台灣聯合大學系統 109 學年度學士班轉學生考試試	題
---------------------------	---

				 2 - 4 - 4 - 4 - 4		
科目_	微積分	類組別	<u>A2</u>	 共 2 頁	第	_頁

甲、簡答題:共8題,每題8分,共64分。請在答案卷上列出題號依序作答。

請注意:本(甲、)部分,共8題,命題型態為簡答題,不必詳列計算過程,倘若答案被包含在演算過程,將被視為試算流程,不予另行挑出計分。

- 1. Find the value of $\lim_{x\to\infty} \frac{x+\cos x}{x-\cos x}$. Answer:
- 2. Find all horizontal asymptotes of graph of the function $f(x) = \frac{|x|x}{x^2 + 1}$.
- 3. Find the smallest positive (x > 0) inflection point of $F(x) = \int_0^x \cos(t^{3/2}) dt$. Answer:_____
- 4. A building in the shape of a rectangular box is to have a volume of 12,000 ft³. It is estimated that the annual heating and cooling costs will be \$2/square foot for the top, \$4/square foot for the front and back, and \$3/square foot for the sides. What is the minimal annual heating and cooling cost?

Answer :_____

5. Find the values of p for which the function $f(x,y) = \begin{cases} \frac{(xy)^p}{x^4 + y^4}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0) \end{cases}$ is discontinuous at (0,0).

Answer:____

- 6. Evaluate $\int_0^{\ln 5} \int_{e^x}^5 \frac{1}{\ln y} dy dx$. Answer :_____
- 7. How many local extreme values does the function $f(x, y) = 10xye^{-(x^2+y^2)}$ have? Answer:_____
- 8. Let $f(x,y) = kxye^{-(x^2+y^2)}$ be a joint probability density function on $D = \{0 < x < \infty, 0 < y < \infty\}$, then k = ?

Answer:____

台灣聯合大學系統 109 學年度學士班轉學生考試試題

科目<u>微積分</u>類組別<u>A2</u> 共<u>2</u>頁 第<u>2</u>頁

乙、計算、證明題:共3題,每題12分,共36分。須詳細寫出計算及證明過程,否則不予計分。

1. Goods 1 and 2 are available at prices (in dollars) of p_1 per unit of good 1 and p_2 per unit of good 2. A utility function $U(x_1, x_2)$ is a function representing the utility or benefit fo consuming x_j units of good j. The marginal utility of the jth good is $\partial U/\partial x_j$, the rate of increase in utility per unit increase in the jth good. Prove the following law of economics: Given a budget of L dollars, utility is maximized at the consumption level (a, b) where the ratio of marginal utility is equal to the ratio of prices:

$$\frac{\text{Marginal utility of good 1}}{\text{Marginal utility of good 2}} = \frac{\partial U/\partial x_1}{\partial U/\partial x_2} = \frac{p_1}{p_2}$$

2.

a. Determine whether the series $\sum_{n=1}^{\infty} (-1)^n \ln\left(1+\frac{1}{n}\right)$ diverges or converges conditionally or converges absolutely and give reasons for your answer. (6 points)

b. Show that if $\sum_{n=1}^{\infty} a_n$ converges, then $\sum_{n=1}^{\infty} \left(\frac{3+\sin(a_n)}{5}\right)^n$ converges. (6 points)

3. A trough with a trapezoidal cross section is to be constructed with a 1-foot base and sides that are 20 feet long and 1 foot wide, as shown in the figure. Only the angle θ can be varied. What value of θ will maximize the trough's volume?

