參考文獻 |
[1] Cachada, A., Barbosa, J., Leitño, P., Geraldcs, C., Deusdado, L., Costa, J., Teixeira, C., Teixeira, J., Moreira, A., Moreira, P., Romero, L. (2018). Maintenance 4.0: Intelligent and Predictive Maintenance System Architecture. IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), Vol. 1, pp. 139–146.
[2] Davis, J., Goadrich, M. (2006). The relationship between Precision-Recall and ROC curves. Proceedings of the 23rd international conference on Machine learning, pp. 233–240.
[3] Di Persio, L., Honchar, O. (2017). Recurrent neural networks approach to the financial forecast of google assets. International Journal of Mathematics and Computers in Simulation, Vol. 11, pp. 7–13.
[4] Efthymiou, K., Papakostas, N., Mourtzis, D., & Chryssolouris, G. (2012). On a Predictive Maintenance Platform for Production Systems. 45th CIRP Conference on Manufacturing Systems 2012, pp.221–226
[5] Fu, R., Zhang, Z., & Li, L. (2016). Using LSTM and GRU neural network methods for traffic flow prediction. 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), pp.324-328
[6] Hochreiter , & Schmidhuber, J. (1997). Long short-term memory. Neural computation, Vol.9, pp.1735-1780
[7] Jordan, M. I., & Mitchell, T. M. (2019). Machine learning: Trends,perspectives, and prospects. Science 349 (6245), pp.255-260.
[8] Kang, M. & Jameson, N. F. (2019). Machine Learning: Fundamentals. Prognostics and Health Management of Electronics, pp.85-90.
[9] Kim, T. Y., & Cho, S. B. (2019). Predicting residential energy consumption using CNN-LSTM neural networks. Energy 182 (2019), pp.72-81
[10] Kang, M., & Jameson, N. J. (2018). Machine Learning: Fundamentals. Prognostics and Health Management of Electronics: Fundamentals, Machine Learning, and the Internet of Things, pp.85-109
[11] Lee, J., Jin, C., Liu, Z., & Ardakani, H. D. (2017). Introduction to data-driven methodologies for prognostics and health management. In Probabilistic prognostics and health management of energy systems, pp. 9-32
[12] Lasi, H., Fettke, P., Feld, D. T., & Hoffmann, D. H. M. (2014). Industry 4.0 . Business & Information Systems Engineering, pp.239-242
[13] Lee, J., Bagheri, B., & Kao, H. A. (2014). A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters 3 (2015), pp.18–23
[14] Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., & Siegel, D. (2014). Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications. Mechanical systems and signal processing, 42(1-2), pp.314-334
[15] Mosallam, A., Medjaher, K., & Zerhouni, N. (2016). Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction. Journal of Intelligent Manufacturing, 27(5), pp.1037-1048
[16] Marjanović, A., Kvaščev, G., Tadić, P., & Đurović, Z. (2011). Applications of Predictive Maintenance Techniques in Industrial Systems. SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol. 8, No. 3, November 2011, pp.263-279
[17] Susto, G. A., Mcloone, S., Pampuri, S., & Beghi. A. (2015). Machine Learning for Predictive Maintenance: A Multiple Classifier Approach. IEEE Transactions on Industrial Informatics · June 2015, pp.1-10
[18] Visa, S., Ramsay, B., Ralescu, A., & Knaap, E. V. D. (2011). Confusion Matrix-based Feature Selection. Proceedings of the Twentysecond Midwest Artificial Intelligence and Cognitive Science Conference, pp.120-127
[19] Wang, J., Ma, Y., Zhang, L., Gao, R. X., & Wu, D. (2018). Deep learning for smart manufacturing: Methods and applications. Journal of Manufacturing Systems, 48, pp.144-156
[20] Yuan, M., Wu, Y., & Lin, L. (2016). Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network. 2016 IEEE International Conference on Aircraft Utility Systems (AUS), pp. 1-6
[21] Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., & Gao, R. X. (2019). Deep learning and its applications to machine health monitoring. Mechanical Systems and Signal Processing, 115, pp.213-237
[22] Zhao, Z., Chen, W., Wu, X., Chen, P. C. Y., & Liu, J. (2016). LSTM network: a deep learning approach for short-term traffic forecast. IET Intell. Transp. Syst., 2017, Vol. 11 Iss. 2, pp. 68-75
[23] Zhou, K., Liu, T., & Zhou, L. (2015). Industry 4.0: Towards Future Industrial Opportunities and Challenges. 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery, pp.1-6 |