博碩士論文 107353015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:80 、訪客IP:3.139.97.157
姓名 費一航(Yi-Hang Fei)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 應用離散元素法與多體動力學於齒輪傳動系統動力分析模型之建立
(Dynamics Modeling of Gear Transmission System Based on Discrete Element Method and Multi-body Dynamics)
相關論文
★ 應用調諧顆粒阻尼器於迴轉式壓縮機振動抑制之研究★ 不同氣體負載下雙螺桿壓縮機動力響應及振動頻譜特徵之預測
★ 新型魯氏真空泵轉子齒形之參數化設計及性能評估★ 以CNC內珩齒機進行螺旋齒輪齒面拓樸修整之研究
★ 雙螺桿壓縮機變導程轉子齒間法向間隙之數值計算方法及其三維幾何模型驗證★ 不同工作條件下冷媒雙螺桿壓縮機之轉子受力分析及動載響應預測
★ 應用多體動力學及離散元素法於具阻尼顆粒齒輪及軸承系統抑振之研究★ 具齒廓修形內嚙合非圓形齒輪創成之方法建立與其傳動誤差分析
★ 雙螺桿壓縮機於CFD仿真模擬之三維幾何簡化方法建立★ 航空發動機齒輪箱傳動系統之強度分析與改善
★ 電動車差速齒輪傳動系統之動載分析與性能評估★ 指狀銑刀安裝偏差對真空泵螺桿轉子加工精度影響之研究
★ 以CNC內珩齒機加工具鼓形之錐狀齒輪之研究★ 應用阻尼顆粒於旋轉機械之振動抑制及動平衡設計
★ 考量氣體負載下迴轉式壓縮機動態負載分析模型之建立★ 內嚙合珩磨加工圓柱齒輪與螺桿轉子方法之 研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 齒輪傳動系統正朝著高速、重負載和高精度方向發展,對其動態性能要求越來越高,而在傳動過程中本身的時變接觸剛度、加工誤差與轉軸變形等也會對系統動態特性產生影響,結構的振動、噪音和運轉穩定性越來越受到業界關注。顆粒阻尼技術(Particle Damping Technology, PDT)是一種被動減振方法,透過顆粒間、顆粒與結構體腔壁間的非彈性碰撞和摩擦作用耗能。本文透過多體系統動力學(Multi-body Dynamics, MBD)與離散元素法(Discrete Element Method, DEM)雙向耦合分析方法,考慮齒輪嚙合時之接觸剛度,以有限軸段理論(Finite Segment Method)研究傳動軸彈性變形與阻尼顆粒對於齒輪系統動態響應的影響,研究結果不僅證實有限軸段理論對於模擬轉軸之彈性變形可行且有效,亦證實阻尼顆粒能有效抑制齒輪傳動時之振動。
摘要(英) Gear transmission system is developing towards high speed, heavy load and high precision, the requirement of its dynamic performance is increasingly higher. In the transmission process, the time-varying contact stiffness between gears, machining errors of mechanical parts, and deformation will affect the dynamic characteristics of the system, including vibration, noise and operational stability, which are concerned by the industry. Particle damping technology (PDT) is a passive vibration-damping method used to dissipate the vibration energy by collision and friction among particles and particles to walls of a structure. In this study, a two-way coupled analysis model of multi-body dynamics (MBD) and discrete element method (DEM) has established to investigate the dynamic responses of a gear transmission system considering elastic deformation of the shafts and damping particles with the time-varying contact stiffness and the Huston finite segment method. The results have verified that the finite segment method is feasible and effective for simulating the shaft deformation and prove that the damping particles can effectively suppress the system vibration during the operation process.
關鍵字(中) ★ 齒輪傳動系統
★ 多體動力學
★ 離散元素法
★ 有限軸段理論
★ 時變接觸剛度
★ 阻尼顆粒
★ 振動
★ 動態響應
關鍵字(英) ★ Gear transmission system
★ multi-body dynamics
★ discrete element method
★ finite segment method
★ time-varying contact stiffness
★ damping particles
★ vibration
★ dynamic response
論文目次 摘要 I
ABSTARACT II
謝誌 IV
目錄 V
圖目錄 VII
表目錄 VIII
符號對照表 IX
第1章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 2
1-3 研究動機與目的 5
1-4 論文架構 6
第2章 齒輪傳動系統負載分析模型建立 8
2-1 齒輪傳動系統基本構造與作動原理 8
2-2 KISSsoft分析軟體簡介 8
2-3 三級齒輪傳動系統分析模型建立流程 10
2-4 理論模型與KISSsoft分析模型數值驗證與分析 13
2-4-1 齒輪負載與強度安全係數之計算 13
2-4-2 齒輪轉軸變形量之計算 15
2-4-3 軸承負載與基本額定壽命之分析 16
2-4-4 齒輪齒面接觸分析 16
第3章 多體動力學與離散元素法雙向耦合模型建立 17
3-1 模型定義與簡化 17
3-2 具阻尼顆粒齒輪傳動系統之動力學模型推導 19
3-3 有限軸段理論 28
3-4 齒輪接觸力計算 30
3-5 顆粒接觸力與摩擦力計算 32
3-6 多體動力學與離散元素法之參數介紹 34
3-7 多體動力學與離散元素法雙向耦合模型求解流程 36
3-8 時間步長計算 38
第4章 動力學模型之結果分析與探討 39
4-1 探討軸變形效應與阻尼顆粒對齒輪接觸力之影響 40
4-2 探討軸變形效應與阻尼顆粒對齒輪加速度之影響 44
4-3 探討軸變形效應與阻尼顆粒對齒輪傳動誤差之影響 49
4-4 探討軸變形效應與阻尼顆粒對軸心位移之影響 52
第5章 總結與未來展望 54
5-1 總結 54
5-2 未來展望 56
參考文獻 57
附錄A 齒輪負載受力分析 59
附錄B 轉軸與軸承負載受力分析 65
附錄C 齒面接觸載荷分析 69
作者介紹 71
參考文獻 [1] 李潤方、王建軍,齒輪系統動力學,北京科學出版社,第7-16頁,1997。
[2] T.P. Huang, and J.S. Ma, “Simulation study on contact stress of gear tooth,” Journal of Mechanical Transmission, Vol. 31,pp. 26-28, 2007.
