博碩士論文 108426022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:85 、訪客IP:18.117.148.28
姓名 陳泰成(Tai-Cheng Chen)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 運用異常標籤分類與LSTM方法於停機預測-以A公司塗佈機為例
(Using Label Classification And LSTM Approach To Predict – A Case of Coating Machine)
相關論文
★ 應用灰色理論於有機農產品之經營管理— 需求預測及關鍵成功因素探討★ NAND型Flash價格與交運量預測在風險分析下之決策模式
★ 工業電腦用無鉛晶片組最適存貨政策之研究-以A公司為例★ 砷化鎵代工廠磊晶之最適存貨管理-以W公司為例
★ 資訊分享&決策制定下產銷協同關係之研究 -以IC設計業為例★ 應用分析層級法於電子化學品業委外供應商評選準則之研究
★ 應用資料探勘於汽車售服零件庫存滯銷因素分析-以C公司為例★ 多目標規劃最佳六標準差水準: 以薄膜電晶體液晶顯示器C公司製造流程為例
★ 以資料探勘技術進行消費者返廠定期保養之實證研究★ 以價值鏈觀點探討品牌公司關鍵組織流程之取決-以S公司為例
★ 應用產銷協同規劃之流程改善於化纖產業-現況改善與效益分析★ 權力模式與合作關係對於報價策略之影響研究—以半導體產業A公司為例
★ 應用資料探勘於汽車製造業之庫存原因分析★ 以類神經網路預測代工費報價---以中小面板產業C公司為例
★ 電路板產業存貨改善研究-以N公司為例★ 運用六標準差改善機台備用零件(Spare parts)存貨管理
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 自德國提出工業4.0後,各個國家包括美國先進製造夥伴聯盟(Advanced Manufacturing Partnership, AMP)再工業化合作策略,以及大陸、韓國和日本等新興國家積極發展物聯網和智慧製造等技術。台灣也於2015年推動生產力4.0計畫。全球國家在這樣的潮流下,進入另一個階段的製造競爭環境。「智慧工廠」則是未來生產系統的定位,透過設備感測器、物聯網、人工運算與機器學習,利用收集的大量數據加以分析進而做出相關決策,來實現設備高稼動率和製造流程的穩定性。
本研究所收集之數據為A公司所提供的塗佈機台感測器數據,以機器學習(Machine Learning, ML)中的半監督式學習(Semi-supervised learning)來進行塗佈機異常狀況分類,應用異常標籤來確立塗佈機的預測模型,以新增的alarm code數據集來挑選出異常的狀況,選取數據集建立出LSTM模型,透過模型參數設定,將驗證結果繪製出來可以觀察約82.5秒前偵測異常。本研究應用於塗佈機台感測器在時間序列數據中,能夠獲得異常的預測,以供後續研究參考。
摘要(英) Since Germany proposed Industry 4.0, various countries including the United States Advanced Manufacturing Partnership (AMP) reindustrialization cooperation strategy, and emerging countries such as the mainland, South Korea, and Japan are actively developing technologies such as the Internet of Things and smart manufacturing. Taiwan also promoted the productivity 4.0 program in 2015. Under this trend, global countries have entered another stage of manufacturing competition environment. The "Smart Factory" is the positioning of the future production system. Through device sensors, the Internet of Things, manual calculations and machine learning, a large amount of collected data is used to analyze and make relevant decisions to achieve high equipment utilization and manufacturing processes. stability.
The data collected in this research is the sensor data of the coating machine provided by Company A. The abnormal condition of the coating machine is classified by Semi-supervised learning in Machine Learning (ML). , Use error labels to establish the predictive model of the coating machine, classify the position of the parts of the machine with anomalies for dimensionality reduction, and use the Run Chart to find out the important conditions of the machine′s operation. Cooperate with the method research of failure prediction and health management (Prognostics and Health Management, PHM), use the Long short-term memory network (Long short-term memory, LSTM) model to establish abnormal predictions, provide advance maintenance decisions, and control the stable operation of the machine This reduces the cost of downtime and other abnormal occurrences.
關鍵字(中) ★ 機器學習
★ 智慧製造
★ 工業4.0
★ 故障預測與健康管理
★ 塗佈機
關鍵字(英) ★ Smart Manufacturing
★ Predictive Maintenance
★ Prognostic and Health Management
★ Long short-term memory
★ Deep Learning
論文目次 中文摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vii
一、緒論 1
1-1 研究背景與動機 1
1-2 研究目的 2
1-3 研究架構及流程 3
二、文獻探討 5
2-1 機器學習(Machine Learning, ML) 5
2-2 虛實整合系統(Cyber-Physical System, CPS) 6
2-3 故障預測與健康管理(Prognostics and Health Management) 8
2-4 長短期記憶網路 (Long short-term memory, LSTM) 9
三、研究方法 11
3-1 研究項目 11
3-2 問題定義 12
3-3 長短期記憶(Long Short-Term Memory) 14
3-3-1 滑動窗口(slide window) 16
3-3-2 損失函數 (Loss Function) 17
3-3-2 優化器(Optimizer) 17
3-4 模型評估(Model evaluation) 18
四、實驗結果與分析 20
4-1 實驗工具與開發環境 20
4-2 實驗流程 21
4-2-1 實驗數據選取 21
4-2-2 實驗設計 24
4-3 實驗結果 28
4-3-1 模型驗證資料 28
4-3-2 驗證結果 29
五、結論與未來方向 31
5-1結論 31
5-2未來方向 32
參考文獻 33
參考文獻 [1] Cachada, A., Barbosa, J., Leitño, P., Geraldcs, C., Deusdado, L., Costa, J., Teixeira, C., Teixeira, J., Moreira, A., Moreira, P., Romero, L. (2018). Maintenance 4.0: Intelligent and Predictive Maintenance System Architecture. IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), Vol. 1, pp. 139–146.
