參考文獻 |
[1] Liu M, Johnston MB, Snaith HJ. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature. 2013;501:395-8.
[2] Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, et al. A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. science. 2014;345:295-8.
[3] Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society. 2009;131:6050-1.
[4] Meng L, You J, Guo T-F, Yang Y. Recent advances in the inverted planar structure of perovskite solar cells. Accounts of chemical research. 2016;49:155-65.
[5] Duan J, Xu H, Sha W, Zhao Y, Wang Y, Yang X, et al. Inorganic perovskite solar cells: an emerging member of the photovoltaic community. Journal of Materials Chemistry A. 2019;7:21036-68.
[6] Park N-G. Perovskite solar cells: an emerging photovoltaic technology. Materials today. 2015;18:65-72.
[7] Yin W-J, Shi T, Yan Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Applied Physics Letters. 2014;104:063903.
[8] Corsini F, Griffini G. Recent progress in encapsulation strategies to enhance the stability of organometal halide perovskite solar cells. Journal of Physics: Energy. 2020;2:031002.
[9] Powalla M, Paetel S, Ahlswede E, Wuerz R, Wessendorf CD, Magorian Friedlmeier T. Thin‐film solar cells exceeding 22% solar cell efficiency: An overview on CdTe-, Cu (In, Ga) Se2-, and perovskite-based materials. Applied Physics Reviews. 2018;5:041602.
[10] Green MA, Dunlop ED, Hohl‐Ebinger J, Yoshita M, Kopidakis N, Hao X. Solar cell efficiency tables (version 56). Progress in Photovoltaics: Research and Applications. 2020;28:629-38.
[11] Kang S, Jeong J, Cho S, Yoon YJ, Park S, Lim S, et al. Ultrathin, lightweight and flexible perovskite solar cells with an excellent power-per-weight performance. Journal of Materials Chemistry A. 2019;7:1107-14.
[12] Lee G, Kim M-c, Choi YW, Ahn N, Jang J, Yoon J, et al. Ultra-flexible perovskite solar cells with crumpling durability: toward a wearable power source. Energy & Environmental Science. 2019;12:3182-91.
[13] Leijtens T, Bush K, Cheacharoen R, Beal R, Bowring A, McGehee MD. Towards enabling stable lead halide perovskite solar cells; interplay between structural, environmental, and thermal stability. Journal of Materials Chemistry A. 2017;5:11483-500.
[14] Pearson AJ, Eperon GE, Hopkinson PE, Habisreutinger SN, Wang JTW, Snaith HJ, et al. Oxygen degradation in mesoporous Al2O3/CH3NH3PbI3‐xClx perovskite solar cells: kinetics and mechanisms. Advanced Energy Materials. 2016;6:1600014.
[15] Yu X, Qin Y, Peng Q. Probe decomposition of methylammonium lead iodide perovskite in N2 and O2 by in situ infrared spectroscopy. The Journal of Physical Chemistry A. 2017;121:1169-74.
[16] Aristidou N, Sanchez‐Molina I, Chotchuangchutchaval T, Brown M, Martinez L, Rath T, et al. The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers. Angewandte Chemie. 2015;127:8326-30.
[17] Aristidou N, Eames C, Sanchez-Molina I, Bu X, Kosco J, Islam MS, et al. Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells. Nature communications. 2017;8:1-10.
[18] Asghar M, Zhang J, Wang H, Lund P. Device stability of perovskite solar cells–A review. Renewable and Sustainable Energy Reviews. 2017;77:131-46.
[19] Shi L, Young TL, Kim J, Sheng Y, Wang L, Chen Y, et al. Accelerated lifetime testing of organic–inorganic perovskite solar cells encapsulated by polyisobutylene. ACS applied materials & interfaces. 2017;9:25073-81.
[20] Zhao J, Brinkmann K, Hu T, Pourdavoud N, Becker T, Gahlmann T, et al. Self‐encapsulating thermostable and air‐resilient semitransparent perovskite solar cells. Advanced Energy Materials. 2017;7:1602599.
[21] Bush KA, Palmstrom AF, Zhengshan JY, Boccard M, Cheacharoen R, Mailoa JP, et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nature Energy. 2017;2:1-7.
[22] Bella F, Griffini G, Correa-Baena J-P, Saracco G, Grätzel M, Hagfeldt A, et al. Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers. Science. 2016;354:203-6.
