參考文獻 |
[1] Australian Energy Market Commission (AEMC). System Services Consultation Response. 2020. Available online: https://www.aemc.gov.au/ (accessed on 27 April 2021).
[2] Aghamohammadi, M.R.; Abdolahinia, H. A new approach for optimal sizing of battery energy storage system for primary frequency control of islanded Microgrid. Int. J. Elec. Power 2014, 54, 325-333, doi:10.1016/j.ijepes.2013.07.005.
[3] Ahi, P.; Searcy, C. A comparative literature analysis of definitions for green and sustain-able supply chain management. J. Clean. Prod. 2013, 52, 329-341, doi:10.1016/j.jclepro.2013.02.018.
[4] Al Wahedi, A.; Bicer, Y. Development of an off-grid electrical vehicle charging station hybridized with renewables including battery cooling system and multiple energy storage units. Energy Rep. 2020, 6, 2006-2021, doi:10.1016/j.egyr.2020.07.022.
[5] Alhazmi, Y.A.; Mostafa, H.A.; Salama, M.M.A. Optimal allocation for electric vehicle charging stations using Trip Success Ratio. Int. J. Elec. Power 2017, 91, 101-116, doi:10.1016/j.ijepes.2017.03.009.
[6] Bapna, R.; Thakur, L.S.; Nair, S.K. Infrastructure development for conversion to environmentally friendly fuel. Eur. J. Oper. Res. 2002, 142, 480-496, doi: 10.1016/S0377-2217(01)00309-5.
[7] Bhatti, A.R.; Salam, Z.; Aziz, M.J.B.; Yee, K.P.; Ashique, R.H. Electric vehicles charging using photovoltaic: Status and technological review. Renew. Sustain. Energy Rev. 2016, 54, 34-47, doi:10.1016/j.rser.2015.09.091.
[8] BYD Company. Product Brochure of Electric Bus. 2017. Available at: https://sg.byd.com/c8/ (accessed on 15 July 2019).
[9] Capar, I.; Kuby, M. An efficient formulation of the flow refueling location model for alternative-fuel stations. IIE. Trans. 2012, 44, 622-636, doi:10.1080/0740817x.2011.635175.
[10] Capar, I.; Kuby, M.; Leon, V.J.; Tsai, Y.J. An arc cover-path-cover formulation and stra-tegic analysis of alternative-fuel station locations. Eur. J. Oper. Res. 2013, 227, 142-151, doi:10.1016/j.ejor.2012.11.033.
[11] Chandra Mouli, G.R.; Bauer, P.; Zeman, M. System design for a solar powered electric vehicle charging station for workplaces. Appl. Energy 2016, 168, 434-443, doi:10.1016/j.apenergy.2016.01.110.
[12] Chen, T.D.; Kockelman, K.M.; Khan, M. Locating electric vehicle charging stations: Parking-based assignment method for Seattle, Washington. Transport. Res. Rec. 2013, 10.3141/2385-04, 28-36, doi:10.3141/2385-04.
[13] Chen, Z.B.; He, F.; Yin, Y.F. Optimal deployment of charging lanes for electric vehicles in transportation networks. Transp. Res. Part B Methodol. 2016, 91, 344-365, doi:10.1016/j.trb.2016.05.018.
[14] Chu, S.; Goldemberg, J.; Arungu-Olende, S.; El-Ashry, M.; Davis, G.; Nakicenovic, N. Lighting the Way: Toward a Sustainable Energy Future; InterAcademy Council: Am-sterdam, Netherlands, 2007.
[15] Chung, S.H.; Kwon, C. Multi-period planning for electric car charging station locations: A case of Korean Expressways. Eur. J. Oper. Res. 2015, 242, 677-687, doi:10.1016/j.ejor.2014.10.029.
[16] Ciel & Terre International. 2019. Available online: https://www.ciel-et-terre.net/ (ac-cessed on 18 September 2019).
[17] Copernicus Climate Data Store. Available online: https://cds.climate.copernicus.eu/cdsapp#!/home (accessed on 27 June 2020).
[18] Data Bank for Atmospheric & Hydrologic Research (DBAHR). Taiwan Meteorological Data. Available online: https://dbar.pccu.edu.tw/ (accessed on 24 June 2020).
[19] E-Force. E-Trucks 18-44t Specifications. 2018. Available at: https://eforce.ch/images/pdf/Datenblatt-E-Trucks-EN.pdf (accessed on 28 July 2019).
