博碩士論文 105324013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:3.137.174.216
姓名 陳威豪(Wei-Hao Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 多晶ZnO薄膜的塑性形變機理並應用成為可撓式透明導電薄膜
(Plastic deformation mechanism of polycrystalline ZnO thin film and its application as a flexible transparent conductive thin film)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 薄型化氮化鎵發光二極體在銅填孔載具的研究
★ 248 nm準分子雷射對鋁薄膜的臨界破壞性質研究★ 無光罩藍寶石基材蝕刻及其在發光二極體之運用研究
★ N-GaN表面之六角錐成長機制及其光學特性分析★ 藍寶石基板表面和內部原子排列影響Pt薄鍍膜之de-wetting行為
★ 藍寶石基板表面原子對蝕刻液分子的屏蔽效應影響圖案生成行為及其應用★ 陽離子、陰離子與陰陽離子共摻雜對於p型氧化錫薄膜之電性之影響研究與陽離子空缺誘導模型建立
★ 通過水熱和溶劑熱法合成銅奈米晶體之研究★ 自生反應阻障層 Cu-Ni-Sn 化合物 在覆晶式封裝之研究
★ 含銅鎳之錫薄膜線之電致遷移研究★ 微量銅添加於錫銲點對電遷移效應的影響及 鎳金屬墊層在電遷移效應下消耗行為的研究
★ 電遷移誘發銅墊層消耗動力學之研究★ 不同無鉛銲料銦錫'錫銀銅合金與塊材鎳及薄膜鎳之濕潤研究
★ 錫鎳覆晶接點之電遷移研究★ 錫表面處理層之銅含量對錫鬚生長及介面反應之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-5-1以後開放)
摘要(中) ZnO薄膜於PET基板上形成柱狀纖鋅礦晶粒。根據XRD與SAD分析,ZnO薄膜中的柱狀纖鋅礦晶粒具有(0002) basal-preferred和(101 ̅0) prismatic-preferred兩種成長取向。由拉伸試驗得知ZnO薄膜的破裂應變量介於1.73%和2.14%之間,而ITO薄膜的破裂應變量介於0.24%和0.67%之間,表示ZnO薄膜的破裂應變量大約為ITO薄膜的3倍。根據HR-TEM圖像,識別出ZnO薄膜中存在著刃差排和螺旋差排。並且,觀察到刃差排和螺旋差排分別在basal-preferred和prismatic-preferred柱狀晶粒中移動。ZnO薄膜刃差排和螺旋差排的運動解釋了在施加應力的情況下ZnO的塑性變形。再者,為了將ZnO應用成可撓式透明導電膜,研究了ZnO/Cu/ZnO三明治結構的導電性和透光性。藉由I–V曲線證實了ZnO/Cu/ZnO三明治結構中ZnO薄膜的ohmic conduction機制。此外,ZnO/Cu界面的能帶圖表明ZnO和Cu之間的界面表現出ohmic contact行為。 ZnO/Cu/ZnO三明治結構(厚度20/5/20 nm至80/5/80 nm)的電阻率範圍為2.25×10-4 Ω·cm至9.72×10-4 Ω·cm。最低的電阻率(即2.25×10-4 Ω∙cm)出現在20/5/20 nm薄膜中。在ZnO/Cu/ZnO三明治結構中,載子通過上層ZnO薄膜,並在中間層的Cu薄膜中傳輸,驗證了歐姆傳導行為。在可見光波段對於ZnO/Cu/ZnO三明治結構的透光率測量與計算表明,表層ZnO薄膜會使整體ZnO/Cu/ZnO薄膜的透光率增加。ZnO/Cu/ZnO三明治結構的透光率取決於ZnO層的厚度,60/5/60 nm表現出最高的透光率增強效果。其中,厚度的變因是由於在ZnO/Cu和Cu/ZnO界面處的反射光形成破壞性干涉所造成。此外,藉由Cu的延展性和ZnO的塑性變形,製成了ZnO/Cu/ZnO可撓式透明導電薄膜。
摘要(英) Columnar wurtzite grains in sputtered zinc oxide (ZnO) thin films have two preferential growth planes, namely, basal-preferred (0002) and prismatic-preferred (101 ̅0) growth planes. The results of the tensile tests conducted in this study indicate that the fracture strain of the ZnO thin film occurs between 1.73% and 2.14% and the fracture strain of the indium tin oxide thin film occurs between 0.24% and 0.67%. With the high-resolution transmission electron microscopy atomic images, the edge and screw dislocations could be identified on the sputtered ZnO thin films. We conclude that the movements of the edge and screw dislocations in the basal-preferred and prismatic-preferred ZnO columnar grains account for the plastic deformation of the investigated ZnO thin films under tensile stress. The conductive and transparent properties of ZnO/Cu/ZnO sandwich structures were also investigated. The linear I–V curves confirmed the ohmic conduction mechanism of ZnO thin films in ZnO/Cu/ZnO sandwich structures. Moreover, the energy band diagram of the ZnO/Cu interface showed that the interface between ZnO and Cu exhibited ohmic contact behavior. The resistivity