博碩士論文 105486602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:3.133.146.94
姓名 阮凡克(Nguyen Van Can)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 以太陽能與風能電氣化高速公路運輸
(Electrification of Highway Transportation with Solar and Wind Energy)
相關論文
★ 半導體化學材料銷售策略分析-以跨國B化工公司為例★ TFT-LCD CELL製程P檢點燈不良解析流程改善之關聯法則應用
★ 金融風暴時期因應長鞭效應的策略 –以X公司為例★ 勞動生產力目標訂定之研究-DEA 資料包絡法應用
★ 應用田口方法導入低溫超薄ITO透明導電膜於電容式觸控面板之研究★ 多階不等效平行機台排程與訂單決策
★ 多準則決策之應用-以雷射半導體產業為例★ 專案管理模式進行品管圈活動-以半導體機台保養測機流程改善為例
★ 應用e8D降低不合格品之效益分析-以快速消費品製造為例★ 供應商評選模式之建構-以塑膠射出成型機製造為例
★ 應用協同規劃預測補貨於伺服器備品存貨改善之研究-以Q代工公司為例★ 船用五金拋光作業之生產規劃
★ 以SCOR模型探討汽車安全輔助系統供應鏈-以A公司採購作業改善為例★ 研發補助計畫執行成效評估之研究以「工業基礎技術專案計畫」為例
★ 運用生態效益發展永續之耳機產業★ 失效模式設計審查(DRBFM)之應用-以筆記型電腦為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 全球暖化引起強烈公民意識的浪潮,減少溫室氣體排放成為重中之重。實現此目標的所有可行方法中,使用再生能源替代化石燃料和電動汽車(EV)替代傳統內燃機汽車無疑是當務之急。但現在缺乏實際方法測量再生能源與電動汽車供電於大型公路網中的合適組合,同時考慮再生能源的季節性供應及可能需要在某些位置通過電網規模安裝的電池調節再生能源的產出和消耗陣列。根據如此迫切的需求,本文提出使用混合整數規劃(MIP)模型。此外,關於台灣國道綜合案例涵蓋的有用資訊,如準備關鍵數據的過程,尤其是當地太陽能、風能和高速公路交通,對模型解決方案進行深入分析,提供整個地區再生能源的總體可用性公路網,並仔細評估投資所需。這些發現支持國家高速公路上使用再生能源為電動汽車供電,並展現當地企業參與的重要性。但相對較小的國家(如台灣)於再生能源供應方面仍會顯示出很大的差異。在電力使用獨立設置中,這些變化將導致大量再生能源在某些季節不被公路旅行使用。這些細節證明本研究所提出模型在實際情況下的適用性和價值。
摘要(英) Global warming has triggered waves of public awareness to surface very strongly all over the world, urging to eliminate all greenhouse gas emissions in a timely fashion. Among all feasible approaches to achieving this goal, the use of renewables to replace fos-sil fuels and electric vehicles (EVs) to replace conventional internal combustion engine ve-hicles is arguably a top-priority task. However, there is a severe lack of practical ap-proaches to measuring a proper renewable mix for powering EVs in a large highway net-work, while also considering renewables’ seasonal availability and the possible need to regulate the production and consumption of renewable energy with grid-scale battery ar-rays installed at certain locations. This urgent need motivates the development of the mixed-integer programming model as presented in this paper. Furthermore, a comprehen-sive case study on Taiwan’s national highways covers such useful knowledge as the pro-cess to prepare key numeric data, especially, local solar and wind energy and highway traf-fic, in-depth analysis on model solutions to reveal the overall availability of renewable en-ergy across the highway network, and close measurements on the required investments. These findings support the use of renewable energy to power EVs on a national highway and reveal the importance of local business involvements. However, a relatively small country such as Taiwan can still display significant variations in renewable power availabil-ity. In a standalone setting for power usage, these variations would result in massive volumes of renewable energy not used by highway travel in some seasons. These details demonstrate the applicability and values of the proposed model in a real situation.