[3] ISO 6336-1996, Calculation of load capacity of spur and helical gears, 1996.
[4] L. Walha, T. Fakhfakh, and M. Haddar, “Nonlinear dynamics of a two-stage gear system with mesh stiffness fluctuation, bearing flexibility and backlash,” Mechanism and Machine Theory, Vol. 44, pp. 1058-1069, 2009.
[5] M. Vaishya, and R. Singh, “Analysis of periodically varying gear mesh systems with Coulomb friction using Floquet theory,” Journal of Sound and Vibration, Vol. 243, pp. 525-545, 2001.
[6] H. Jiang, Y. Shao, and C.K. Mechefske, “Dynamic characteristics of helical gears under sliding friction with spalling defect,” Engineering Failure Analysis, Vol. 39, pp. 92-107, 2014.
[7] Y. Li, K. Ding, G. He, and H. Lin, “Vibration mechanisms of spur gear pair in healthy and fault states,” Mechanical Systems and Signal Processing, Vol. 81, pp. 183-201.2016.
[8] D.C.H. Yang, and J.Y. Lin, “Hertzian damping, tooth friction and bending elasticity in gear impact dynamics,” Journal of Mechanical Design, Vol. 109, pp. 189-196, 1987.
[9] H.M. Lankarani, and P. Nikravesh, “A contact force model with hysteresis damping for impact analysis of multibody systems,” Journal of Mechanical Design, Vol. 112, pp. 369-376, 1990.
[10] M. Weck, A. Kruse, and A.Gohritz, “Determination of surface fatigue of gears material by roller tests,” Journal of Mechanical Design, Vol. 100, pp. 433-439, 1978.
[11] B. Gupta, A. Choubey, and V. Gautam, “Contact Stress Analysis Of Spur Gear,” International Journal of Engineering Research and Technology, Vol. 1, pp. 1-7, 2012.
[12] D.C.H. Yang, and Z.S. Sun, “A rotary model for spur gear dynamics,” Journal of Mechanical Design, Vol. 107, pp. 529-535, 1985.
[13] A. Fernandez del Rincon, F. Viadero, M. Iglesias, P. Garcia, A. De-Juan, and R. Sancibrian, “A model for the study of meshing stiffness in spur gear transmissions,” Mechanism and Machine Theory, Vol. 61, pp. 30-58, 2013.
[14] R.L Huston, and J.W. Kamman, “Validation of finite segment cable models,” Computers and Structures, Vol.15, pp. 653-660, 1982.
[15] Y. Hu, Y.X. Du, Y. Cao, M.S. Wang, Y.C. Ma, H.Y. Hu, and X.G. Liu, “Research on mathematical model for non-uniformly qualitative suspension cable,” MATEC Web of Conferences, Vol. 175, pp. 1-4, 2018.
[16] E.M. Kerwin, “Macromechanisms of damping in composite structure,” Internal Friction, Damping, and Cyclic Plasticity, Vol. 8, pp. 378-403, 1964.
[17] A. Lenzi, “The use of damping material in industrial machine,” University of Southampton, Doctoral Thesis, 1982.
[18] P.A. Cundall, and O.D.L. Strack, “A discrete numerical model for granular assemblies,” Geotechnique, No. 1, pp. 47-65, 1979.
[19] W.Q. Xiao, Y.X. Huang, H. Jiang, H. Lin, and J.N. Li, “Energy dissipation mechanism and experiment of particle dampers for gear transmission under Centrifugal Loads,” Particuology, Vol. 27, pp. 40-50, 2016.
[20] E. Oberg, Machinery′s Handbook, Industrial Press, 29th Edition, 2012.
[21] R.M. Bosse and A.T. Beck, “Simplified finite elements model to represent mass-spring structures in dynamic simulation,” Proceedings of the joint ICVRAM ISUMA UNCERTAINTIES conference Florianópolis, SC, Brazil, April 8-11, 2018.
[22] Shabana, A.A., Dynamics of multibody systems, Cambridge University Press, Cambridge, 3rd Edition, 2005.
[23] P. Flores, J. Ambrósio, J.C.P. Claro, and H.M. Lankarani, Kinematics and dynamics of multibody systems with imperfect joints, Springer, Berlin, 2008.
[24] 胡國民,顆粒系統的離散元素法分析仿真,武漢理工,第7-34頁,2010。
[25] Y.C. Chung, and Y.R. Wu, “Dynamic modeling of a gear transmission system containing damping particles using coupled multi-body dynamics and discrete element method,” Nonlinear Dynamics, Vol. 98, pp. 129-149, 2019.
指導教授 吳育仁(Yu-Ren Wu) 審核日期 2021-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明