of ZnO/Cu/ZnO sandwich structures (with thicknesses between 20/5/20 nm and 80/5/80 nm) ranged from 2.25 × 10−4 Ω∙cm to 9.72 × 10−4 Ω∙cm. Transmittance measurement in the visible light region of the structures showed that the sandwiched ZnO layers increased the transmittance of the 5 nm Cu thin film. The 60/5/60 nm sandwich structure exhibited the best enhancement effect on transmittance. Thickness dependence was due to the destructive interference between the reflected light at the ZnO/Cu and Cu/ZnO interfaces in ZnO/Cu/ZnO sandwich structures. Furthermore, given the ductility of Cu and the plastic deformation of ZnO, a flexible transparent conductive thin film was produced.
關鍵字(中) ★ 可撓式透明導電薄膜
★ 氧化鋅
★ 氧化銦錫
★ 形變
★ 差排
★ 微觀結構
關鍵字(英) ★ flexible transparent conductive thin film
★ ZnO
★ ITO
★ deformation
★ dislocation
★ micro structure
論文目次 中文摘要 i
Abstract ii
誌謝 iii
Table of Contents iv
List of figures v
List of tables vii
Chapter 1 Introduction 1
1.1 Properties of ZnO 1
1.2 Applications of ZnO 3
1.3 Manufacture of ZnO 5
Chapter 2 Motivation 8
Chapter 3 Experimental 10
3.1 Experimental procedure 10
3.2 Instrumental analysis 10
Chapter 4 Tensile mechanism of the ZnO thin film at room temperature 16
4.1 Fracture strain of ceramics 16
4.2 Microstructure and fracture strain of ZnO and ITO thin films 18
4.3 Elastic deformation of ZnO and ITO thin films 22
4.4 Plastic deformation mechanism of the ZnO thin film 25
Chapter 5 ZnO applied to flexible transparent conductive thin film 36
5.1 Oxide/metal/oxide sandwich structure 36
5.2 Conductive properties of the ZnO/Cu/ZnO sandwich structure 40
5.3 Light transmittance properties of the ZnO/Cu/ZnO sandwich structure 47
5.4 Flexibility of the ZnO/Cu/ZnO sandwich structure 52
Chapter 6 Summary 56
References 58
參考文獻 [1] Kucheyev, S. O., Bradby, J. E., Williams, J. S., Jagadish, C., & Swain, M. V. (2002). Mechanical deformation of single-crystal ZnO. Applied Physics Letters, 80(6), 956-958.
[2] Kucheyev, S. O., Bradby, J. E., Williams, J. S., Jagadish, C., Toth, M., Phillips, M. R., & Swain, M. V. (2000). Nanoindentation of epitaxial GaN films. Applied Physics Letters, 77(21), 3373-3375.
[3] 黃淑綺. (2006). 以反應式濺鍍製備氧化鋅薄膜及其摻雜之研究 (Doctoral dissertation, 撰者).
[4] Schröer, P. (1993). Peter krüger, and Johannes Pollmann. Physical Review B, 47, 12.
[5] Özgür, Ü., et al. (2005). A comprehensive review of ZnO materials and devices. Journal of applied physics, 98(4), 11.
[6] McCluskey, M. D., & Jokela, S. J. (2009). Defects in zno. Journal of Applied Physics, 106(7), 10.
[7] Van de Walle, C. G. (2000). Hydrogen as a cause of doping in zinc oxide. Physical review letters, 85(5), 1012.
[8] Kato, H., Sano, M., Miyamoto, K., & Yao, T. (2002). Growth and characterization of Ga-doped ZnO layers on a-plane sapphire substrates grown by molecular beam epitaxy. Journal of Crystal Growth, 237, 538-543.