關鍵字(中) ★ 全球暖化
★ 溫室氣體
★ 電動汽車
★ 高速公路
★ 再生能源
★ 最佳化模型
關鍵字(英) ★ global warming
★ greenhouse gas (GHG)
★ electric vehicles
★ highway
★ renewable energy
★ optimization model
論文目次 NATIONAL CENTRAL UNIVERSITY LIBRARY AUTHORIZATION FOR THESIS/ DISSERTATION I
ADVISOR’S RECOMMENDATION FOR DOCTORAL STUDENTS II
VERIFICATION LETTER FROM THE ORAL EXAMINATION COMMITTEE FOR PH.D. STUDENT III
摘要 VIII
ABSTRACT IX
ACKNOWLEDGEMENTS X
TABLE OF CONTENTS XII
LIST OF TABLES XV
LIST OF FIGURES XVI
LIST OF ABBREVIATIONS XVII

CHAPTER 1. INTRODUCTION 1
1.1 Background 1
1.2 Objectives and Contributions 2
1.3 Dissertation Outline 3
CHAPTER 2. RESEARCH PROBLEM 4
2.1 Research Background 4
2.2 Research Motivation 5
2.3 Research Problem 7
CHAPTER 3. LITERATURE REVIEW 9
3.1 General Location-Sizing Problems 9
3.2 Single-Period Location Problems 11
3.3 Multiple-Period Location Problems 14
3.4 Location Problems with Power Source 15
CHAPTER 4. RESEARCH METHODOLOGY 20
4.1 Assumptions 21
4.2 Notation 23
4.3 Objective Functions 25
4.4 Constraints 26
CHAPTER 5. NUMERICAL STUDY 31
5.1 Introduction 31
5.2 Creating Highway Network and Traffic 33
5.3 Preparing Solar and Wind Energy 37
5.4 Deploying RE Optimally for Each Season-Representing Month 42
5.5 Determining the Final RE Deployment for the Entire Year 46
5.6 Measuring Environmental Impacts 50
5.7 Measuring Charger Numbers 51
5.8 Sensitivity analysis on impacts of highway interchanges 52
CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH 54
6.1 Conclusions 54
6.2 Future Research 55
REFERENCES 57
APPENDIX A 68
APPENDIX B 72
參考文獻 [1] Australian Energy Market Commission (AEMC). System Services Consultation Response. 2020. Available online: https://www.aemc.gov.au/ (accessed on 27 April 2021).
[2] Aghamohammadi, M.R.; Abdolahinia, H. A new approach for optimal sizing of battery energy storage system for primary frequency control of islanded Microgrid. Int. J. Elec. Power 2014, 54, 325-333, doi:10.1016/j.ijepes.2013.07.005.
[3] Ahi, P.; Searcy, C. A comparative literature analysis of definitions for green and sustain-able supply chain management. J. Clean. Prod. 2013, 52, 329-341, doi:10.1016/j.jclepro.2013.02.018.
[4] Al Wahedi, A.; Bicer, Y. Development of an off-grid electrical vehicle charging station hybridized with renewables including battery cooling system and multiple energy storage units. Energy Rep. 2020, 6, 2006-2021, doi:10.1016/j.egyr.2020.07.022.
[5] Alhazmi, Y.A.; Mostafa, H.A.; Salama, M.M.A. Optimal allocation for electric vehicle charging stations using Trip Success Ratio. Int. J. Elec. Power 2017, 91, 101-116, doi:10.1016/j.ijepes.2017.03.009.
[6] Bapna, R.; Thakur, L.S.; Nair, S.K. Infrastructure development for conversion to environmentally friendly fuel. Eur. J. Oper. Res. 2002, 142, 480-496, doi: 10.1016/S0377-2217(01)00309-5.
[7] Bhatti, A.R.; Salam, Z.; Aziz, M.J.B.; Yee, K.P.; Ashique, R.H. Electric vehicles charging using photovoltaic: Status and technological review. Renew. Sustain. Energy Rev. 2016, 54, 34-47, doi:10.1016/j.rser.2015.09.091.
[8] BYD Company. Product Brochure of Electric Bus. 2017. Available at: https://sg.byd.com/c8/ (accessed on 15 July 2019).
