele Montecchio, Carlo Pastore, Luigi di Bitonto, and Camilla M Braguglia. 2019. ′Variability of food waste chemical composition: Impact of thermal pre-treatment on lignocellulosic matrix and anaerobic biodegradability′, Journal of environmental management, 236: 100-07.
Perlack, Robert D. 2005. Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply (Oak Ridge National Laboratory).
Prasad, S, Anoop Singh, N Jain, and HC Joshi. 2007. ′Ethanol production from sweet sorghum syrup for utilization as automotive fuel in India′, Energy & Fuels, 21: 2415-20.
Puyuelo, Belén, Sergio Ponsá, Teresa Gea, and Antoni Sánchez. 2011. ′Determining C/N ratios for typical organic wastes using biodegradable fractions′, Chemosphere, 85: 653-59.
Qi, JING, and LÜ Xiuyang. 2007. ′Kinetics of non-catalyzed decomposition of D-xylose in high temperature liquid water′, Chinese Journal of Chemical Engineering, 15: 666-69.
Qian, Xianghong, Shi-You Ding, Mark R Nimlos, David K Johnson, and Michael E Himmel. 2005. ′Atomic and electronic structures of molecular crystalline cellulose Iβ: A first-principles investigation′, Macromolecules, 38: 10580-89.
Romano, Rowena T, and Ruihong Zhang. 2008. ′Co-digestion of onion juice and wastewater sludge using an anaerobic mixed biofilm reactor′, Bioresource technology, 99: 631-37.
Sanchez, E, R Borja, P Weiland, L Travieso, and A Martın. 2001. ′Effect of substrate concentration and temperature on the anaerobic digestion of piggery waste in a tropical climate′, Process Biochemistry, 37: 483-89.
Sawayama, Shigeki, Seiichi Inoue, Tomoaki Minowa, Kenichiro Tsukahara, and Tomoko Ogi. 1997. ′Thermochemical liquidization and anaerobic treatment of kitchen garbage′, Journal of fermentation and bioengineering, 83: 451-55.
Sescousse, Romain, Kim Anh Le, Michael E Ries, and Tatiana Budtova. 2010. ′Viscosity of cellulose− imidazolium-based ionic liquid solutions′, The Journal of Physical Chemistry B, 114: 7222-28.
Shill, Kierston, Sasisanker Padmanabhan, Qin Xin, John M Prausnitz, Douglas S Clark, and Harvey W Blanch. 2011. ′Ionic liquid pretreatment of cellulosic biomass: enzymatic hydrolysis and ionic liquid recycle′, Biotechnology and bioengineering, 108: 511-20.
Stolte, Stefan, Salha Abdulkarim, Jürgen Arning, Anne-Katrin Blomeyer-Nienstedt, Ulrike Bottin-Weber, Marianne Matzke, Johannes Ranke, Bernd Jastorff, and Jorg Thöming. 2008. ′Primary biodegradation of ionic liquid cations, identification of degradation products of 1-methyl-3-octylimidazolium chloride and electrochemical wastewater treatment of poorly biodegradable compounds′, Green chemistry, 10: 214-24.
Sun, Ning, Mustafizur Rahman, Ying Qin, Mirela L Maxim, Héctor Rodríguez, and Robin D Rogers. 2009. ′Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate′, Green chemistry, 11: 646-55.
Sun, Ye, and Jiayang Cheng. 2002. ′Hydrolysis of lignocellulosic materials for ethanol production: a review′, Bioresource technology, 83: 1-11.
Taherzadeh, Mohammad J. 1999. ′Ethanol from lignocellulose: physiological effects of inhibitors and fermentation strategies′, Chalmers Tekniska Hogskola.
Taherzadeh, Mohammad J, and Keikhosro Karimi. 2007. ′Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review′, BioResources, 2: 707-38.
Taherzadeh, Mohammad J, and Keikhosro Karimi. 2008. ′Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review′, International journal of molecular sciences, 9: 1621-51.
Ummalyma, Sabeela Beevi, Rajkumai Devi Supriya, Raveendran Sindhu, Parameswaran Binod, Ramkumar B Nair, Ashok Pandey, and Edgard Gnansounou. 2019. ′Biological pretreatment of lignocellulosic biomass—Current trends and future perspectives.′ in, Second and Third Generation of Feedstocks (Elsevier).
Van Soest, PJ van, JB Robertson, and BA Lewis. 1991. ′Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition′, Journal of dairy science, 74: 3583-97.
Wang, Liqian. 2011. "Different Pretreatments to Enhance Biogas Production: A comparison of thermal, chemical and ultrasonic methods." In.
Ward, Alastair J, Phil J Hobbs, Peter J Holliman, and David L Jones. 2008. ′Optimisation of the anaerobic digestion of agricultural resources′, Bioresource technology, 99: 7928-40.
Wei, Ligang, Kunlan Li, Yingchong Ma, and Xiang Hou. 2012. ′Dissolving lignocellulosic biomass in a 1-butyl-3-methylimidazolium chloride–water mixture′, Industrial Crops and Products, 37: 227-34.
Wei, RR, GW Cheng, and JJ Luo. 2010. ′Biogas and bio-energy production from anaerobic digestion of piggery manure at different temperatures′, J Agric Mech Res, 4: 170-74.
Wyman, Charles. 1996. Handbook on bioethanol: production and utilization (CRC press).
Xiao, Weiping, and William W Clarkson. 1997. ′Acid solubilization of lignin and bioconversion of treated newsprint to methane′, Biodegradation, 8: 61-66.
Yang, Bin, and Charles E Wyman. 2004. ′Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose′, Biotechnology and bioengineering, 86: 88-98.
Yang, Dong, Yi Zheng, and Ruihong Zhang. 2009. "Alkali pretreatment of rice straw for increasing the biodegradability." In 2009 Reno, Nevada, June 21-June 24, 2009, 1. American Society of Agricultural and Biological Engineers.
Zhang, Cheng, Yuting Shao, Lusheng Zhu, Jinhua Wang, Jun Wang, and Yingying Guo. 2017. ′Acute toxicity, biochemical toxicity and genotoxicity caused by 1-butyl-3-methylimidazolium chloride and 1-butyl-3-methylimidazolium tetrafluoroborate in zebrafish (Danio rerio) livers′, Environmental toxicology and pharmacology, 51: 131-37.
Zhang, Cunsheng, Haijia Su, Jan Baeyens, and Tianwei Tan. 2014. ′Reviewing the anaerobic digestion of food waste for biogas production′, Renewable and Sustainable Energy Reviews, 38: 383-92.
Zhang, Ke, Zhijian Pei, and Donghai Wang. 2016. ′Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review′, Bioresource technology, 199: 21-33.
Zheng, Yi, Jia Zhao, Fuqing Xu, and Yebo Li. 2014. ′Pretreatment of lignocellulosic biomass for enhanced biogas production′, Progress in energy and combustion science, 42: 35-53.
Zhu, Jiying, Caixia Wan, and Yebo Li. 2010. ′Enhanced solid-state anaerobic digestion of corn stover by alkaline pretreatment′, Bioresource technology, 101: 7523-28.
陳玖佐, “生質沼氣發酵特性之研究” ,碩士論文,國立中央大學環境工程研究所,中壢市(2010)。
陳榮星, “農畜固態廢棄物厭氧共消化之探討”,博士論文,國立中央大學環境工程研究所,中壢市(2015)。
指導教授 林居慶(Jyu-Cing Lin) 審核日期 2021-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明