[9] Van de Walle, C. G. (2001). Defect analysis and engineering in ZnO. Physica B: Condensed Matter, 308, 899-903.
[10] Park, C. H., Zhang, S. B., & Wei, S. H. (2002). Origin of p-type doping difficulty in ZnO: The impurity perspective. Physical Review B, 66(7), 073202.
[11] Matsubara, M., Godet, J., Pizzagalli, L., & Bellotti, E. (2013). Properties of threading screw dislocation core in wurtzite GaN studied by Heyd-Scuseria-Ernzerhof hybrid functional. Applied Physics Letters, 103(26), 262107.
[12] 盧宥任, 謝余松, & 張益三. (2012). 橢圓偏光術於 ITO 透明導電膜量測應用 (上). 光連: 光電產業與技術情報, (98), 61-64.
[13] Sahu, D. R., & Huang, J. L. (2006). Characteristics of ZnO–Cu–ZnO multilayer films on copper layer properties. Applied Surface Science, 253(2), 827-832.
[14] Sahu, D. R., & Huang, J. L. (2006). Dependence of film thickness on the electrical and optical properties of ZnO–Cu–ZnO multilayers. Applied Surface Science, 253(2), 915-918.
[15] Sahu, D. R., Lin, S. Y., & Huang, J. L. (2007). Improved properties of Al-doped ZnO film by electron beam evaporation technique. Microelectronics Journal, 38(2), 245-250.
[16] Sahu, D. R., & Huang, J. L. (2007). The properties of ZnO/Cu/ZnO multilayer films before and after annealing in the different atmosphere. Thin Solid Films, 516(2-4), 208-211.
[17] Sahu, D. R., & Huang, J. L. (2007). Properties of ZnO/Cu/ZnO multilayer films deposited by simultaneous RF and DC magnetron sputtering at different substrate temperatures. Microelectronics journal, 38(3), 299-303.
[18] Sivaramakrishnan, K., Theodore, N. D., Moulder, J. F., & Alford, T. L. (2009). The role of copper in ZnO/Cu/ZnO thin films for flexible electronics. Journal of Applied Physics, 106(6), 063510.
[19] Tsukazaki, A., et al. (2005). Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nature materials, 4(1), 42-46.
[20] Song, K., Noh, J., Jun, T., Jung, Y., Kang, H. Y., & Moon, J. (2010). Fully flexible solution‐deposited ZnO thin‐film transistors. Advanced materials, 22(38), 4308-4312.
[21] Ju, S., et al. (2007). Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nature nanotechnology, 2(6), 378-384.
[22] Zhang, Y. H., Mei, Z. X., Liang, H. L., & Du, X. L. (2017). Review of flexible and transparent thin-film transistors based on zinc oxide and related materials. Chinese Physics B, 26(4), 047307.
[23] 林偉祺, & 張立. (2007). 水溶液法成長氧化鋅薄膜及其薄膜電晶體製作 (Doctoral dissertation).
[24] 曾心如, & 張立. (2013). 以水熱法在異質基板上成長氧化鋅之研究 (Doctoral dissertation).
[25] Guillen, C., & Herrero, J. (2011). TCO/metal/TCO structures for energy and flexible electronics. Thin Solid Films, 520(1), 1-17.
[26] Kumar, M. H., Yantara, N., Dharani, S., Graetzel, M., Mhaisalkar, S., Boix, P. P., & Mathews, N. (2013). Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chemical Communications, 49(94), 11089-11091.
[27] Fu, Y., et al. (2012). Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Advanced materials, 24(42), 5713-5718.
[28] Lee, S. P., et al. (2018). Highly flexible, wearable, and disposable cardiac biosensors for remote and ambulatory monitoring. NPJ digital medicine, 1(1), 1-8.
[29] Liang, X., et al. (2018). High performance all-solid-state flexible supercapacitor for wearable storage device application. Chemical Engineering Journal, 345, 186-195.
[30] Xie, T., Zhang, L., Wang, Y., Wang, Y., & Wang, X. (2019). Graphene-based supercapacitors as flexible wearable sensor for monitoring pulse-beat. Ceramics International, 45(2), 2516-2520.