[9] Capar, I.; Kuby, M. An efficient formulation of the flow refueling location model for alternative-fuel stations. IIE. Trans. 2012, 44, 622-636, doi:10.1080/0740817x.2011.635175.
[10] Capar, I.; Kuby, M.; Leon, V.J.; Tsai, Y.J. An arc cover-path-cover formulation and stra-tegic analysis of alternative-fuel station locations. Eur. J. Oper. Res. 2013, 227, 142-151, doi:10.1016/j.ejor.2012.11.033.
[11] Chandra Mouli, G.R.; Bauer, P.; Zeman, M. System design for a solar powered electric vehicle charging station for workplaces. Appl. Energy 2016, 168, 434-443, doi:10.1016/j.apenergy.2016.01.110.
[12] Chen, T.D.; Kockelman, K.M.; Khan, M. Locating electric vehicle charging stations: Parking-based assignment method for Seattle, Washington. Transport. Res. Rec. 2013, 10.3141/2385-04, 28-36, doi:10.3141/2385-04.
[13] Chen, Z.B.; He, F.; Yin, Y.F. Optimal deployment of charging lanes for electric vehicles in transportation networks. Transp. Res. Part B Methodol. 2016, 91, 344-365, doi:10.1016/j.trb.2016.05.018.
[14] Chu, S.; Goldemberg, J.; Arungu-Olende, S.; El-Ashry, M.; Davis, G.; Nakicenovic, N. Lighting the Way: Toward a Sustainable Energy Future; InterAcademy Council: Am-sterdam, Netherlands, 2007.
[15] Chung, S.H.; Kwon, C. Multi-period planning for electric car charging station locations: A case of Korean Expressways. Eur. J. Oper. Res. 2015, 242, 677-687, doi:10.1016/j.ejor.2014.10.029.
[16] Ciel & Terre International. 2019. Available online: https://www.ciel-et-terre.net/ (ac-cessed on 18 September 2019).
[17] Copernicus Climate Data Store. Available online: https://cds.climate.copernicus.eu/cdsapp#!/home (accessed on 27 June 2020).
[18] Data Bank for Atmospheric & Hydrologic Research (DBAHR). Taiwan Meteorological Data. Available online: https://dbar.pccu.edu.tw/ (accessed on 24 June 2020).
[19] E-Force. E-Trucks 18-44t Specifications. 2018. Available at: https://eforce.ch/images/pdf/Datenblatt-E-Trucks-EN.pdf (accessed on 28 July 2019).
[20] European Chamber of Commerce Taiwan. 2018. Available online: https://www.ecct.com.tw/update-on-taiwans-energy-and-carbon-reduction-policies/# (accessed on 25 July 2019).
[21] European Environment Agency (EEA). Electric Vehicles in Europe; European Environ-ment Agency: Copenhagen, Denmark, 2016.
[22] Figueiredo, R.; Nunes, P.; Brito, M.C. The feasibility of solar parking lots for electric vehicles. Energy 2017, 140, 1182-1197, doi:10.1016/j.energy.2017.09.024.
[23] Frade, I.; Ribeiro, A.; Goncalves, G.; Antunes, A.P. Optimal location of charging stations for electric vehicles in a neighborhood in Lisbon, Portugal. Transport. Res. Rec. 2011, 10.3141/2252-12, 91-98, doi:10.3141/2252-12.
[24] Fuller, M. Wireless charging in California: Range, recharge, and vehicle electrification. Transp. Res. Part C Emerg. Technol. 2016, 67, 343-356, doi:10.1016/j.trc.2016.02.013.
[25] García-Olivares, A.; Solé, J.; Osychenko, O. Transportation in a 100% renewable energy system. Energy Convers. Manag. 2018, 158, 266-285, doi:10.1016/j.enconman.2017.12.053.
[26] Ghamami, M.; Kavianipour, M.; Zockaie, A.; Hohnstadt, L.R.; Ouyang, Y.F. Refueling infrastructure planning in intercity networks considering route choice and travel time de-lay for mixed fleet of electric and conventional vehicles. Transp. Res. Part C Emerg. Technol. 2020, 120, doi:10.1016/j.trc.2020.102802.
