類組:電機類 科目:工程數學 C(3005)

共16頁第1頁

- 本測驗試題為多選題(答案可能有一個或多個),請選出所有正確或最適當的答案,並請用2B鉛筆作答於答案卡。
- 共二十題,每題五分。每題ABCDE每一選項單獨計分;每一選項的個別分數為一分,答 錯倒扣一分,倒扣至本份試題()分為止。

Notation: In the following questions, \mathbb{R} is the usual set of all real numbers. We will use underlined letters such as $\underline{a} \in \mathbb{R}^n$ to denote a real, column vector \underline{a} of length n and similarly will use boldface letters such as $\mathbf{A} \in \mathbb{R}^{m \times n}$ to denote a real matrix \mathbf{A} of size $(m \times n)$. $\underline{0}$ is the all-zero column vector of proper length. \mathbf{A}^{\top} means the transpose of matrix \mathbf{A} . rank(\mathbf{A}) denotes the rank of matrix \mathbf{A} . \mathbf{I}_n is the $(n \times n)$ identity matrix. $\|\underline{a}\|$ means the Frobenius norm of vector \underline{a} . $\det(\mathbf{A})$ and $\operatorname{tr}(\mathbf{A})$ are respectively the determinant and trace of square matrix \mathbf{A} . $\operatorname{row}(\mathbf{A})$ and $\operatorname{col}(\mathbf{A})$ are the row and column spaces of \mathbf{A} over \mathbb{R} , respectively. Let \mathcal{W} be a subspace of \mathbb{R}^n ; then by \mathcal{W}^{\perp} we mean the orthogonal complement of \mathcal{W} in the Euclidean inner product space \mathbb{R}^n . By span $\{\underline{w}_1, \ldots, \underline{w}_k\}$ we mean the vector space generated by vectors $\underline{w}_1, \ldots, \underline{w}_k$ over \mathbb{R} . \mathcal{L} : $f(t) \mapsto F(s)$ and $\mathcal{L}^{-1}: F(s) \mapsto f(t)$ denote the unilateral Laplace and inverse Laplace transforms for $t \geq 0$, respectively.

1 Let

$$\mathbf{R} = \begin{bmatrix} 1 & 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

be the reduced row echelon form of a matrix $\mathbf{A} = \begin{bmatrix} \underline{a}_1 & \underline{a}_2 & \underline{a}_3 & \underline{a}_4 & \underline{a}_5 \end{bmatrix}$. Which of the following statements is/are true?

- (A) \underline{a}_2 is the 4×1 zero vector.
- (B) The three column vectors \underline{a}_1 , \underline{a}_4 and \underline{a}_5 , are linearly independent.
- (C) The column space of R is the same as the column space of A.
- (D) Let $\mathbf{B} = \begin{bmatrix} \underline{a}_1 & \underline{a}_2 & \underline{a}_3 \end{bmatrix}$ be a submatrix of \mathbf{A} . The reduced row echelon form of \mathbf{B} is not always a submatrix of \mathbf{R} .
- (E) None of the above is true.

類組:<u>電機類</u> 科目:工程數學 C(3005)

共16頁第2頁

- 2 · Continue from Question —. Which of the following statements is/are true?
 - (A) The nonzero rows of **R** form a basis for $col(\mathbf{A}^{\top})$.
 - (B) Let C be the reduced row echelon form of \mathbf{R}^{\top} . Then $\mathbf{C}^{\top}\mathbf{C}$ is the identity matrix.
 - (C) Let E be a 3×5 matrix and

$$\mathbf{D} = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

be the reduced row echelon of E. We can obtain the intersection of the right null space of A and the right null space of E from R and D without knowing A and E.

- (D) Let **Q** be a 5×5 matrix and rank(**Q**) = 3. Then rank(**AQ**) = 3.
- (E) None of the above is true.

- \mathfrak{Z} Let \mathcal{U} and \mathcal{V} be subspaces of \mathbb{R}^n and T be a linear transformation from \mathbb{R}^n to \mathbb{R}^m . Which of the following sets is/are subspace(s) of \mathbb{R}^n ?
 - (A) $\{\underline{a} + \underline{b} \in \mathbb{R}^n : \underline{a} \in \mathcal{U} \text{ and } \underline{b} \in \mathcal{V}\}.$
 - (B) $\{\underline{a} \in \mathbb{R}^n : \underline{a} \in \mathcal{U} \text{ or } \underline{a} \in \mathcal{V}\}.$
 - (C) $\{\underline{a} \in \mathbb{R}^n : \underline{a} \in \mathcal{U} \text{ and } \underline{a} \in \mathcal{V}\}.$
 - (D) $\{\underline{a} \in \mathbb{R}^n : T(\underline{a}) = \underline{0}\}.$
 - (E) None of the above is true.

