博碩士論文 108324011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:18.223.237.218
姓名 王郁瑩(Yu-Ying Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 鎳、鈷共觸媒對二氧化鈦光觸媒的影響
(The effect of Nickel and Cobalt cocatalysts on Titanium dioxide photocatalysts)
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文研究了鎳和鈷共觸媒對TiO2奈米顆粒光催化性質的影響。在本研究中,以初濕含浸法製備具有 Ni 和 Co 摻雜 的 TiO2 ,並通過紫外光照射 金屬還原 。 光觸媒透過 X 光繞射儀 、 穿透式電子顯微鏡 和 高解像能電子顯微鏡 觀察金屬改質後顆粒的變化。 光催化活性反應之鑑定 是 以 10 ppm 亞甲基藍水 溶液 ( 為光反應標準物 光降解樣品取樣利用紫外 可見光分光光譜儀分析亞甲基藍濃度。由結果表明, 0.05 wt 的 Ni 和 Co 為所有樣品中 活性最高,因此Ni和Co含量會影響催化劑的活性。而 Ni和Co金屬原子可能會 覆蓋在TiO2的表面並導致活性降低 。 鍛燒溫度和反應溫度也 會影響 光催化活性。當催化劑在25度C下以真空烘箱乾燥時, Ni和Co摻雜的 TiO2具有最高的活性。當催化劑在 0℃ 反應時,Ni 和 Co 摻雜的TiO2兩者 有最高的活性。
摘要(英) This thesis highlights the effects of nickel and cobalt cocatalyst on the photocatalytic properties of the TiO 2 nanopowders. In this study, the Ni and Co doped TiO 2 with various amounts of dopants were prepared through incipient wetness impregnation m ethod and reduced by ultraviolet light irradiation. The catalysts were characterized by X ray diffraction, transmission electron microscopy and high resolution transmission electron microscopy, to observe the changes of particles after metal modification . The degradation rate of methylene blue (MB) was used to identify the photocatalytic activity under ultraviolet light (UVC) irradiation and the concentration of MB was analyzed by Ultraviolet Visible spectrophotometer .
The results show that the N i and Co am ount could influence the activity of the catalyst. The 0.05 wt. % of Ni and Co showed the highest activity among all samples. Overdoes Ni and Co would cover the surface of TiO 2 and resulted in low activity. The calcination temperature and reaction temperat ure also influenced the photocatalytic activity. Ni and Co doped TiO 2 had the highest activity when the catalyst was dri ed at 30 °C in the vacuum oven . Both of Ni and Co doped TiO 2 had the highest activity when the catalyst reacted at 0 °C. The bared TiO2 had the highest activity when the catalyst reacted at 40 °C.
關鍵字(中) ★ 二氧化鈦
★ 鎳摻雜
★ 鈷摻雜
★ 光觸媒
★ 初濕含浸法
★ 光降解
關鍵字(英) ★ Titanium dioxide
★ Ni doping
★ Co doping
★ Photocatalyst
★ Incipient wetness impregnation method
★ Photocatalytic degradation
論文目次 List of Contents
中文摘要 I
Abstract II
List of Contents III
List of Tables VI
List of Figures VIII
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 LITERATURE REVIEW 2
2.1. Methylene Blue 2
2.2. Degussa P25 TiO2 3
2.3. Application of TiO2 Photocatalyst 4
2.3.1 Methylene blue degradation 4
2.3.2 Sewage treatment 6
2.3.3 Antibacteria and deodorant 6
2.4. Modification of TiO2 Photocatalyst 7
2.4.1 Noble metal doping 7
2.4.2 Non-noble metal doping 7
2.5. Preparation Methods of Metal Catalysts 8
2.5.1 Impregnation method 8
2.5.2 Photoreduction method 9
CHAPTER 3 EXPERIMENTAL 10
3.1. Materials 10
3.2. Preparation of Ni/TiO2 Catalysts 10
3.3. Preparation of Co/TiO2 Catalysts 12
3.4. Characterization 14
3.4.1 X-ray diffraction (XRD) 14
3.4.2 Accelerated surface area and porosimetry system (ASAP) 16
3.4.3 Transmission electron microscopy (TEM) 19
3.4.4 High resolution transmission electron microscopy (HRTEM) 21
3.5. Photocatalytic Degradation of Methylene Blue 22
CHAPTER 4 PHOTOCATALYTIC DEGRADATION OF METHYLENE BLUE ON Ni/TiO2 25
4.1. Results and Discussion 25
4.1.1 XRD 27
4.1.2 N2 sorption 34
4.1.3 TEM 38
4.1.4 HRTEM and EDS Analysis 40
4.1.5 Reaction 45
4.2. Conclusion 53
CHAPTER 5 PHOTOCATALYTIC DEGRADATION OF METHYLENE BLUE ON Co/TiO2 54
5.1. Results and Discussion 54
5.1.1 XRD 56
5.1.2 N2 sorption 60
5.1.3 TEM 63
5.1.4 HRTEM and EDS Analysis 65
5.1.5 Reaction 69
5.2. Conclusion 73
CHAPTER 6 EFFECTS OF TEMPERATURE ON PHOTOCATALYTIC ACTIVITY OF TiO2 74
6.1. Results and Discussion 74
6.1.1 Effects of calcination and drying temperatures 74
6.1.2 Effects of reaction temperatures 80
6.2. Conclusion 87
References 88
Appendix 92