[27] , M.; Zockaie, A.; Nie, Y. A general corridor model for designing plug-in electric vehicle charging infrastructure to support intercity travel. Transp. Res. Part C Emerg. Technol. 2016, 68, 389-402, doi:10.1016/j.trc.2016.04.016.
[28] Gkavanoudis, S. I.; Oureilidis, K. O.; Kryonidis, G. C.; Demoulias, C. S. A control method for balancing the SoC of distributed batteries in Islanded converter-interfaced Microgrids. Advances in Power Electr. 2016, 11, doi.org/10.1155/2016/8518769.
[29] Grunditz, E.A.; Thiringer, T. Performance analysis of current BEVs based on a compre-hensive review of specifications. IEEE Trans. Transp. Electrif. 2016, 2, 270-289, doi:10.1109/Tte.2016.2571783.
[30] He, F.; Wu, D.; Yin, Y.F.; Guan, Y.P. Optimal deployment of public charging stations for plug-in hybrid electric vehicles. Transp. Res. Part B Methodol. 2013, 47, 87-101, doi:10.1016/j.trb.2012.09.007.
[31] He, Y.W.; Kockelman, K.M.; Perrine, K.A. Optimal locations of US fast charging stations for long-distance trip completion by battery electric vehicles. J. Clean. Prod. 2019, 214, 452-461, doi:10.1016/j.jclepro.2018.12.188.
[32] Helmers, E.; Dietz, J.; Weiss, M. Sensitivity analysis in the life-cycle assessment of electric vs. combustion engine cars under approximate real-world conditions. Sustainability 2020, 12, doi:10.3390/su12031241.
[33] Hodgson, M.J. A flow-capturing location-allocation model. Geogr. Anal. 1990, 22, 270-279, doi.org/10.1111/j.1538-4632.1990.tb00210.x.
[34] Hong, Y.Y.; Lai, Y.Z.; Chang, Y.R.; Lee, Y.D.; Lin, C.H. Optimizing energy storage capacity in islanded microgrids using immunity-based multiobjective planning. Energies 2018, 11, doi: 10.3390/en11030585.
[35] Huang, Y.X.; Li, S.Y.; Qian, Z.S. Optimal deployment of alternative fueling stations on transportation networks considering deviation paths. Netw. Spat. Econ. 2015, 15, 183-204, doi:10.1007/s11067-014-9275-1.
[36] International Energy Agency (IEA). CO2 Emissions from Fuel Combustion Highlights; International Energy Agency: Paris, France, 2014.
[37] International Renewable Energy Agency (IRENA). Global Energy Transformation: A Roadmap to 2050; IRENA: Abu Dhabi, UAE, 2018.
[38] International Renewable Energy Agency (IRENA). Renewable Power Generation Costs in 2018; IRENA: Abu Dhabi, UAE, 2019.
[39] Ip, A.; Fong, S.; Liu, E. Optimization for allocating BEV recharging stations in urban areas by using hierarchical clustering. In Proceedings of the 6th International Conference on Advanced Information Management and Service (IMS), Seoul, Korea, 2010; pp. 460-465.
[40] Jochem, P.; Brendel, C.; Reuter-Oppermann, M.; Fichtner, W.; Nickel, S. Optimizing the allocation of fast charging infrastructure for electric vehicles along the German Autobahn. J. Bus. Econ. 2016, 86, 513–535.
[41] Jochem, P.; Szimba, E.; Reuter-Oppermann, M. How many fast-charging stations do we need along European highways? Transp. Res. Part D Transp. Environ. 2019, 73, 120-129, doi:10.1016/j.trd.2019.06.005.
[42] Kim, J.Y.; Jeon, J.H.; Kim, S.K.; Cho, C.; Park, J.H.; Kim, H.M.; Nam, K.Y. Coopera-tive control strategy of energy storage system and microsources for stabilizing the mi-crogrid during islanded operation. IEEE T. Power Electr. 2010, 25, 3037-3048, doi:10.1109/Tpel.2010.2073488.
[43] Kuby, M.; Lim, S. The flow-refueling location problem for alternative-fuel vehicles. So-cio-Econ. Plan. Sci. 2005, 39, 125–145, doi.org/10.1016/j.seps.2004.03.001.