類組:<u>電機類</u> 科目:工程數學 C(3005)

共16頁第3頁

- $\mathbf{4}$ Let A, B, and C be $n \times n$ matrices for some positive integer n. Which of the following statements is/are true?
 - (A) $det(\mathbf{A}) = 0$ implies $det(\mathbf{R}) = 0$, where \mathbf{R} is the reduced row echelon form of \mathbf{A} .
 - (B) If $AB = CA = I_n$, then B = C.
 - (C) If $det(\mathbf{AB}) \neq 0$, then **A** is invertible.
 - (D) rank(AB) = rank(BA).
 - (E) None of the above is true.

- 5. Let $\mathcal V$ be the vector space of all $\mathbf A \in \mathbb R^{m \times p}$, with the operations of matrix addition and multiplication of a matrix by a real scalar. Let T be a linear transformation from $\mathcal V$ to $\mathcal V$, and $\{\mathbf B_1, \mathbf B_2, \cdots, \mathbf B_n\}$ be a basis for $\mathcal V$. Suppose U is a linear transformation from $\mathcal V$ to $\mathbb R^n$ given by $U(c_1\mathbf B_1+c_2\mathbf B_2+\cdots+c_n\mathbf B_n)=\begin{bmatrix}c_1&c_2&\cdots&c_n\end{bmatrix}^{\mathsf T}$. Which of the following statements is/are true?
 - (A) Let $\{\mathbf{A}_1, \mathbf{A}_2, \dots, \mathbf{A}_k\}$ be linearly independent over \mathbb{R} . The set $\{U(\mathbf{A}_1), U(\mathbf{A}_2), \dots, U(\mathbf{A}_k)\}$ can be linearly dependent over \mathbb{R} .
 - (B) Suppose the dimension of the range space of T is k over \mathbb{R} . Then $\{T(\mathbf{B}_1), T(\mathbf{B}_2), \cdots, T(\mathbf{B}_k)\}$ are linearly independent over \mathbb{R} .
 - (C) n = m.
 - (D) Let $\underline{c} = U(\mathbf{B}_1)$ and $\underline{a} = U(T(\mathbf{B}_1))$, then $\underline{a}^{\mathsf{T}}\underline{a} = \underline{c}^{\mathsf{T}}\underline{c}$.
 - (E) None of the above is true.

類組:電機類 科目:工程數學 C(3005)

共16 頁第4頁

6 · For the matrix

$$\mathbf{A} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \\ -2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & -1 \end{bmatrix}$$

which of the following statements is/are true?

- (A) rank(A) = 3.
- (B) The sum of eigenvalues of A is 6.
- (C) **A** is similar to **B** = $\begin{bmatrix} 1 & -1 & 4 \\ 0 & 2 & -1 \\ 0 & 0 & 3 \end{bmatrix}$
- (D) The system of linear equations $\mathbf{A} \underline{x} = [-1 \ 1 \ 1]^{\top}$ has a solution.
- (E) None of the above is true.

 $\mathbf{7}$. For a non-zero matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, define

$$\sigma = \max_{\|x\|=1} \|\mathbf{A}\underline{x}\| \tag{1}$$

the maximum Frobenius norm $\|\mathbf{A}\underline{x}\|$ over all unit-norm vectors \underline{x} . Which of the following statements is/are true?

- (A) σ^2 is the maximal eigenvalue of $\mathbf{A}\mathbf{A}^{\top}$.
- (B) If \underline{x}_0 is an optimal solution to equation (1), i.e., $\|\mathbf{A}\underline{x}_0\| = \sigma$, then there exists a vector \underline{x}_1 such that $\mathbf{A}\underline{x}_1 = \underline{0}$ and $\underline{x}_1^{\top}\underline{x}_0 \neq 0$.
- (C) Assume m=n and ${\bf A}$ is nonsingular. Then $\frac{1}{\sigma}=\max_{\|\underline{x}\|=1}\left\|{\bf A}^{-1}\underline{x}\right\|.$
- (D) Assume m = n. Then $I_n + A$ is singular only if $\sigma \geq 1$.
- (E) None of the above is true.