[2] Davis, J., Goadrich, M. (2006). The relationship between Precision-Recall and ROC curves. Proceedings of the 23rd international conference on Machine learning, pp. 233–240.
[3] Di Persio, L., Honchar, O. (2017). Recurrent neural networks approach to the financial forecast of google assets. International Journal of Mathematics and Computers in Simulation, Vol. 11, pp. 7–13.
[4] Efthymiou, K., Papakostas, N., Mourtzis, D., & Chryssolouris, G. (2012). On a Predictive Maintenance Platform for Production Systems. 45th CIRP Conference on Manufacturing Systems 2012, pp.221–226
[5] Fu, R., Zhang, Z., & Li, L. (2016). Using LSTM and GRU neural network methods for traffic flow prediction. 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), pp.324-328
[6] Hochreiter , & Schmidhuber, J. (1997). Long short-term memory. Neural computation, Vol.9, pp.1735-1780
[7] Jordan, M. I., & Mitchell, T. M. (2019). Machine learning: Trends,perspectives, and prospects. Science 349 (6245), pp.255-260.
[8] Kang, M. & Jameson, N. F. (2019). Machine Learning: Fundamentals. Prognostics and Health Management of Electronics, pp.85-90.
[9] Kim, T. Y., & Cho, S. B. (2019). Predicting residential energy consumption using CNN-LSTM neural networks. Energy 182 (2019), pp.72-81
[10] Kang, M., & Jameson, N. J. (2018). Machine Learning: Fundamentals. Prognostics and Health Management of Electronics: Fundamentals, Machine Learning, and the Internet of Things, pp.85-109
[11] Lee, J., Jin, C., Liu, Z., & Ardakani, H. D. (2017). Introduction to data-driven methodologies for prognostics and health management. In Probabilistic prognostics and health management of energy systems, pp. 9-32
[12] Lasi, H., Fettke, P., Feld, D. T., & Hoffmann, D. H. M. (2014). Industry 4.0 . Business & Information Systems Engineering, pp.239-242
[13] Lee, J., Bagheri, B., & Kao, H. A. (2014). A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters 3 (2015), pp.18–23
[14] Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., & Siegel, D. (2014). Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications. Mechanical systems and signal processing, 42(1-2), pp.314-334
[15] Mosallam, A., Medjaher, K., & Zerhouni, N. (2016). Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction. Journal of Intelligent Manufacturing, 27(5), pp.1037-1048
[16] Marjanović, A., Kvaščev, G., Tadić, P., & Đurović, Z. (2011). Applications of Predictive Maintenance Techniques in Industrial Systems. SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol. 8, No. 3, November 2011, pp.263-279
[17] Susto, G. A., Mcloone, S., Pampuri, S., & Beghi. A. (2015). Machine Learning for Predictive Maintenance: A Multiple Classifier Approach. IEEE Transactions on Industrial Informatics · June 2015, pp.1-10
[18] Visa, S., Ramsay, B., Ralescu, A., & Knaap, E. V. D. (2011). Confusion Matrix-based Feature Selection. Proceedings of the Twentysecond Midwest Artificial Intelligence and Cognitive Science Conference, pp.120-127
[19] Wang, J., Ma, Y., Zhang, L., Gao, R. X., & Wu, D. (2018). Deep learning for smart manufacturing: Methods and applications. Journal of Manufacturing Systems, 48, pp.144-156
[20] Yuan, M., Wu, Y., & Lin, L. (2016). Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network. 2016 IEEE International Conference on Aircraft Utility Systems (AUS), pp. 1-6
[21] Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., & Gao, R. X. (2019). Deep learning and its applications to machine health monitoring. Mechanical Systems and Signal Processing, 115, pp.213-237
[22] Zhao, Z., Chen, W., Wu, X., Chen, P. C. Y., & Liu, J. (2016). LSTM network: a deep learning approach for short-term traffic forecast. IET Intell. Transp. Syst., 2017, Vol. 11 Iss. 2, pp. 68-75
[23] Zhou, K., Liu, T., & Zhou, L. (2015). Industry 4.0: Towards Future Industrial Opportunities and Challenges. 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery, pp.1-6
指導教授 陳振明 審核日期 2021-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明