博碩士論文 107621602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.133.124.92
姓名 黎嵐鳳(Lan-Phuong Le)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱
(Evaluating the ensemble precipitation prediction for the 2018AUG23 heavy rainfall event based on the WRF-ROMS coupled model)
相關論文
★ 利用WRF-LETKF同化系統探討掩星折射率觀測對於強降水事件預報之影響★ 改善區域系集卡爾曼濾波器在颱風同化及預報中的spin-up問題-2008年颱風辛樂克個案研究
★ LETKF加速就位法於颱風同化預報之應用★ 利用系集重新定位法改善颱風路徑預報-2011年南瑪都颱風個案研究
★ 利用局地系集轉換卡爾曼濾波器雷達資料同化系統改善定量降水即時預報:莫拉克颱風(2009)★ 利用系集資料同化系統估算區域大氣化學耦合模式中trace物種之排放與吸收:以CO2為例
★ OSSE實驗架構下利用系集預報敏感度工具探討觀測對於颱風路徑預報及結構之影響★ 利用局地系集轉換卡爾曼濾波器雷達資料同化系統改善短期定量降雨預報: SoWMEX IOP8 個案分析
★ 利用系集重新定位法改善對流尺度定量降水即時預報:2009年莫拉克颱風個案研究★ LAPS 短時(0-6小時)系集降水機率預報之評估與應用
★ 利用辛樂克颱風(2008)建立的觀測系統模擬實驗評估系集奇異向量在颱風系集預報之應用★ 雷達資料同化於多重尺度天氣系統(梅雨)的強降雨預報影響:SoWMEX IOP#8 個案研究
★ 基於高解析度系集卡爾曼濾波器之渦旋初始化及其對於颱風強度預報之影響:2010年梅姬颱風個案研究★ 系集轉換卡爾曼漸進式平滑器在資料同化之應用
★ 不同微物理方案在雲可解析模式的系集預報分析: SoWMEX-IOP8 個案★ 利用正交向量改善系集卡爾曼濾波器之系集空間及其對同化與預報之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究探討大氣-海洋交互作用對於一熱帶低壓登陸於臺灣西部所造成之臺灣地區劇烈降雨事件的影響,其發生於2018年8月23至24日。研究中使用兩個系集預報探討本事件,為使用COAWST(the Coupled Ocean-Atmosphere-Aave-Sediment Transport)耦合模式之海洋耦合(coupled)與非耦合(uncoupled)系集,其大氣初始條件來自WRF-LETKF(WRF-Local Ensemble Transform Kalman Filter)資料同化系統。
  比較耦合與非耦合系集的預報結果顯示,耦合系集從臺灣西南部近海到沿岸比非耦合系集有更多雨,這個結果是由於海氣交互作用改變了天氣系統的特徵。由於只有耦合系集能夠模擬海面溫度的日夜變化,這個與非耦合系集的差異導致了兩者降雨量的不同。除此之外,熱通量是熱帶低壓發展的能量來源,因此熱通量在這個降雨事件中扮演了不可或缺的角色。總體來說,非耦合系集比耦合系集有更多熱通量,尤其是在臺灣西南部近海。濕度和溫度都藉由海氣交互作用被改變,導致在臺灣西南方的開放海域有更高的潛熱通量,造成耦合系集在此處有更多降雨。
  依據系集成員的降雨表現與觀測雨量的差異,本研究將兩個系集皆分成三組:與觀測接近的相似組、降雨位置正確但雨量較觀測少的少雨組、以及位置與強度與觀測非常不同的差異組。每組的代表性成員則用來說明有無海氣耦合作用造成之降雨分佈差異。總體而言,非耦合系集傾向於在中國東南方產生另一個不真實的低壓系統,並造成8月24日的降雨。而在耦合系集中這個低壓系統因為海氣交互作用而被抑制。
摘要(英) This study investigates the impact of atmosphere-ocean interactions on a massive rainfall event of 23 and 24 August 2018 over Taiwan, which associates with the tropical depression making landfall in the western portion of Taiwan. There are two ensemble forecast experiments conducting in the present study, which uses the coupled ocean-atmosphere-wave-sediment transport modeling system (COAWST) in two modes (coupled and uncoupled) and the atmospheric initial condition provided by the WRF-Local Ensemble Transform Kalman Filter (WRF-LETKF) data assimilation system.