類組:<u>電機類</u> 科目:<u>工程數學 C(3005)</u>

共16 頁 第 5 頁

8 Let $\mathcal V$ together with the inner product $\langle \cdot, \cdot \rangle_{\mathcal V}$ be an inner product space over $\mathbb R$. For a collection of N linearly independent vectors $\{\underline w_1, \dots, \underline w_N\}$ in $\mathcal V$, let $\mathbf M = [m_{i,j}] \in \mathbb R^{N \times N}$ be the corresponding Gram matrix, i.e., the (i,j)-th entry of $\mathbf M$ is given by $m_{i,j} = \langle \underline w_i, \underline w_j \rangle_{\mathcal V}$. Define the following set of real-valued functions $f: \mathcal V \to \mathbb R$

$$\mathcal{F} := \left\{ f(\underline{x}) = \sum_{n=1}^{N} lpha_n \left\langle \underline{w}_n, \underline{x} \right\rangle_{\mathcal{V}} : lpha_1, \dots, lpha_N \in \mathbb{R}
ight\}$$

which is a vector space over \mathbb{R} when combined with standard addition and scalar multiplication of real-valued functions. For any $f(\underline{x}) = \sum_{n=1}^{N} \alpha_n \langle \underline{w}_n, \underline{x} \rangle_{\mathcal{V}}$ and $g(\underline{y}) = \sum_{m=1}^{N} \beta_m \langle \underline{w}_m, \underline{y} \rangle_{\mathcal{V}}$ in the vector space \mathcal{F} , define

$$\langle f, g \rangle_{\mathcal{F}} = \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \beta_m \langle \underline{w}_n, \underline{w}_m \rangle_{\mathcal{V}}$$

Which of the following statements is/are true?

- (A) M is positive definite.
- (B) If $m_{1,1}=2$, $m_{2,2}=1$, and $m_{1,2}=-\frac{1}{2}$, then $\|\underline{w}_1-\underline{w}_2\|_{\mathcal{V}}=4$, where $\|\cdot\|_{\mathcal{V}}$ is the vector norm induced by the inner product $\langle\cdot,\cdot\rangle_{\mathcal{V}}$.
- (C) $\langle f, g \rangle_{\mathcal{F}}$ is an inner product for elements $f, g \in \mathcal{F}$.
- (D) Given $g(\underline{y}) = \langle \underline{w}_1, \underline{y} \rangle_{\mathcal{Y}}$, we have $\langle f, g \rangle_{\mathcal{F}} = f(\underline{w}_1)$ for all $f \in \mathcal{F}$.
- (E) None of the above is true.

類組:<u>電機類</u> 科目:<u>工程數學 C(3005)</u>

共16頁第6頁

- g . Which of the following statements is/are true?
 - (A) Let \underline{x} and \underline{y} be two non-zero vectors in \mathbb{R}^n . The matrix $\underline{x}\underline{y}^{\mathsf{T}}$ is diagonalizable if $\underline{y}^{\mathsf{T}}\underline{x} \neq 0$.
 - (B) If $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric and positive definite, then $\mathbf{A} + \mathbf{A}^{-1} 2\mathbf{I}_n$ is positive semi-definite.
 - (C) For $\underline{u},\underline{v} \in \mathbb{R}^n$ such that $\underline{u}^{\mathsf{T}}\underline{v} \neq 0$, $\mathbb{R}^n = (\operatorname{span}\{\underline{u}\})^{\perp} \oplus \operatorname{span}\{\underline{v}\}$, where \oplus is the operation of direct sum of two vector spaces.
 - (D) For the real matrix $\mathbf{Q} = \mathbf{I}_n \underline{u}\underline{u}^{\mathsf{T}}$, where $\underline{u} \in \mathbb{R}^n$, we have $\det(\mathbf{Q}) + \operatorname{rank}(\mathbf{Q}) = n$.
 - (E) None of the above is true.

- 10. Let $\mathbf{P} \in \mathbb{R}^{n \times n}$ be the orthogonal projection matrix, with respect to the Euclidean inner product, of vectors in \mathbb{R}^n onto $\operatorname{col}(\mathbf{A})$ for some nonzero matrix $\mathbf{A} \in \mathbb{R}^{n \times k}$. Which of the following statements is/are true?
 - $(A) \ \operatorname{tr}(P^\top P) \geq \operatorname{rank}(P).$
 - (B) P can have an eigenvalue larger than 2.
 - (C) $\mathbf{P} \underline{x} \neq \underline{x}$ for all $\underline{x} \in \mathbb{R}^n$.
 - (D) If k < n and $\underline{b} \in \mathbb{R}^n$, the system of linear equations $\mathbf{A}\underline{x} = \underline{b}$ has a unique least squares solution.
 - (E) None of the above is true.