[31] Wang, D., Zhang, Y., Lu, X., Ma, Z., Xie, C., & Zheng, Z. (2018). Chemical formation of soft metal electrodes for flexible and wearable electronics. Chemical Society Reviews, 47(12), 4611-4641.
[32] Kim, C. S., et al. (2018). Self-powered wearable electrocardiography using a wearable thermoelectric power generator. ACS Energy Letters, 3(3), 501-507.
[33] Zhao, G., et al. (2016). Bendable solar cells from stable, flexible, and transparent conducting electrodes fabricated using a nitrogen‐doped ultrathin copper film. Advanced Functional Materials, 26(23), 4180-4191.
[34] Jeong, C. K., et al. (2014). Self-powered fully-flexible light-emitting system enabled by flexible energy harvester. Energy & Environmental Science, 7(12), 4035-4043.
[35] Alzoubi, K., Hamasha, M. M., Lu, S., & Sammakia, B. (2011). Bending fatigue study of sputtered ITO on flexible substrate. Journal of Display Technology, 7(11), 593-600.
[36] Cairns, D. R., Witte, R. P., Sparacin, D. K., Sachsman, S. M., Paine, D. C., Crawford, G. P., & Newton, R. R. (2000). Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates. Applied Physics Letters, 76(11), 1425-1427.
[37] Lian, J., Zhang, D., Hong, R., Qiu, P., Lv, T., & Zhang, D. (2018). Defect-induced tunable permittivity of epsilon-near-zero in indium tin oxide thin films. Nanomaterials, 8(11), 922.
[38] Kang, N. R., Kim, Y. C., Jeon, H., Kim, S. K., Jang, J. I., Han, H. N., & Kim, J. Y. (2017). Wall-thickness-dependent strength of nanotubular ZnO. Scientific reports, 7(1), 1-10.
[39] Bagal, A., Dandley, E. C., Zhao, J., Zhang, X. A., Oldham, C. J., Parsons, G. N., & Chang, C. H. (2015). Multifunctional nano-accordion structures for stretchable transparent conductors. Materials Horizons, 2(5), 486-494.
[40] Lee, B. R., Park, J. H., Lee, T. H., & Kim, T. G. (2019). Highly flexible and transparent memristive devices using cross-stacked oxide/metal/oxide electrode layers. ACS applied materials & interfaces, 11(5), 5215-5222.
[41] Jian, S. R. (2015). Pop-in effects and dislocation nucleation of c-plane single-crystal ZnO by Berkovich nanoindentation. Journal of Alloys and Compounds, 644, 54-58.
[42] Sung, T. H., Huang, J. C., Hsu, J. H., Jian, S. R., & Nieh, T. G. (2012). Yielding and plastic slip in ZnO. Applied Physics Letters, 100(21), 211903.
[43] Han, X., et al. (2007). Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism. Nano letters, 7(2), 452-457.
[44] Frankberg, E. J., et al. (2019). Highly ductile amorphous oxide at room temperature and high strain rate. Science, 366(6467), 864-869.
[45] Narayan, B., et al. (2018). Electrostrain in excess of 1% in polycrystalline piezoelectrics. Nature materials, 17(5), 427-431.
[46] Miccoli, I., Edler, F., Pfnür, H., & Tegenkamp, C. (2015). The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems. Journal of Physics: Condensed Matter, 27(22), 223201.
[47] Day, R. B., & Stokes, R. J. (1966). Mechanical behavior of polycrystalline magnesium oxide at high temperatures. Journal of the American Ceramic Society, 49(7), 345-355.
[48] Wang, J. G., & Raj, R. (1984). Mechanism of superplastic flow in a fine‐grained ceramic containing some liquid phase. Journal of the American Ceramic Society, 67(6), 399-409.
[49] WAKAI, F., SAKAGUCHI, S., & MATSUNO, Y. (1986). Superplasticity of yttria-stabilized tetragonal ZrO 2 polycrystals. Advanced ceramic materials, 1(3), 259-263.
[50] Nieh, T. G., & Wadsworth, J. (1990). Superelastic behaviour of a fine-grained, yttria-stabilized, tetragonal zirconia polycrystal (Y-TZP). Acta Metallurgica et Materialia, 38(6), 1121-1133.
[51] Wakai, F., Kodama, Y., Sakaguchi, S., Murayama, N., Izaki, K., & Niihara, K. (1990). A superplastic covalent crystal composite. Nature, 344(6265), 421-423.