[44] Lambert, F. Tesla’s Massive Powerpack Battery in Australia Cost $66 Million and al-ready Made up to ~$17 Million. 2018. Available online: https://electrek.co/2018/09/24/tesla-powerpack-battery-australia-cost-revenue/ (accessed on 24 June 2020).
[45] Li, G.Y.; Sun, Q.; Boukhatem, L.; Wu, J.S.; Yang, J. Intelligent vehicle-to-vehicle charging navigation for mobile electric vehicles via VANET-based communication. IEEE Access 2019, 7, 170888-170906, doi:10.1109/Access.2019.2955927.
[46] Li, S.Y.; Huang, Y.X.; Mason, S.J. A multi-period optimization model for the deployment of public electric vehicle charging stations on network. Transp. Res. Part C Emerg. Technol. 2016, 65, 128-143, doi:10.1016/j.trc.2016.01.008.
[47] Liebreich, M. Global Trends in Clean Energy and Transportation. 2018. Available at: https://www.eventsmartenergy.ch/wp-content/uploads/2018/09/9-Michael-Liebreich.pdf (accessed on 5 October 2019).
[48] Lim, S.; Kuby, M. Heuristic algorithms for siting alternative-fuel stations using the Flow-Refueling Location Model. Eur. J. Oper. Res. 2010, 204, 51-61, doi:10.1016/j.ejor.2009.09.032.
[49] Lin, Y.P.; Zhang, K.; Shen, Z.J.M.; Miao, L.X. Charging network planning for electric bus cities: A case study of Shenzhen, China. Sustainability 2019, 11, doi:10.3390/su11174713.
[50] Liu, C.H.; Chau, K.T.; Wu, D.Y.; Gao, S. Opportunities and challenges of vehicle-to-home, vehicle-to-vehicle, and vehicle-to-grid technologies. P. IEEE 2013, 101, 2409-2427, doi:10.1109/Jproc.2013.2271951.
[51] Lorf, C.; Martinez-Botas, R.F.; Howey, D.A.; Lytton, L.; Cussons, B. Comparative analysis of the energy consumption and CO2 emissions of 40 electric, plug-in hybrid electric, hybrid electric and internal combustion engine vehicles. Transp. Res. Part D Transp. Environ. 2013, 23, 12-19, doi:10.1016/j.trd.2013.03.004.
[52] Mazidi, M.; Zakariazadeh, A.; Jadid, S.; Siano, P. Integrated scheduling of renewable generation and demand response programs in a microgrid. Energy Convers. Manag. 2014, 86, 1118-1127, doi:10.1016/j.enconman.2014.06.078.
[53] Institute of Transportation MOTC. Available online: https://www.iot.gov.tw/mp-1.html (accessed on 13 April 2021).
[54] MirHassani, S.A.; Ebrazi, R. A flexible reformulation of the refuelling station location problem. Transport. Sci. 2013, 47, 617-628, doi:10.1287/trsc.1120.0430.
[55] Miyazato, Y.; Tobaru, S.; Uchida, K.; Muarapaz, C.C.; Howlader, A.M.; Senjyu, T. Mul-ti-objective optimization for equipment capacity in off-grid smart house. Sustainability 2017, 9, doi:10.3390/su9010117.
[56] Mourad, A.; Hennebel, M.; Amrani, A.; Hamida, A. B. Deploying Fast-charging Stations for Electric Vehicles Based on Mobility Flows and Local Photovoltaic Production. In Proceedings of 17th International Conference on the European Energy Market (EEM), Stockholm, Sweden, 16-18 September 2020; pp. 1-6.
[57] Freeway Bureau MOTC. Network Map. 2021. Available online: https://www.freeway.gov.tw/english/way_net.aspx (accessed on 11 June 2021).
[58] Nelder, C.; Rogers, E. Reducing EV Charging Infrastructure Costs; Rocky Mountain In-stitute (RMI): Colorado, USA, 2019.