類組:<u>電機類</u> 科目:<u>工程數學 C(3005)</u>

共16 頁 第 7 頁

- 11 Consider the first order differential equation $xy'(x) = y(x) \sqrt{x^2 + (y(x))^2}$ with initial condition y(2) = 0. Which of the following statements is/are true?
 - (A) It is a linear differential equation for the dependent variable y.
 - (B) y(x) is a parabolic function of x.
 - (C) y'(x) = -x.
 - (D) $y''(x) = -\frac{1}{2}$.
 - (E) None of the above is true.

類組: <u>電機類</u> 科目: <u>工程數</u>學 C(3005)

共16頁第8頁

12 · For the following homogeneous second order linear differential equation

$$(x^2 - 1)y''(x) - 2xy'(x) + 2y(x) = 0$$

for x > 1, given one solution $y_1(x) = x$, the other linearly independent solution $y_2(x)$ can then be derived by setting $y_2(x) = v(x)y_1(x)$. Which of the following statements is/are true?

- (A) $(x^3 + x)v''(x) + 2v'(x) = 0$.
- (B) v(x) with $v'(x) = \frac{x^2}{x^2+1}$ corresponds to one of the possible solutions.
- (C) v(x) with $v'(x) = \frac{x^2-1}{x^2}$ corresponds to one of the possible solutions.
- (D) $y(x) = 1 + x + x^2$ is one of the possible solutions.
- (E) None of the above is true.

類組:<u>電機類</u> 科目:<u>工程數學 C(3005)</u>

共 16 頁 第 9 頁

13 · Continue from Question +=. Solve the following non-homogeneous second order linear differential equation

$$(x^2 - 1)y''(x) - 2xy'(x) + 2y(x) = x^2 - 1$$

for x>1 using the variation of parameters, i.e., set the particular solution as

$$y_p(x) = u_1(x)y_1(x) + u_2(x)y_2(x)$$

where $y_1(x)$ and $y_2(x)$ are homogeneous solutions from Question +=. Which of the following statements is/are true?

(A)
$$u_1'(x) = -\frac{x^2+1}{x^2-1}$$

(B)
$$u_1'(x) = -(x^2 + 1)$$

(C)
$$u_2'(x) = \frac{x}{x^2-1}$$

(D)
$$u_2'(x) = x$$

(E) None of the above is true.

科目:工程數學 C(3005) 類組:電機類

共 16 頁 第 10 頁

14. The following second order system

$$\begin{bmatrix} x''(t) \\ y''(t) \end{bmatrix} = \begin{bmatrix} -40 & 8 \\ 12 & -60 \end{bmatrix} \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$$
 (2)

can be transformed into an equivalent first order system

$$\left[egin{array}{c} x_1'(t) \ x_2'(t) \ x_3'(t) \ x_4'(t) \end{array}
ight] = \mathbf{A} \left[egin{array}{c} x_1(t) \ x_2(t) \ x_3(t) \ x_4(t) \end{array}
ight]$$

for some real matrix A by introducing the four functions $x_1(t) = x(t)$, $x_2(t) = x'(t)$, $x_3(t) = y(t)$ and $x_4(t) = y'(t)$. Which of the following statements is/are true?

(A)
$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -40 & 0 & 8 & 0 \\ 0 & 0 & 0 & 1 \\ 12 & 0 & -60 & 0 \end{bmatrix}$$

(B) $\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -40 & 8 & 0 & 0 \\ 12 & -60 & 0 & 0 \end{bmatrix}$

(B)
$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -40 & 8 & 0 & 0 \\ 12 & -60 & 0 & 0 \end{bmatrix}$$

- (C) -36 is one of the eigenvalues of A.
- (D) 8 is one of the eigenvalues of A.
- (E) None of the above is true.

類組: 電機類 科目: 工程數學 C(3005)

共 16 頁 第 11 頁

- 75. Continue from Question $+ \varpi$. Find the particular solution of the second order system in equation (2) with initial conditions x(0) = 2, x'(0) = 12, y(0) = 1 and y'(0) = 6. Which of the following statements is/are true?
 - (A) $x(t) = 2e^{6t}$.
 - (B) $x(t) = 2\cos(6t) + 2\sin(6t)$.
 - (C) $y(t) = e^{6t}$.
 - (D) $y(t) = \cos(6t) + \sin(6t)$.
 - (E) None of the above is true.