[52] Wakai, F., Kodama, Y., Sakaguchi, S., & Nonami, T. (1990). Superplasticity of hot isostatically pressed hydroxyapatite. Journal of the American Ceramic Society, 73(2), 457-460.
[53] Yoshizawa, Y., & Sakuma, T. (1992). Improvement of tensile ductility in high-purity alumina due to magnesia addition. Acta metallurgica et materialia, 40(11), 2943-2950.
[54] Xue, L. A., & Chen, I. W. (1992). Fabrication of mullite body using superplastic transient phase. Journal of the American Ceramic Society, 75(5), 1085-1091.
[55] Kajihara, K., Yoshizawa, Y., & Sakuma, T. (1993). Superplasticity in SiO2-containing tetragonal zirconia polycrystal. Scripta metallurgica et materialia, 28(5), 559-562.
[56] Karch, J., Birringer, R., & Gleiter, H. (1987). Ceramics ductile at low temperature. Nature, 330(6148), 556-558.
[57] Cogotsi, G. A., Zavada, V. P., & Kharitonov, F. Y. (1984). Strength and crack resistance of ceramics. Report No. 1. Cordierite. Strength of Materials, 16(12), 1651-1655.
[58] Fan, Y., Igarashi, G., Jiang, W., Wang, L., & Kawasaki, A. (2015). Highly strain tolerant and tough ceramic composite by incorporation of graphene. Carbon, 90, 274-283.
[59] Estili, M., Sakka, Y., & Kawasaki, A. (2013). Unprecedented simultaneous enhancement in strain tolerance, toughness and strength of Al2O3 ceramic by multiwall-type failure of a high loading of carbon nanotubes. Nanotechnology, 24(15), 155702.
[60] Gogotsi, G. A. (1987). Problems in studies of the strength characteristics of ceramics. Zavodskaia Laboratoriia, 53(10), 69-75.
[61] Gogotsi, G. A. (1991). Deformational behaviour of ceramics. Journal of the European Ceramic Society, 7(2), 87-92.
[62] Gogotsi, G. A., Komolikov, Y. I., Ostrovoi, D. Y., Pliner, S. Y., Rutman, D. S., & Toropov, Y. S. (1988). Strength and crack resistance of ceramics based on zirconium dioxide. Strength of Materials, 20(1), 61-64.
[63] Hengst, C., et al. (2017). Mechanical properties of ZTO, ITO, and a-Si: H multilayer films for flexible thin film solar cells. Materials, 10(3), 245.
[64] Reder, C., et al. (2003). Non-contacting strain measurements of ceramic and carbon single fibres by using the laser-speckle method. Composites Part A: Applied Science and Manufacturing, 34(11), 1029-1033.
[65] Kaps, S., et al. (2017). Piezoresistive response of quasi-one-dimensional ZnO nanowires using an in situ electromechanical device. Acs Omega, 2(6), 2985-2993.
[66] Vazinishayan, A., Yang, S., Lambada, D. R., Zhang, G., & Wang, Y. (2018). Investigation of the effects of tensile strain on optical properties of ZnO nanowire. Chinese journal of physics, 56(5), 1799-1809.
[67] Tuyaerts, R., Raskin, J. P., & Proost, J. (2017, March). Electromechanical testing of ZnO thin films under high uniaxial strain. In 2017 International Conference of Microelectronic Test Structures (ICMTS) (pp. 1-4). IEEE.
[68] He, J., Wu, J., Nagao, S., Qiao, L., & Zhang, Z. (2017). Size-dependent Phase Transformation and Fracture of ZnO Nanowires. Procedia IUTAM, 21, 86-93.
[69] Wang, W., Pi, Z., Lei, F., & Lu, Y. (2016). Understanding the tensile behaviors of ultra-thin ZnO nanowires via molecular dynamics simulations. AIP Advances, 6(3), 035111.
[70] Vazinishayan, A., et al. (2018). Effects of mechanical strain on optical properties of ZnO nanowire. AIP Advances, 8(2), 025306.
[71] Stan, C. V., O’Bannon, E. F., Mukhin, P., Tamura, N., & Dobrzhinetskaya, L. (2020). X-ray laue microdiffraction and raman spectroscopic investigation of natural silicon and moissanite. Minerals, 10(3), 204.