Comparisons between the coupled and uncoupled ensemble forecasts show that the coupled run tends to have more rain than the uncoupled one from offshore to coastal region of southwestern Taiwan, a result from modifying the characteristics of weather systems by the air-sea interaction. The discrepancy in the magnitude of SST contributes to the difference in rainfall because the coupled run can simulate the SST′s diurnal cycle while the atmosphere-only uncoupled run does not. Besides, the heat fluxes play an essential role in the characteristic of this rainfall event because they are the primary sources of energy for TD′s development. In general, the uncoupled heat fluxes are stronger than that in the coupled run, especially over the offshore southeast of Taiwan. With air-sea coupling, both humidity and temperature are modified, leading to a higher latent heat flux over the open ocean southwest of Taiwan, causing the coupled run has more rainfall there.
The ensemble members of both runs are grouped into three groups with rainfall behaviors similar to, less than, or very different from the observed rainfall. The representative ensemble member from each group is used to illustrate the distinctive features corresponding to the rainfall distribution of each group with and without air-sea coupling. Generally, the uncoupled run tends to generate another low-pressure system southeast of China, which is unrealistic and contributes to the rainfall on 24 August. The emerging of this system is discouraged after air-sea coupling.
關鍵字(中) ★ Air-sea interaction
★ COAWST
關鍵字(英) ★ Air-sea interaction
★ COAWST
論文目次 Abstracti
Table of contentsi v
Tables v
Figures vi
Chapter 1 Introduction1
Chapter 2 Model and data assimilation method 6
2.1 The coupled ocean-atmosphere–wave–sediment transport (COAWST) modeling system 6
2.1.1. Atmosphere component – WRF model6
2.1.2 Ocean component – ROMS model 7
2.1.3 Model coupling 8
2.2 Local Ensemble Transform Kalman Filter (LETKF) 8
Chapter 3 Experiments 10
3.1 Case study - The heavy rainfall event of 23 and 24 August 2018 10
3.2 Experiment Design 10
Chapter 4 General behavior 13
4.1 Data assimilation experiment evaluation 13
4.2 Precipitation: probability matched mean, and ensemble spread 14
4.3 Air and sea surface temperature 17
4.4 Heat flux 19
4.5 Wind 22
Chapter 5: Discussion for selected members 24
5.1 Group 1: The member with the rainfall pattern similar to the observation 24
5.2. Group 2: Coupled member has more rain than the uncoupled one 28
5.3. Group 3: Coupled member has less rain than the uncoupled one 30
Chapter 6 Summary 33
References 36
Tables 40
Figures 41
參考文獻 Bender, M. A., I. Ginis, and Y. Kurihara, 1993: Numerical simulations of tropical cyclone–ocean interaction with a high-resolution coupled model. J. Geophys. Res., 98 , 23245–23263.
____, M. A., and Ginis, I., 2000: Real-case simulations of hurricane–ocean interaction using a high-resolution coupled model: Effects on hurricane intensity. Monthly Weather Review, 128, 917–946.
Black, P. G., D′Asaro, E. A., Drennan, W. M., French, J. R., Niiler, P. P., Sanford, T. B., et al., 2007: Air‐sea exchange in hurricanes: Synthesis of observations from the coupled boundary layer air‐sea transfer experiment. Bulletin of the American Meteorological Society, 88(3), 357–374.
Bright, R.J., Xie, L., and Pietrafesa, L.J., 2002: Evidence of the Gulf Stream′s influence on tropical cyclone intensity. Geophysical Research Letters , 29(16), 481–484.
Chan, J. C. L., Duan, Y., and Shay, L. K., 2001: Tropical cyclone intensity change from a simple ocean–atmosphere coupled model. Journal of Atmospheric Science, 58, 154–172.
Chen, S. M., W. B. Li, Y. Y. Lu, and Z. P. Wen, 2014: Variations of latent heat flux during tropical cyclones over the South China Sea. Meteorological Applications, 21, 717–723.
Do Vale Silva, T., Veleda, D., Araujo, M. and Tyaquiçã, P., 2018: Ocean–atmosphere feedback during extreme rainfall events in eastern northeast Brazil. Journal of Applied Meteorology and Climatology, 57(5), 1211–1229.
Fallmann, J., H. Lewis, J. C. Sanchez, and A. Lock., 2019: Impact of high-resolution ocean–atmosphere coupling on fog formation over the North Sea. Quart. J. Roy. Meteor. Soc., 145, 1180–1201.
Fang, X., , Y.-H. Kuo, and A. Wang, 2011: The impact of Taiwan topography on the predictability of Typhoon Morakot’s record-breaking rainfall: A high-resolution ensemble simulation. Wea. Forecasting, 26, 613–633.