List of Tables
Table 2.1 Basic characteristics of methylene blue 3
Table 3.1 The parameters of the calibration curve (methylene blue solution) 23
Table 4.1 The crystallite size and d-spacing of bared TiO2 and Ni/TiO2 28
Table 4.2 The parameters of the samples from XRD data (Shaban et al., 2019) 30
Table 4.3 Summary report 37
Table 4.4 Data of EDS analysis of 0.5 wt. % Ni/TiO2 43
Table 4.5 UV-Vis Data of Ni/TiO2 (Absorbance) 46
Table 4.6 UV-Vis Data of Ni/TiO2 (Methylene blue concentration) 46
Table 4.7 Reaction rate of degradation of Ni/TiO2 under UVC light irradiation 47
Table 4.8 Summarized H2 production data for the 0–4 wt. % Ni/TiO2 photocatalysts at different EtOH: H2O ratios. Data for the 0.63 wt. % NiO/TiO2 and 2 wt.% Au/TiO2 are also shown. All data were carried out at UV flux of 6.5 mW cm-2, Chen et al. (2015). 50
Table 5.1 The crystallite size and d-spacing of bared TiO2 and Co/TiO2 57
Table 5.2 Crystal size and phase of prepared samples, Pirbazari et al. (2016). 59
Table 5.3 Summary report 62
Table 5.4 Data of EDS analysis of 0.5 wt. % Co/TiO2 68
Table 5.5 UV-Vis Data of Co/TiO2 (Absorbance) 70
Table 5.6 UV-Vis Data of Co/TiO2 (Methylene blue concentration) 70
Table 5.7 Reaction rate of degradation of Co/TiO2 under UVC light irradiation 71
Table 6.1 Reaction rate of degradation of 0.1 wt. % Ni and Co/TiO2 (The samples were dried and calcined at different temperatures) 77
Table 6.2 Reaction rate of degradation of 0.1 wt.% Ni and Co/TiO2 (Reaction at different temperatures) 82
Table 6.3 Catalyst adsorption capacity of TiO2 and Ni/TiO2 92
Table 6.4 Catalyst adsorption capacity TiO2 and Co/TiO2 93
Table 6.5 Metal-doping capacity (Ni on TiO2) 95
Table 6.6 Metal-doping capacity (Co on TiO2) 95