[72] St G, M., et al. (2000). The status of SiC bulk growth from an industrial point of view. Journal of Crystal Growth, 211(1-4), 325-332.
[73] Gaboriaud, R. J. Dislocations in Anion-Deficient Fluorite-type Oxides under harsh environment: RE2O3, Pyrochlores, δ-Phase.
[74] Skrotzki, W., & Siegesmund, S. (1993). Cordierite microstructure and texture in a Moldanubian gneiss. Physics and Chemistry of Minerals, 19(6), 401-408.
[75] van Roermund, H. L., & Konert, R. J. (1990). Deformation and recrystallisation mechanisms in naturally deformed cordierite. Physics and Chemistry of Minerals, 17(1), 52-61.
[76] Portelette, L., Amodeo, J., Madec, R., Soulacroix, J., Helfer, T., & Michel, B. (2018). Crystal viscoplastic modeling of UO2 single crystal. Journal of Nuclear Materials, 510, 635-643.
[77] Niki, K., Mochimaru, G., & Shindo, H. (2012). Participation of {1 0 0}< 0 1 1> Slip System in Sliding Friction at (0 0 1),(1 1 1) and (1 1 0) Surfaces of Fluorite (CaF2) Crystal. Tribology Online, 7(2), 81-86.
[78] Sekine, T., & Kobayashi, T. (2011). Time-resolved measurement of high-pressure phase transition of fluorite under shock loading. Physics and Chemistry of Minerals, 38(4), 305-310.
[79] Lu, W., Wang, H., Hu, Y., Huang, H., & Gu, H. (2009). First-principles prediction of the hardness of fluorite TiO2. Physica B: Condensed Matter, 404(1), 79-81.
[80] Heuer, A. H., Keller, R. J., & Mitchell, T. E. (1990). On the slip systems in uranium dioxide. In Deformation Processes in Minerals, Ceramics and Rocks (pp. 377-390). Springer, Dordrecht.
[81] Mann, A. W. (1974). Structural relationships and mechanisms for the stoichiometry change from MX3 (YF3-type) through MX2 (fluorite-type) to M2X3 (C-type sesquioxide). Journal of Solid State Chemistry, 11(2), 94-105.
[82] Brookes, C. A., O’neill, J. B., & Redfern, B. A. W. (1971). Anisotropy in the hardness of single crystals. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 322(1548), 73-88.
[83] Brantley, W. A., & Bauer, C. L. (1970). Geometric analysis of charged dislocations in the fluorite structure. physica status solidi (b), 40(2), 707-715.
[84] Ashbee, K. H. G., & Frank, F. C. (1970). Dislocations in the fluorite structure. Philosophical Magazine, 21(169), 211-213.
[85] Carrez, P., Goryaeva, A. M., & Cordier, P. (2017). Prediction of mechanical twinning in magnesium silicate post-perovskite. Scientific reports, 7(1), 1-9.
[86] Gouriet, K., Carrez, P., & Cordier, P. (2014). Modelling [1 0 0] and [0 1 0] screw dislocations in MgSiO3 perovskite based on the Peierls–Nabarro–Galerkin model. Modelling and Simulation in Materials Science and Engineering, 22(2), 025020.
[87] Metsue, A., & Tsuchiya, T. (2013). Shear response of Fe-bearing MgSiO3 post-perovskite at lower mantle pressures. Proceedings of the Japan Academy, Series B, 89(1), 51-58.
[88] Miyagi, L., Kanitpanyacharoen, W., Kaercher, P., Lee, K. K., & Wenk, H. R. (2010). Slip systems in MgSiO3 post-perovskite: implications for D′′ anisotropy. Science, 329(5999), 1639-1641.
[89] Miyajima, N., & Walte, N. (2009). Burgers vector determination in deformed perovskite and post-perovskite of CaIrO3 using thickness fringes in weak-beam dark-field images. Ultramicroscopy, 109(6), 683-692.
[90] Miyagi, L., et al. (2008). Deformation and texture development in CaIrO3 post-perovskite phase up to 6 GPa and 1300 K. Earth and Planetary Science Letters, 268(3-4), 515-525.
[91] Mainprice, D., Tommasi, A., Ferré, D., Carrez, P., & Cordier, P. (2008). Predicted glide systems and crystal preferred orientations of polycrystalline silicate Mg-Perovskite at high pressure: Implications for the seismic anisotropy in the lower mantle. Earth and Planetary Science Letters, 271(1-4), 135-144.