類組:<u>電機類</u> 科目:<u>工程數學 C(3005)</u>

共 16 頁 第 12 頁

16 . Consider the following second order differential equation

$$3t^2y''(t) + \sin(t)y'(t) - \cos(t)y(t) = 0.$$

Let $y_1(t) = t^{r_1} \sum_{n=0}^{\infty} a_n t^n$ and $y_2(t) = t^{r_2} \sum_{n=0}^{\infty} b_n t^n$ be two linearly independent Frobenius series solution for y(t) in the above differential equation when t > 0. Assuming $r_1 \ge r_2$ and $a_0 = 1$, which of the following statements is/are true regarding the solution $y_1(t)$?

- (A) $r_1 = 1$.
- (B) $a_1 = \frac{1}{2}$
- (C) $a_2 = -\frac{1}{60}$
- (D) $a_3 = \frac{1}{1920}$.
- (E) None of the above is true.

類組:<u>電機類</u> 科目:<u>工程數學 C(3005)</u>

共16 頁 第13頁

- 17 Continue from Question + Assuming $b_0 = 2$, which of the following statements is/are true regarding the solution $y_2(t)$?
 - (A) $r_2 = -\frac{1}{6}$.
 - (B) $b_1 = 0$
 - (C) $b_2 = -\frac{5}{18}$
 - (D) $b_3 = \frac{61}{12960}$.
 - (E) None of the above is true.

類組:<u>電機類</u> 科目:<u>工程數學 C(3005)</u>

共 16 頁 第14 頁

18 . Consider the following differential equation for the function y(t) defined for $t \geq 0$

$$y'(t) = \frac{2}{t} \left[y(t) \star (\cosh(t)u(t)) \right]$$

where u(t) is the usual unit-step (Heaviside) function and where \star is the usual convolutional operation of two functions. Assume y(t) = 0 for t < 0. Given the initial condition y(0) = 1, which of the following statements is/are true regarding the Laplace transform $Y(s) = \mathcal{L}\{y(t)\}$ of solution y(t) in the above equation?

- (A) $Y(s=\frac{1}{2})=-6$
- (B) Y(s=1)=1
- (C) $Y(s=2) = \frac{3}{2}$
- (D) $Y(s=3) = \frac{4}{3}$
- (E) None of the above is true.

類組:<u>電機類</u> 科目:<u>工程數學 C(3005)</u>

共16 頁 第15 頁

- 19 · Continue from Question $+ \wedge$. Which of the following statements is/are true regarding the solution y(t)?
 - (A) y'(1) = 1
 - (B) $y'(\pi) = 1$
 - (C) y''(1) = -1
 - (D) $y''(\pi) = 0$
 - (E) None of the above is true.

類組:電機類 科目:工程數學 C(3005)

共 16 頁 第 [6 頁

20 . Consider the following partial differential equation for the bivariate function v(x,t)

$$\frac{\partial}{\partial t}v(x,t)=\frac{\partial^2}{\partial x^2}v(x,t),\ 0\leq x\leq 10,\ t\geq 0$$

subject to conditions

$$\begin{split} & \frac{\partial}{\partial x} v(x,t) \big|_{x=0} = \frac{\partial}{\partial x} v(x,t) \big|_{x=5} = 0, & \text{for all } t \ge 0 \\ & v(x,0) = x^2 - 10x, & \text{for all } x \text{ with } 0 < x < 10. \end{split}$$

Express the solution v(x,t) in the following form

$$v(x,t) = \sum_{n=0}^{\infty} \left[a_n \cos(p_n \pi x) + b_n \sin(q_n \pi x) \right] \exp\left(-r_n \pi^2 t\right)$$

for some constants $a_n, b_n, p_n, q_n, r_n \in \mathbb{R}$ satisfying $0 \le r_0 < r_1 < r_2 < \cdots$ and $a_n^2 + b_n^2 > 0$ for $n = 1, 2, \ldots$ Which of the following statements is/are true?

(A)
$$a_0 = -\frac{50}{3}$$

(B)
$$b_1 = \frac{17}{29}$$

(C)
$$p_3 = \frac{9}{10}$$

(D)
$$r_4 = \frac{32}{50}$$

(E) None of the above is true.