List of Figures
Figure 2.1 Methylene blue degradation pathway 5
Figure 3.1 Preparation of Ni/TiO2 Catalysts 11
Figure 3.2 Ni/TiO2 catalysts powder after irradiate UVC lamp for one day 11
Figure 3.3 Preparation of Co/TiO2 Catalysts 12
Figure 3.4 Co/TiO2 Catalysts powder after irradiate UVC lamp for one day 13
Figure 3.5 X-ray diffraction (XRD) 14
Figure 3.6 XRD pattern of anatase structure titanium oxide (JCPDS–ICDD 1997, JCPDS–International Centre for Diffraction Data, 12 Campus Boulevard, Newtown Square, PA 19073–3273 U.S.A.). 15
Figure 3.7 XRD pattern of rutile structure titanium oxide (JCPDS–ICDD 1997, JCPDS–International Centre for Diffraction Data, 12 Campus Boulevard, Newtown Square, PA 19073–3273 U.S.A.). 15
Figure 3.8 Accelerated surface area and porosimetry system (ASAP) 18
Figure 3.9 Transmission Electron Microscopy, TEM. 20
Figure 3.10 High-Resolution Transmission Electron Microscopy, HRTEM. 21
Figure 3.11 Adsorption spectra of methylene blue solution in various concentrations 22
Figure 3.12 Calibration curve of methylene blue solution at wavelength of 664 nm 23
Figure 3.13 Photocatalytic activity reaction 24
Figure 3.14 Photocatalytic reactor 24
Figure 4.1 Methylene blue degradation on Ni/TiO2 (visual inspection) 26
Figure 4.2 XRD patterns of the bared TiO2 and Ni/TiO2 catalyst samples 28
Figure 4.3 XRD patterns of nanostructure pure and doped TiO2 with different Ni and Ni/Cr contents (Shaban et al., 2019) 29
Figure 4.4 XRD patterns (a) bared TiO2 (b) 0.5, (c) 1, (d) 3 wt.% Ni/TiO2; (e) 0.5, (f) 1 and (g) 3 wt.% Ru/TiO2, Amala Joice et al. (2019). 32
Figure 4.5 Powder XRD patterns of (a) TiO2; (b) 0.13, (c) 0.25, (d) 0.5, (e) 0.75, (f) 1 , (g) 2, (h) 4 wt.% Ni/TiO2; (i) metallic Ni powder; and (j) NiO, Chen et al. (2015). 32
Figure 4.6 XRD patterns of prepared TiO2 samples, Tseng et al. (2012) 33
Figure 4.7 Different types of adsorption isotherms as classified by IUPAC, Kumar et al. (2019). 35
Figure 4.8 Adsorption and desorption isotherm of (a) TiO2 (b) 0.5 wt. % Ni/TiO2 36
Figure 4.9 TEM images of (a) TiO2, and (b) 0.05, (c) 0.1, (d) 0.2, (e) 0.5% Ni/TiO2 39
Figure 4.10 HRTEM micrographs of 0.5 wt. % Ni/TiO2 in (a) 40000 X (b) 100000 X (c) 600000 X magnifications 42
Figure 4.11 EDS analysis of 0.5 wt. % Ni/TiO2 42
Figure 4.12 Elemental mapping of single particle (a-c), and (d) 0.5 wt. % Ni/TiO2 43
Figure 4.13 TEM morphology of (a) TiO2 and (b) 1 wt. % Ni-TiO2, Tseng et al. (2012). 44
Figure 4.14 TEM images for 4 wt. % Ni/TiO2, Chen et al. (2015). 44
Figure 4.15 Photodegradation of MB of Ni/TiO2 under UVC light irradiation (methylene blue concentration per time) 47
Figure 4.16 Influence of Ni content and regeneration time on the removal 48
Figure 4.17 H2 production per time for Ni/TiO2 and Au/TiO2 photocatalysts in ethanol: H2O mixtures (80:20 by volume) under UV irradiation, Chen et al. (2015). 49
Figure 4.18 Absorbance of MB measured at 664nm to dispersed catalysts, Nakhate et al. (2010). 51
Figure 4.19 The effect of sunlight exposure intervals on the degradation efficiency of 52
Figure 5.1 Methylene blue degradation on Co/TiO2 (visual inspection) 55
Figure 5.2 XRD patterns of Co/TiO2 catalysts 57
Figure 5.3 Powder XRD patterns of: (a) TiO2, (b) 0.24, (c) 0.30, (d) 0.60 and (e) 0.63 wt.% Co/TiO2, Pirbazari et al. (2016). 58
Figure 5.4 Adsorption and desorption isotherm of (a) TiO2 (b) 0.5 wt. % Co/TiO2 61
Figure 5.5 TEM images of (a) TiO2, and (b) 0.05, (c) 0.1, (d) 0.2, (e) 0.5 wt. % Co/TiO2 64
Figure 5.6 HRTEM micrographs of 0.5 wt. % Co/TiO2 in (a) 40000 X (b) 100000 X (c) 600000 X magnifications 67
Figure 5.7 EDS analysis of 0.5 wt. % Co/TiO2 67
Figure 5.8 Elemental mapping of single particle (a-c), and (d) Co/TiO2 68
Figure 5.9 Photocatalytic degradation of methylene blue of Co/TiO2 under UVC light irradiation (MB concentration per time) 71
Figure 5.10 Photocatalytic degradation of MB in the presence of prepared samples under UV irradiation: initial concentration of MB, 10 mg /L; volume, 100 mL; pH, 9 and catalyst dosage, 10 mg, Pirbazari et al. (2017). 72
Figure 6.1 Photocatalytic degradation of methylene blue of 0.1 wt. % Ni and Co/TiO2 (The samples were dried at 30 °C in the vacuum oven) 75
Figure 6.2 Photocatalytic degradation of methylene blue of 0.1 wt. % Ni and Co/TiO2 (The samples were dried at 70 °C in the oven) 76
Figure 6.3 Photocatalytic degradation of methylene blue of 0.1 wt. % Ni and Co/TiO2 (The samples were calcined at 300 °C for 3 h) 76
Figure 6.4 Effect of calcination temperature on degradation of MB using MgO/TiO2-30, Bekena et al. (2020). 78
Figure 6.5 UV-Vis absorption spectra of MB degradation by the Si-doped TiO2 calcined at different temperatures. (a) Pure TiO2 (b) Si-doped TiO2 synthesized in 400 °C and (c) 600 °C. 78
Figure 6.6 Photocatalytic degradation of methylene blue of TiO2 (reaction at different temperatures). 81
Figure 6.7 Photocatalytic degradation of methylene blue of 0.1 wt. % Ni/TiO2 (reaction at different temperatures). 81
Figure 6.8 Photocatalytic degradation of methylene blue of 0.1 wt. % Co/TiO2 (reaction at different temperatures). 82
Figure 6.9 Influence of the different temperature which govern the reaction rate r (r is generally comprised between 1 and 0.1 mmol/h), Herrmann (1999). 83
Figure 6.10 Variation in apparent reaction rate with operational temperature. 84
Figure 6.11 Network kinetic model graph of degradation of Orange G dye on ZnO/TiO2 thin film photocatalyst for different temperatures, Tekin et al. (2020). 85
Figure 6.12 Photodegradation of MB solutions with catalysts under UV irradiation at different temperatures, Mendoza et al. (2020). 86
Figure 6.13 The MB adsorption of TiO2 and Ni/TiO2 (keep in dark for 1 h). 92
Figure 6.14 The MB adsorption of TiO2 and Co/TiO2 (keep in dark for 1 h). 93
參考文獻 黃麗名 (2013). "Study of photodegradation of methylene blue by Au-modified titania" 環境科學與工程系研究所, 東海大學. 碩士論文.