[59] Nie, Y.; Ghamami, M. A corridor-centric approach to planning electric vehicle charging infrastructure. Transp. Res. Part B Methodol. 2013, 57, 172-190, doi:10.1016/j.trb.2013.08.010.
[60] Noori, M.; Gardner, S.; Tatari, O. Electric vehicle cost, emissions, and water footprint in the United States: Development of a regional optimization model. Energy 2015, 89, 610-625, doi:10.1016/j.energy.2015.05.152.
[61] Onat, N.C.; Kucukvar, M.; Afshar, S. Eco-efficiency of electric vehicles in the United States: A life cycle assessment based principal component analysis. J. Clean. Prod. 2019, 212, 515-526, doi:10.1016/j.jclepro.2018.12.058.
[62] Rizet, C.; Cruz, C.; Vromant, M. The constraints of vehicle range and congestion for the use of electric vehicles for urban freight in France. Transp. Res. Procedia 2016, 12, 500–507, doi.org/10.1016/j.trpro.2016.02.005.
[63] Ruth, M.; Ozgun, O.; Wachsmuth, J.; Gossling-Reisemann, S. Dynamics of energy transitions under changing socioeconomic, technological and climate conditions in Northwest Germany. Ecol. Econ. 2015, 111, 29-47, doi:10.1016/j.ecolecon.2014.12.025.
[64] Salpakari, J.; Rasku, T.; Lindgren, J.; Lund, P.D. Flexibility of electric vehicles and space heating in net zero energy houses: an optimal control model with thermal dynamics and battery degradation. Appl. Energy 2017, 190, 800-812, doi:10.1016/j.apenergy.2017.01.005.
[65] Serradilla, J.; Wardle, J.; Blythe, P.; Gibbon, J. An evidence-based approach for invest-ment in rapid-charging infrastructure. Energy Policy 2017, 106, 514-524, doi:10.1016/j.enpol.2017.04.007.
[66] Shen, Z.J.M.; Feng, B.; Mao, C.; Ran, L. Optimization models for electric vehicle service operations: A literature review. Transp. Res. Part B Methodol. 2019, 128, 462-477, doi:10.1016/j.trb.2019.08.006.
[67] Shukla, A.; Pekny, J.; Venkatasubramanian, V. An optimization framework for cost effective design of refueling station infrastructure for alternative fuel vehicles. Comput. Chem. Eng. 2011, 35, 1431-1438, doi:10.1016/j.compchemeng.2011.03.018.
[68] Simchi-Levi, D.; Berman, O. A heuristic algorithm for the traveling salesman location problem on networks. Oper. Res. 1988. 36, 478–484, doi.org/10.1287/opre.36.3.478.
[69] SolarPower Europe. Global Market Outlook for Solar Power 2018–2022; SolarPower Europe: Brussels, Belgium, 2018.
[70] Sufyan, M.; Abd Rahim, N.; Tan, C.; Muhammad, M.A.; Raihan, S.R.S. Optimal sizing and energy scheduling of isolated microgrid considering the battery lifetime degradation. Plos One 2019, 14, doi:10.1371/journal.pone.0211642.
[71] Taiwan Power Company. Solar and wind energy generation. 2020. Available online: https://www.taipower.com.tw/tc/page.aspx?mid=96 (accessed on 24 June 2020).
[72] The Colas Group. 2019. Available online: http://www.wattwaybycolas.com/ (accessed on 16 August 2019).
[73] Traffic Information Service. Highway Travel Data. 2020. Available online: http://tisvcloud.freeway.gov.tw/ (accessed on 10 June 2020).
[74] Tran, T.H.; Nguyen, T.B.T. Alternative-fuel station network design under impact of station failures. Ann. Oper. Res. 2019, 279, 151-186, doi:10.1007/s10479-018-3054-1.
[75] Transport & Environment. Too Big to Ignore- Truck CO2 Emissions in 2030. 2015. Available online: https://www.transportenvironment.org/publications/too-big-ignore-%E2%80%93-truck-co2-emissions-2030 (accessed on 13 April 2021).
[76] U.S. Environmental Protection Agency (EPA). Fuel Economy Testing and Labeling. 2018. Available at: https://www.fueleconomy.gov/feg/download.shtml (accessed on 15 April 2019).