[92] Carrez, P., Ferré, D., & Cordier, P. (2007). Peierls–Nabarro model for dislocations in MgSiO3 post-perovskite calculated at 120 GPa from first principles. Philosophical Magazine, 87(22), 3229-3247.
[93] Ferré, D., Carrez, P., & Cordier, P. (2007). First principles determination of dislocations properties of MgSiO3 perovskite at 30 GPa based on the Peierls–Nabarro model. Physics of the Earth and Planetary Interiors, 163(1-4), 283-291.
[94] Yamazaki, D., Yoshino, T., Ohfuji, H., Ando, J. I., & Yoneda, A. (2006). Origin of seismic anisotropy in the D ″layer inferred from shear deformation experiments on post-perovskite phase. Earth and Planetary Science Letters, 252(3-4), 372-378.
[95] Wang, Z., Karato, S. I., & Fujino, K. (1993). High temperature creep of single crystal strontium titanate (SrTiO3): a contribution to creep systematics in perovskites. Physics of the earth and planetary interiors, 79(3-4), 299-312.
[96] Grundmann, M. (2020). Universal relation for the orientation of dislocations from prismatic slip systems in hexagonal and rhombohedral strained heterostructures. Applied Physics Letters, 116(8), 082104.
[97] Heuer, A. H., Lagerlöf, K. P. D., & Castaing, J. (1998). Slip and twinning dislocations in sapphire (α-Al2O3). Philosophical Magazine A, 78(3), 747-763.
[98] Lagerlöf, K. P. D. (1995). Basal Slip and Twinning in Sapphire (α-Al 2 O 3). In Plastic Deformation of Ceramics (pp. 63-74). Springer, Boston, MA.
[99] Lagerlöf, K. P. D., Heuer, A. H., Castaing, J., Rivière, J. P., & Mitchell, T. E. (1994). Slip and twinning in sapphire (α‐Al2O3). Journal of the American Ceramic Society, 77(2), 385-397.
[100] Kotchick, D. M., & Tressler, R. E. (1980). Deformation behavior of sapphire via the prismatic slip system. Journal of the American Ceramic Society, 63(7‐8), 429-434.
[101] Snow, J. D., & Heuer, A. H. (1973). Slip systems in Al2O3. Journal of the American Ceramic Society, 56(3), 153-157.
[102] Klassen‐Neklyudova, M. V., Govorkov, V. G., Urusovskaya, A. A., Voinova, N. N., & Kozlovskaya, E. P. (1970). Plastic deformation of corundum single crystals. physica status solidi (b), 39(2), 679-688.
[103] May, C. A., & Ashbee, K. H. G. (1969). Deformation kinking in the corundum structure. Micron (1969), 1(1), 62-69.
[104] Xue, D. J., et al. (2020). Regulating strain in perovskite thin films through charge-transport layers. Nature communications, 11(1), 1-8.
[105] Ko, Y. H., Kim, M. S., & Yu, J. S. (2012). Controllable electrochemical synthesis of ZnO nanorod arrays on flexible ITO/PET substrate and their structural and optical properties. Applied surface science, 259, 99-104.
[106] Demirel, B., Yaraş, A., & Elçiçek, H. (2011). Crystallization behavior of PET materials.
[107] Persson, K. (2019). Materials Data on ZnO (SG: 186) by Materials Project.
[108] De Jong, M., et al. (2015). Charting the complete elastic properties of inorganic crystalline compounds. Scientific data, 2(1), 1-13.
[109] Cabrera-Covarrubias, F. G., Gómez-Soberón, J. M., Almaral-Sánchez, J. L., Arredondo-Rea, S. P., Gómez-Soberón, M. C., & Corral-Higuera, R. (2016). An experimental study of mortars with recycled ceramic aggregates: Deduction and prediction of the stress-strain. Materials, 9(12), 1029.
[110] Hetnarski, R. B. (Ed.). (2014). Encyclopedia of thermal stresses (p. 6643). Dordrecht: Springer Netherlands.
[111] Gogotsi, G. A., Lomonova, E. E., & Pejchev, V. G. (1993). Strength and fracture toughness of zirconia crystals. Journal of the European Ceramic Society, 11(2), 123-132.