[23] Alcaire M, Aparicio FJ, Obrero J, López‐Santos C, Garcia‐Garcia FJ, Sánchez‐Valencia JR, et al. Plasma Enabled Conformal and Damage Free Encapsulation of Fragile Molecular Matter: from Surface‐Supported to On‐Device Nanostructures. Advanced Functional Materials. 2019;29:1903535.
[24] Cheacharoen R, Rolston N, Harwood D, Bush KA, Dauskardt RH, McGehee MD. Design and understanding of encapsulated perovskite solar cells to withstand temperature cycling. Energy & Environmental Science. 2018;11:144-50.
[25] Cheacharoen R, Boyd CC, Burkhard GF, Leijtens T, Raiford JA, Bush KA, et al. Encapsulating perovskite solar cells to withstand damp heat and thermal cycling. Sustainable Energy & Fuels. 2018;2:2398-406.
[26] Kempe MD, Jorgensen GJ, Terwilliger KM, McMahon TJ, Kennedy CE, Borek TT. Acetic acid production and glass transition concerns with ethylene-vinyl acetate used in photovoltaic devices. Solar energy materials and solar cells. 2007;91:315-29.
[27] Matteocci F, Cinà L, Lamanna E, Cacovich S, Divitini G, Midgley PA, et al. Encapsulation for long-term stability enhancement of perovskite solar cells. Nano Energy. 2016;30:162-72.
[28] Burschka J, Pellet N, Moon S-J, Humphry-Baker R, Gao P, Nazeeruddin MK, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature. 2013;499:316-9.
[29] Elenius P, Levine L. Comparing flip-chip and wire-bond interconnection technologies. Chip Scale Review. 2000;4.
[30] Zhang Z, Wong C. Flip-chip underfill: Materials, process and reliability. Materials for advanced packaging. 2009:307-37.
[31] Zhao O, Ding Y, Pan Z, Rolston N, Zhang J, Dauskardt RH. Open-air plasma-deposited multilayer thin-film moisture barriers. ACS applied materials & interfaces. 2020;12:26405-12.
[32] Idigoras J, Aparicio FJ, Contreras-Bernal L, Ramos-Terrón S, Alcaire M, Sánchez-Valencia JRn, et al. Enhancing moisture and water resistance in perovskite solar cells by encapsulation with ultrathin plasma polymers. ACS applied materials & interfaces. 2018;10:11587-94.
[33] Wang H, Zhao Y, Wang Z, Liu Y, Zhao Z, Xu G, et al. Hermetic seal for perovskite solar cells: An improved plasma enhanced atomic layer deposition encapsulation. Nano Energy. 2020;69:104375.
[34] Vogt M, Hauptmann R. Plasma-deposited passivation layers for moisture and water protection. Surface and Coatings Technology. 1995;74:676-81.
[35] Chatham H. Oxygen diffusion barrier properties of transparent oxide coatings on polymeric substrates. Surface and Coatings Technology. 1996;78:1-9.
[36] Liao WS, Lee SC. Water‐induced room‐temperature oxidation of Si–H and–Si–Si–bonds in silicon oxide. Journal of applied physics. 1996;80:1171-6.
[37] Liao WS, Lin CH, Lee SC. Oxidation of silicon nitride prepared by plasma‐enhanced chemical vapor deposition at low temperature. Applied physics letters. 1994;65:2229-31.
[38] Lin H, Xu L, Chen X, Wang X, Sheng M, Stubhan F, et al. Moisture-resistant properties of SiNx films prepared by PECVD. Thin Solid Films. 1998;333:71-6.
[39] Yang F, Kamarudin MA, Zhang P, Kapil G, Ma T, Hayase S. Enhanced Crystallization by Methanol Additive in Antisolvent for Achieving High‐Quality MAPbI3 Perovskite Films in Humid Atmosphere. ChemSusChem. 2018;11:2348-57.
[40] Yang Z, Pan J, Liang Y, Li Q, Xu D. Ambient Air Condition for Room‐Temperature Deposition of MAPbI3 Films in Highly Efficient Solar Cells. Small. 2018;14:1802240.
[41] Zhou N, Shen Y, Zhang Y, Xu Z, Zheng G, Li L, et al. CsI Pre‐Intercalation in the Inorganic Framework for Efficient and Stable FA1− x CsxPbI3 (Cl) Perovskite Solar Cells. Small. 2017;13:1700484.