[20] European Chamber of Commerce Taiwan. 2018. Available online: https://www.ecct.com.tw/update-on-taiwans-energy-and-carbon-reduction-policies/# (accessed on 25 July 2019).
[21] European Environment Agency (EEA). Electric Vehicles in Europe; European Environ-ment Agency: Copenhagen, Denmark, 2016.
[22] Figueiredo, R.; Nunes, P.; Brito, M.C. The feasibility of solar parking lots for electric vehicles. Energy 2017, 140, 1182-1197, doi:10.1016/j.energy.2017.09.024.
[23] Frade, I.; Ribeiro, A.; Goncalves, G.; Antunes, A.P. Optimal location of charging stations for electric vehicles in a neighborhood in Lisbon, Portugal. Transport. Res. Rec. 2011, 10.3141/2252-12, 91-98, doi:10.3141/2252-12.
[24] Fuller, M. Wireless charging in California: Range, recharge, and vehicle electrification. Transp. Res. Part C Emerg. Technol. 2016, 67, 343-356, doi:10.1016/j.trc.2016.02.013.
[25] García-Olivares, A.; Solé, J.; Osychenko, O. Transportation in a 100% renewable energy system. Energy Convers. Manag. 2018, 158, 266-285, doi:10.1016/j.enconman.2017.12.053.
[26] Ghamami, M.; Kavianipour, M.; Zockaie, A.; Hohnstadt, L.R.; Ouyang, Y.F. Refueling infrastructure planning in intercity networks considering route choice and travel time de-lay for mixed fleet of electric and conventional vehicles. Transp. Res. Part C Emerg. Technol. 2020, 120, doi:10.1016/j.trc.2020.102802.
[27] , M.; Zockaie, A.; Nie, Y. A general corridor model for designing plug-in electric vehicle charging infrastructure to support intercity travel. Transp. Res. Part C Emerg. Technol. 2016, 68, 389-402, doi:10.1016/j.trc.2016.04.016.
[28] Gkavanoudis, S. I.; Oureilidis, K. O.; Kryonidis, G. C.; Demoulias, C. S. A control method for balancing the SoC of distributed batteries in Islanded converter-interfaced Microgrids. Advances in Power Electr. 2016, 11, doi.org/10.1155/2016/8518769.
[29] Grunditz, E.A.; Thiringer, T. Performance analysis of current BEVs based on a compre-hensive review of specifications. IEEE Trans. Transp. Electrif. 2016, 2, 270-289, doi:10.1109/Tte.2016.2571783.
[30] He, F.; Wu, D.; Yin, Y.F.; Guan, Y.P. Optimal deployment of public charging stations for plug-in hybrid electric vehicles. Transp. Res. Part B Methodol. 2013, 47, 87-101, doi:10.1016/j.trb.2012.09.007.
[31] He, Y.W.; Kockelman, K.M.; Perrine, K.A. Optimal locations of US fast charging stations for long-distance trip completion by battery electric vehicles. J. Clean. Prod. 2019, 214, 452-461, doi:10.1016/j.jclepro.2018.12.188.
[32] Helmers, E.; Dietz, J.; Weiss, M. Sensitivity analysis in the life-cycle assessment of electric vs. combustion engine cars under approximate real-world conditions. Sustainability 2020, 12, doi:10.3390/su12031241.
[33] Hodgson, M.J. A flow-capturing location-allocation model. Geogr. Anal. 1990, 22, 270-279, doi.org/10.1111/j.1538-4632.1990.tb00210.x.
[34] Hong, Y.Y.; Lai, Y.Z.; Chang, Y.R.; Lee, Y.D.; Lin, C.H. Optimizing energy storage capacity in islanded microgrids using immunity-based multiobjective planning. Energies 2018, 11, doi: 10.3390/en11030585.
[35] Huang, Y.X.; Li, S.Y.; Qian, Z.S. Optimal deployment of alternative fueling stations on transportation networks considering deviation paths. Netw. Spat. Econ. 2015, 15, 183-204, doi:10.1007/s11067-014-9275-1.
[36] International Energy Agency (IEA). CO2 Emissions from Fuel Combustion Highlights; International Energy Agency: Paris, France, 2014.
[37] International Renewable Energy Agency (IRENA). Global Energy Transformation: A Roadmap to 2050; IRENA: Abu Dhabi, UAE, 2018.
[38] International Renewable Energy Agency (IRENA). Renewable Power Generation Costs in 2018; IRENA: Abu Dhabi, UAE, 2019.