[77] United Nations Environment Programme (UNEP). Emissions Gap Report 2017; United Nations Environment Programme: Nairobi, Kenya, 2017.
[78] United Nations. Adoption of the Paris Agreement (FCCC/CP/2015/L.9/Rev.1). 2015. Available online: http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf (accessed on 7 April 2019).
[79] Un-Noor, F.; Padmanaban, S.; Mihet-Popa, L.; Mollah, M.N.; Hossain, E. A comprehen-sive study of key electric vehicle (EV) components, technologies, challenges, impacts, and future direction of development. Energies 2017, 10, doi:10.3390/en10081217.
[80] Vieira, F.L.; Vieira, P.A.; Coelho, D.A. A data-driven approach to development of a taxonomy framework for triple bottom line metrics. Sustainability 2019, 11, doi: 10.3390/su11092717.
[81] Wang, G.B.; Xu, Z.; Wen, F.S.; Wong, K.P. Traffic-constrained multiobjective planning of electric-vehicle charging stations. IEEE Trans. Power Del. 2013, 28, 2363-2372, doi:10.1109/Tpwrd.2013.2269142.
[82] Wang, Y.W.; Lin, C.C. Locating road-vehicle refueling stations. Transp. Res. Part E Logist. Transp. Rev. 2009, 45, 821-829, doi:10.1016/j.tre.2009.03.002.
[83] Wang, Y.W.; Wang, C.R. Locating passenger vehicle refueling stations. Transp. Res. Part E Logist. Transp. Rev. 2010, 46, 791-801, doi:10.1016/j.tre.2009.12.001.
[84] Waraich, R.A.; Galus, M.D.; Dobler, C.; Balmer, M.; Andersson, G.; Axhausen, K.W. Plug-in hybrid electric vehicles and smart grids: Investigations based on a microsimulation. Transp. Res. Part C Emerg. Technol. 2013, 28, 74-86, doi:10.1016/j.trc.2012.10.011.
[85] Wei, W.; Mei, S.W.; Wu, L.; Shahidehpour, M.; Fang, Y.J. Optimal traffic-power flow in urban electrified transportation networks. IEEE Trans. Smart Grid 2017, 8, 84-95, doi:10.1109/Tsg.2016.2612239.
[86] Wu, D.; Aliprantis, D.C. Modeling light-duty plug-in electric vehicles for national energy and transportation planning. Energy Policy 2013, 63, 419-432, doi:10.1016/j.enpol.2013.07.132.
[87] Xie, F.; Liu, C.Z.; Li, S.Y.; Lin, Z.H.; Huang, Y.X. Long-term strategic planning of inter-city fast charging infrastructure for battery electric vehicles. Transp. Res. Part E Logist. Transp. Rev. 2018a, 109, 261-276, doi:10.1016/j.tre.2017.11.014.
[88] Xie, R.; Wei, W.; Khodayar, M.E.; Wang, J.H.; Mei, S.W. Planning fully renewable powered charging stations on highways: A data-driven robust optimization approach. IEEE Trans. Transp. Electrif. 2018b, 4, 817-830, doi:10.1109/Tte.2018.2849222.
[89] Zhang, A.P.; Kang, J.E.; Kwon, C. Incorporating demand dynamics in multi-period capacitated fast-charging location planning for electric vehicles. Transp. Res. Part B Methodol. 2017a, 103, 5-29, doi:10.1016/j.trb.2017.04.016.
[90] Zhang, H.C.; Hu, Z.C.; Song, Y.H. Power and transport nexus: Routing electric vehicles to promote renewable power integration. IEEE Trans. Smart Grid 2020, 11, 3291-3301, doi:10.1109/Tsg.2020.2967082.
[91] Zhang, H.C.; Moura, S.J.; Hu, Z.C.; Song, Y.H. PEV Fast-charging station siting and sizing on coupled transportation and power networks. IEEE Trans. Smart Grid 2018, 9, 2595-2605, doi:10.1109/Tsg.2016.2614939.
指導教授 王啟泰(Chi-Tai Wang) 審核日期 2021-6-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明