Hendon, H. H., 2005: Air–sea interaction. Intraseasonal Variability in the Atmosphere–Ocean Climate System. W. K. Lau and D. E. Waliser, Eds., Praxis, 436.
Hill, K. A., and G. M. Lackmann, 2009: Analysis of idealized tropical cyclone simulations using the Weather Research and Forecasting model: Sensitivity to turbulence parameterization and grid spacing. Mon. Wea. Rev., 137, 745–765.
Hong, X., S. W. Chang, S. Raman, L. K. Shay, and R. Hodur, 2000: The interaction between Hurricane Opal (1995) and a warm core ring in the Gulf of Mexico. Mon. Wea. Rev., 128, 1347–1365.
Kaplan, J., and M. DeMaria, 2003: Large-Scale Characteristics of Rapidly Intensifying Tropical Cyclones in the North Atlantic Basin. Weather and Forecasting, 18, 1093-1108.
Khain, A., and I. Ginis, 1991: The mutual response of a moving tropical cyclone and the ocean. Beitr. Phys. Atmos., 64 , 125–141.
Liu, B., H. Liu, L. Xie, C. Guan, and D. Zhao, 2011: A coupled atmosphere-wave-ocean modeling system: Simulation of the intensity of an idealized tropical cyclone. Mon. Wea. Rev., 139, 132–152.
Mackey, B. P., , and T. N. Krishnamurti, 2001: Ensemble forecast of a typhoon flood event. Wea. Forecasting, 16 , 399–415.
Olabarrieta, M., Warner, J. C., Armstrong, B., Zambon, J. B., & He, R., 2012: Ocean‐atmosphere dynamics during Hurricane Ida and Nor′Ida: An application of the coupled ocean‐atmosphere‐wave‐sediment transport (COAWST) modeling system. Ocean Modelling, 43, 112–137.
Omstedt, A., L. Mueller, and L. Nyberg, 1997: Interannual, seasonal, and regional variations of precipitation and evaporation over the Baltic Sea. Ambio, 26, 484–492.
Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 1366–1383.
Stocchi, P., and Davolio, S., 2016: Intense air-sea exchange and heavy rainfall impact of the northern Adriatic SST, Adv. Sci. Res., 13, 7–12.
Toth, Z., and Kalnay, E., 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125: 3297−3319.
Trenberth, K. E. and Shea, D. J., 2005: Relationships between precipita- tion and surface temperature, Geophys. Res. Lett., 32, 1–4.
Walker, N. D., , R. R. Leben, and S.Balasubramanian, 2005: Hurricane-forced upwelling and chlorophyll a enhancement within cold-core cyclones in the Gulf of Mexico. Geophys. Res. Lett., 32
Warner, J. C., Armstrong, B., He, R., and Zambon, J. B., 2010: Development of a coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system. Ocean Modelling, 35(3), 230–244.
Wu, L., B. Wang, and S. A. Braun, 2005: Impact of air‐sea interaction on tropical cyclone track and intensity, Mon. Weather Rev., 133, 3299–3314.
Xie, B., , and F. Zhang, 2012: Impacts of typhoon track and island topography on the heavy rainfalls in Taiwan associated with Morakot (2009). Mon. Wea. Rev., 140, 3379–3394.
Zarzycki, C. M., 2016: Tropical cyclone climatology biases associated with prescribed sea surface temperatures in high‐resolution global atmospheric experiments, J. Clim., 29, 8589– 8610,
Zhang, J. A., and F. D. Marks, 2015: Effects of horizontal diffusion on tropical cyclone intensity change and structure in idealized three-dimensional numerical simulation. Mon. Wea. Rev., 143, 3981–3995.
_____, J. A., J. J. Cione, E. A. Kalina, E. W.Uhlhorn, T. Hock, and J. A. Smith, 2017 : Observations of infrared sea surface temperature and air-sea interaction in Hurricane Edouard (2014) using GPS dropsondes. J. Atmos. Oceanic Technol., 34, 1333–1349.
Zhu, Y., 2005: Ensemble forecast: A new approach to uncertainty and predictability, Advance in Atmospheric Sciences, Vol. 22, No. 6, 781-788.
Toy, M. D. and Johnson, R. H.: The influence of an SST front on
a heavy rainfall event over coastal Taiwan during TiMREX, J.
Atmos. Sci., 71, 3223–3249, 2014.
Trenberth, K. E. and Shea, D. J.: Relationships between precipitation and surface temperature, Geophys. Res. Lett., 32, 1–4, 2005.
指導教授 楊舒芝(S.-C Yang) 審核日期 2021-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明