[39] Ip, A.; Fong, S.; Liu, E. Optimization for allocating BEV recharging stations in urban areas by using hierarchical clustering. In Proceedings of the 6th International Conference on Advanced Information Management and Service (IMS), Seoul, Korea, 2010; pp. 460-465.
[40] Jochem, P.; Brendel, C.; Reuter-Oppermann, M.; Fichtner, W.; Nickel, S. Optimizing the allocation of fast charging infrastructure for electric vehicles along the German Autobahn. J. Bus. Econ. 2016, 86, 513–535.
[41] Jochem, P.; Szimba, E.; Reuter-Oppermann, M. How many fast-charging stations do we need along European highways? Transp. Res. Part D Transp. Environ. 2019, 73, 120-129, doi:10.1016/j.trd.2019.06.005.
[42] Kim, J.Y.; Jeon, J.H.; Kim, S.K.; Cho, C.; Park, J.H.; Kim, H.M.; Nam, K.Y. Coopera-tive control strategy of energy storage system and microsources for stabilizing the mi-crogrid during islanded operation. IEEE T. Power Electr. 2010, 25, 3037-3048, doi:10.1109/Tpel.2010.2073488.
[43] Kuby, M.; Lim, S. The flow-refueling location problem for alternative-fuel vehicles. So-cio-Econ. Plan. Sci. 2005, 39, 125–145, doi.org/10.1016/j.seps.2004.03.001.
[44] Lambert, F. Tesla’s Massive Powerpack Battery in Australia Cost $66 Million and al-ready Made up to ~$17 Million. 2018. Available online: https://electrek.co/2018/09/24/tesla-powerpack-battery-australia-cost-revenue/ (accessed on 24 June 2020).
[45] Li, G.Y.; Sun, Q.; Boukhatem, L.; Wu, J.S.; Yang, J. Intelligent vehicle-to-vehicle charging navigation for mobile electric vehicles via VANET-based communication. IEEE Access 2019, 7, 170888-170906, doi:10.1109/Access.2019.2955927.
[46] Li, S.Y.; Huang, Y.X.; Mason, S.J. A multi-period optimization model for the deployment of public electric vehicle charging stations on network. Transp. Res. Part C Emerg. Technol. 2016, 65, 128-143, doi:10.1016/j.trc.2016.01.008.
[47] Liebreich, M. Global Trends in Clean Energy and Transportation. 2018. Available at: https://www.eventsmartenergy.ch/wp-content/uploads/2018/09/9-Michael-Liebreich.pdf (accessed on 5 October 2019).
[48] Lim, S.; Kuby, M. Heuristic algorithms for siting alternative-fuel stations using the Flow-Refueling Location Model. Eur. J. Oper. Res. 2010, 204, 51-61, doi:10.1016/j.ejor.2009.09.032.
[49] Lin, Y.P.; Zhang, K.; Shen, Z.J.M.; Miao, L.X. Charging network planning for electric bus cities: A case study of Shenzhen, China. Sustainability 2019, 11, doi:10.3390/su11174713.
[50] Liu, C.H.; Chau, K.T.; Wu, D.Y.; Gao, S. Opportunities and challenges of vehicle-to-home, vehicle-to-vehicle, and vehicle-to-grid technologies. P. IEEE 2013, 101, 2409-2427, doi:10.1109/Jproc.2013.2271951.
[51] Lorf, C.; Martinez-Botas, R.F.; Howey, D.A.; Lytton, L.; Cussons, B. Comparative analysis of the energy consumption and CO2 emissions of 40 electric, plug-in hybrid electric, hybrid electric and internal combustion engine vehicles. Transp. Res. Part D Transp. Environ. 2013, 23, 12-19, doi:10.1016/j.trd.2013.03.004.
[52] Mazidi, M.; Zakariazadeh, A.; Jadid, S.; Siano, P. Integrated scheduling of renewable generation and demand response programs in a microgrid. Energy Convers. Manag. 2014, 86, 1118-1127, doi:10.1016/j.enconman.2014.06.078.
[53] Institute of Transportation MOTC. Available online: https://www.iot.gov.tw/mp-1.html (accessed on 13 April 2021).
[54] MirHassani, S.A.; Ebrazi, R. A flexible reformulation of the refuelling station location problem. Transport. Sci. 2013, 47, 617-628, doi:10.1287/trsc.1120.0430.
[55] Miyazato, Y.; Tobaru, S.; Uchida, K.; Muarapaz, C.C.; Howlader, A.M.; Senjyu, T. Mul-ti-objective optimization for equipment capacity in off-grid smart house. Sustainability 2017, 9, doi:10.3390/su9010117.