[42] Kim K-S, Imanishi T, Suganuma K, Ueshima M, Kato R. Properties of low temperature Sn–Ag–Bi–In solder systems. Microelectronics Reliability. 2007;47:1113-9.
[43] Khenkin MV, Katz EA, Abate A, Bardizza G, Berry JJ, Brabec C, et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nature Energy. 2020;5:35-49.
[44] Tomaszkiewicz I. Thermodynamics of Silicon Nitride. Standard molar enthalpy of formation of amorphous Si3N4 at 298.15 K. Journal of thermal analysis and calorimetry. 2001;65:425-33.
[45] Taga Y, Takahasi R. Role of kinetic energy of sputtered particles in thin film formation. Surface science. 1997;386:231-40.
[46] Reichelt K, Jiang X. The preparation of thin films by physical vapour deposition methods. Thin Solid Films. 1990;191:91-126.
[47] Vossen JL, Kern W, Kern W. Thin film processes II: Gulf Professional Publishing; 1991.
[48] Soppe W, Rieffe H, Weeber A. Bulk and surface passivation of silicon solar cells accomplished by silicon nitride deposited on industrial scale by microwave PECVD. Progress in Photovoltaics: Research and Applications. 2005;13:551-69.
[49] Roesch R, Faber T, Von Hauff E, Brown TM, Lira‐Cantu M, Hoppe H. Procedures and Practices for Evaluating Thin‐Film Solar Cell Stability. Advanced Energy Materials. 2015;5:1501407.
[50] Corazza M, Krebs FC, Gevorgyan SA. Lifetime of organic photovoltaics: Linking outdoor and indoor tests. Solar Energy Materials and Solar Cells. 2015;143:467-72.
[51] Reese MO, Gevorgyan SA, Jørgensen M, Bundgaard E, Kurtz SR, Ginley DS, et al. Consensus stability testing protocols for organic photovoltaic materials and devices. Solar Energy Materials and Solar Cells. 2011;95:1253-67.
[52] Yang J, Siempelkamp BD, Liu D, Kelly TL. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS nano. 2015;9:1955-63.
[53] Christians JA, Miranda Herrera PA, Kamat PV. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. Journal of the American Chemical Society. 2015;137:1530-8.
[54] Huang J, Tan S, Lund PD, Zhou H. Impact of H 2 O on organic–inorganic hybrid perovskite solar cells. Energy & Environmental Science. 2017;10:2284-311.
[55] Okada Y, Nakajima Si. Measurement of local stress in silicon nitride films grown by plasma‐enhanced chemical vapor deposition using micro‐Raman spectroscopy. Applied physics letters. 1991;59:1066-8.
[56] Hasegawa S, Anbutsu H, Kurata Y. Connection between Si–N and Si–H vibrational properties in amorphous SiNx: H films. Philosophical Magazine B. 1989;59:365-75.
[57] Della Sala D, Coluzza C, Fortunato G, Evangelisti F. Infrared and optical study of a-SiN alloys. Journal of Non-Crystalline Solids. 1985;77:933-6.
[58] Sénémaud C, Gheorghiu A, Amoura L, Etemadi R, Shirai H, Godet C, et al. Local order and H-bonding in N-rich amorphous silicon nitride. Journal of non-crystalline solids. 1993;164:1073-6.
[59] Yu S-J, Li S-C, Ni Y, Zhou H. Size dependent morphologies of brittle silicon nitride thin films with combined buckling and cracking. Acta Materialia. 2017;127:220-9.
[60] Lanford W, Rand M. The hydrogen content of plasma‐deposited silicon nitride. Journal of applied physics. 1978;49:2473-7.
[61] Osenbach J, Knolle W. Behavior of a‐SiN: H and a‐SiON: H films in condensed water. Journal of the Electrochemical Society. 1992;139:3346.
[62] Yin Z, Smith F. Optical dielectric function and infrared absorption of hydrogenated amorphous silicon nitride films: Experimental results and effective-medium-approximation analysis. Physical Review B. 1990;42:3666.
[63] Bustarret E, Bensouda M, Habrard M, Bruyere J, Poulin S, Gujrathi S. Configurational statistics in a-Si x N y H z alloys: A quantitative bonding analysis. Physical Review B. 1988;38:8171.
[64] Stadelmann H, Petzow G, Greil P. Effects of surface purification on the properties of aqueous silicon nitride suspensions. Journal of the European Ceramic Society. 1989;5:155-63. |