[112] Gogotsi, G. A., Komolikov, Y. I., Ostrovoj, D. Y., Pliner, S. Y., Rutman, D. S., & Toropov, Y. S. (1988). Strength and crack resistance of ceramics on zirconium dioxide base. Problemy Prochnosti, 50-52.
[113] Tamayo-Arriola, J., Huerta-Barberà, A., Montes Bajo, M., Muñoz, E., Muñoz-Sanjosé, V., & Hierro, A. (2018). Rock-salt CdZnO as a transparent conductive oxide. Applied Physics Letters, 113(22), 222101.
[114] Ephraim, J., Lanigan, D., Staller, C., Milliron, D. J., & Thimsen, E. (2016). Transparent conductive oxide nanocrystals coated with insulators by atomic layer deposition. Chemistry of Materials, 28(15), 5549-5553.
[115] Hajibabaei, H., Zandi, O., & Hamann, T. W. (2016). Tantalum nitride films integrated with transparent conductive oxide substrates via atomic layer deposition for photoelectrochemical water splitting. Chemical science, 7(11), 6760-6767.
[116] Zeumault, A., & Subramanian, V. (2016). Mobility Enhancement in Solution‐Processed Transparent Conductive Oxide TFTs due to Electron Donation from Traps in High‐k Gate Dielectrics. Advanced Functional Materials, 26(6), 955-963.
[117] Chueh, C. C., Chen, C. I., Su, Y. A., Konnerth, H., Gu, Y. J., Kung, C. W., & Wu, K. C. W. (2019). Harnessing MOF materials in photovoltaic devices: recent advances, challenges, and perspectives. Journal of Materials Chemistry A, 7(29), 17079-17095.
[118] Lee, C. C., Chen, C. I., Liao, Y. T., Wu, K. C. W., & Chueh, C. C. (2019). Enhancing efficiency and stability of photovoltaic cells by using perovskite/Zr‐MOF heterojunction including bilayer and hybrid structures. Advanced Science, 6(5), 1801715.
[119] Liao, Y. T., Ishiguro, N., Young, A. P., Tsung, C. K., & Wu, K. C. W. (2020). Engineering a homogeneous alloy-oxide interface derived from metal-organic frameworks for selective oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid. Applied Catalysis B: Environmental, 270, 118805.
[120] Konnerth, H., Matsagar, B. M., Chen, S. S., Prechtl, M. H., Shieh, F. K., & Wu, K. C. W. (2020). Metal-organic framework (MOF)-derived catalysts for fine chemical production. Coordination Chemistry Reviews, 416, 213319.
[121] Ci, J., Cao, C., Kuga, S., Shen, J., Wu, M., & Huang, Y. (2017). Improved performance of microbial fuel cell using esterified corncob cellulose nanofibers to fabricate air-cathode gas diffusion layer. ACS Sustainable Chemistry & Engineering, 5(11), 9614-9618.
[122] Wu, S., Yuan, S., Shi, L., Zhao, Y., & Fang, J. (2010). Preparation, characterization and electrical properties of fluorine-doped tin dioxide nanocrystals. Journal of colloid and interface science, 346(1), 12-16.
[123] Wang, J., et al. (2012). Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS applied materials & interfaces, 4(8), 4024-4030.
[124] Zhou, T., & Gall, D. (2018). Resistivity scaling due to electron surface scattering in thin metal layers. Physical Review B, 97(16), 165406.
[125] Chiu, F. C. (2014). A review on conduction mechanisms in dielectric films. Advances in Materials Science and Engineering, 2014.
[126] 李正中. (2004). 薄膜光學與鍍膜技術.
[127] McPeak, K. M., Jayanti, S. V., Kress, S. J., Meyer, S., Iotti, S., Rossinelli, A., & Norris, D. J. (2015). Plasmonic films can easily be better: rules and recipes. ACS photonics, 2(3), 326-333.
[128] Al-Kuhaili, M. F., Alade, I. O., & Durrani, S. M. A. (2014). Optical constants of hydrogenated zinc oxide thin films. Optical Materials Express, 4(11), 2323-2331.
[129] Raut, H. K., Ganesh, V. A., Nair, A. S., & Ramakrishna, S. (2011). Anti-reflective coatings: A critical, in-depth review. Energy & Environmental Science, 4(10), 3779-3804.
指導教授 劉正毓(Cheng-Yi Liu) 審核日期 2021-5-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明