[56] Mourad, A.; Hennebel, M.; Amrani, A.; Hamida, A. B. Deploying Fast-charging Stations for Electric Vehicles Based on Mobility Flows and Local Photovoltaic Production. In Proceedings of 17th International Conference on the European Energy Market (EEM), Stockholm, Sweden, 16-18 September 2020; pp. 1-6.
[57] Freeway Bureau MOTC. Network Map. 2021. Available online: https://www.freeway.gov.tw/english/way_net.aspx (accessed on 11 June 2021).
[58] Nelder, C.; Rogers, E. Reducing EV Charging Infrastructure Costs; Rocky Mountain In-stitute (RMI): Colorado, USA, 2019.
[59] Nie, Y.; Ghamami, M. A corridor-centric approach to planning electric vehicle charging infrastructure. Transp. Res. Part B Methodol. 2013, 57, 172-190, doi:10.1016/j.trb.2013.08.010.
[60] Noori, M.; Gardner, S.; Tatari, O. Electric vehicle cost, emissions, and water footprint in the United States: Development of a regional optimization model. Energy 2015, 89, 610-625, doi:10.1016/j.energy.2015.05.152.
[61] Onat, N.C.; Kucukvar, M.; Afshar, S. Eco-efficiency of electric vehicles in the United States: A life cycle assessment based principal component analysis. J. Clean. Prod. 2019, 212, 515-526, doi:10.1016/j.jclepro.2018.12.058.
[62] Rizet, C.; Cruz, C.; Vromant, M. The constraints of vehicle range and congestion for the use of electric vehicles for urban freight in France. Transp. Res. Procedia 2016, 12, 500–507, doi.org/10.1016/j.trpro.2016.02.005.
[63] Ruth, M.; Ozgun, O.; Wachsmuth, J.; Gossling-Reisemann, S. Dynamics of energy transitions under changing socioeconomic, technological and climate conditions in Northwest Germany. Ecol. Econ. 2015, 111, 29-47, doi:10.1016/j.ecolecon.2014.12.025.
[64] Salpakari, J.; Rasku, T.; Lindgren, J.; Lund, P.D. Flexibility of electric vehicles and space heating in net zero energy houses: an optimal control model with thermal dynamics and battery degradation. Appl. Energy 2017, 190, 800-812, doi:10.1016/j.apenergy.2017.01.005.
[65] Serradilla, J.; Wardle, J.; Blythe, P.; Gibbon, J. An evidence-based approach for invest-ment in rapid-charging infrastructure. Energy Policy 2017, 106, 514-524, doi:10.1016/j.enpol.2017.04.007.
[66] Shen, Z.J.M.; Feng, B.; Mao, C.; Ran, L. Optimization models for electric vehicle service operations: A literature review. Transp. Res. Part B Methodol. 2019, 128, 462-477, doi:10.1016/j.trb.2019.08.006.
[67] Shukla, A.; Pekny, J.; Venkatasubramanian, V. An optimization framework for cost effective design of refueling station infrastructure for alternative fuel vehicles. Comput. Chem. Eng. 2011, 35, 1431-1438, doi:10.1016/j.compchemeng.2011.03.018.
[68] Simchi-Levi, D.; Berman, O. A heuristic algorithm for the traveling salesman location problem on networks. Oper. Res. 1988. 36, 478–484, doi.org/10.1287/opre.36.3.478.
[69] SolarPower Europe. Global Market Outlook for Solar Power 2018–2022; SolarPower Europe: Brussels, Belgium, 2018.
[70] Sufyan, M.; Abd Rahim, N.; Tan, C.; Muhammad, M.A.; Raihan, S.R.S. Optimal sizing and energy scheduling of isolated microgrid considering the battery lifetime degradation. Plos One 2019, 14, doi:10.1371/journal.pone.0211642.
[71] Taiwan Power Company. Solar and wind energy generation. 2020. Available online: https://www.taipower.com.tw/tc/page.aspx?mid=96 (accessed on 24 June 2020).
[72] The Colas Group. 2019. Available online: http://www.wattwaybycolas.com/ (accessed on 16 August 2019).
[73] Traffic Information Service. Highway Travel Data. 2020. Available online: http://tisvcloud.freeway.gov.tw/ (accessed on 10 June 2020).
[74] Tran, T.H.; Nguyen, T.B.T. Alternative-fuel station network design under impact of station failures. Ann. Oper. Res. 2019, 279, 151-186, doi:10.1007/s10479-018-3054-1.
[75] Transport & Environment. Too Big to Ignore- Truck CO2 Emissions in 2030. 2015. Available online: https://www.transportenvironment.org/publications/too-big-ignore-%E2%80%93-truck-co2-emissions-2030 (accessed on 13 April 2021).
[76] U.S. Environmental Protection Agency (EPA). Fuel Economy Testing and Labeling. 2018. Available at: https://www.fueleconomy.gov/feg/download.shtml (accessed on 15 April 2019).
[77] United Nations Environment Programme (UNEP). Emissions Gap Report 2017; United Nations Environment Programme: Nairobi, Kenya, 2017.
[78] United Nations. Adoption of the Paris Agreement (FCCC/CP/2015/L.9/Rev.1). 2015. Available online: http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf (accessed on 7 April 2019).
[79] Un-Noor, F.; Padmanaban, S.; Mihet-Popa, L.; Mollah, M.N.; Hossain, E. A comprehen-sive study of key electric vehicle (EV) components, technologies, challenges, impacts, and future direction of development. Energies 2017, 10, doi:10.3390/en10081217.
[80] Vieira, F.L.; Vieira, P.A.; Coelho, D.A. A data-driven approach to development of a taxonomy framework for triple bottom line metrics. Sustainability 2019, 11, doi: 10.3390/su11092717.
[81] Wang, G.B.; Xu, Z.; Wen, F.S.; Wong, K.P. Traffic-constrained multiobjective planning of electric-vehicle charging stations. IEEE Trans. Power Del. 2013, 28, 2363-2372, doi:10.1109/Tpwrd.2013.2269142.
[82] Wang, Y.W.; Lin, C.C. Locating road-vehicle refueling stations. Transp. Res. Part E Logist. Transp. Rev. 2009, 45, 821-829, doi:10.1016/j.tre.2009.03.002.
[83] Wang, Y.W.; Wang, C.R. Locating passenger vehicle refueling stations. Transp. Res. Part E Logist. Transp. Rev. 2010, 46, 791-801, doi:10.1016/j.tre.2009.12.001.
[84] Waraich, R.A.; Galus, M.D.; Dobler, C.; Balmer, M.; Andersson, G.; Axhausen, K.W. Plug-in hybrid electric vehicles and smart grids: Investigations based on a microsimulation. Transp. Res. Part C Emerg. Technol. 2013, 28, 74-86, doi:10.1016/j.trc.2012.10.011.
[85] Wei, W.; Mei, S.W.; Wu, L.; Shahidehpour, M.; Fang, Y.J. Optimal traffic-power flow in urban electrified transportation networks. IEEE Trans. Smart Grid 2017, 8, 84-95, doi:10.1109/Tsg.2016.2612239.
[86] Wu, D.; Aliprantis, D.C. Modeling light-duty plug-in electric vehicles for national energy and transportation planning. Energy Policy 2013, 63, 419-432, doi:10.1016/j.enpol.2013.07.132.
[87] Xie, F.; Liu, C.Z.; Li, S.Y.; Lin, Z.H.; Huang, Y.X. Long-term strategic planning of inter-city fast charging infrastructure for battery electric vehicles. Transp. Res. Part E Logist. Transp. Rev. 2018a, 109, 261-276, doi:10.1016/j.tre.2017.11.014.
[88] Xie, R.; Wei, W.; Khodayar, M.E.; Wang, J.H.; Mei, S.W. Planning fully renewable powered charging stations on highways: A data-driven robust optimization approach. IEEE Trans. Transp. Electrif. 2018b, 4, 817-830, doi:10.1109/Tte.2018.2849222.
[89] Zhang, A.P.; Kang, J.E.; Kwon, C. Incorporating demand dynamics in multi-period capacitated fast-charging location planning for electric vehicles. Transp. Res. Part B Methodol. 2017a, 103, 5-29, doi:10.1016/j.trb.2017.04.016.
[90] Zhang, H.C.; Hu, Z.C.; Song, Y.H. Power and transport nexus: Routing electric vehicles to promote renewable power integration. IEEE Trans. Smart Grid 2020, 11, 3291-3301, doi:10.1109/Tsg.2020.2967082.
[91] Zhang, H.C.; Moura, S.J.; Hu, Z.C.; Song, Y.H. PEV Fast-charging station siting and sizing on coupled transportation and power networks. IEEE Trans. Smart Grid 2018, 9, 2595-2605, doi:10.1109/Tsg.2016.2614939. |