Azadeh Ebrahimian Pirbazaria, Pejman Monazzam, Behnam Fakhari Kisomi (2016). "Co/TiO2 nanoparticles: preparation, characterization and its application for photocatalytic degradation of methylene blue." Desalination and Water Treatment 63 (2017) 283–292.

Ammar Houas, Hinda Lachheb, Mohamed Ksibi, Elimame Elaloui, Chantal Guillard, Jean-Marie Herrmann (2001) "Photocatalytic degradation pathway of methylene blue in water" Applied Catalysis B: Environmental 31 (2001) 145–157.

J. Amala Infant Joice, S. Aishwarya, and T. Sivakumar (2019). "Nano Structured Ni and Ru Impregnated TiO2 Photocatalysts: Synthesis, Characterization and Photocatalytic Degradation of Neonicotinoid Insecticides" Journal of Nanoscience and Nanotechnology, Vol. 19, 2575–2589, www.aspbs.com/jnn.

Mohamed Shaban, Ashour M. Ahmed, Nora Shehata, Mohamed A. Betiha, Abdelrahman M. Rabie (2019). "Ni-doped and Ni/Cr co-doped TiO2 nanotubes for enhancement of photocatalytic degradation of methylene blue" Journal of Colloid and Interface Science 555 (2019) 31–41.

Juhua He, Jinping Cheng, Irene M. C. Lo (2020) "Green photocatalytic disinfection of real sewage: efficiency evaluation and toxicity assessment of eco-friendly TiO2-based magnetic photocatalyst under solar light" Water Research 190 (2021) 116705, https://doi.org/10.1016/j.watres.2020.116705.

O. Akhavan (2009) "Lasting antibacterial activities of Ag–TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation" Journal of Colloid and Interface Science 336 (2009) 117–124.

Patil S. Basavarajappa, Shivaraj B. Patil, Nagaraju Ganganagappa, Kakarla Raghava Reddy, Anjanapura V. Raghu, Ch. Venkata Reddy (2019) "Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis" https://doi.org/10.1016/ j.ijhydene.2019.07.241.

Wan-Ting Chen, Andrew Chan, Dongxiao Sun-Waterhouse, Toshihiro Moriga, Hicham Idriss, Geoffrey I.N. Waterhouse (2015) "Ni/TiO2: A promising low-cost photocatalytic system for solar H2 production from ethanol–water mixtures" Journal of Catalysis 326 (2015) 43–53.

Wei Chen, Mei Liu, Yanhong Wang, Li Gao, Haifeng Dang, Liqun Mao (2019) "Non-noble metal Co as active sites on TiO2 nanorod for promoting photocatalytic H2 production" Materials Research Bulletin 116 (2019) 16-21.

Yao-Hsuan Tseng, Bo-Kai Huang (2012). “Photocatalytic Degradation of NOx Using Ni-Containing TiO2” International Journal of Photoenergy, Volume 2012, Article ID 832180, 7 pages.

Z. Moradi Shammi. A. H. Kanfar, M. M. Momeni (2020). "Hydrothermal synthesis and characterization of CuO–CoO/TiO2 for photocatalytic degradation of methylene blue under visible light and catalytic reduction of P-nitrophenol" Journal of Materials Science: Materials in Electronics, https://doi.org/10.1007/s10854-020-04044-9.

G.G. Nakhate, V.S. Nikam, K.G. Kanade, S. Arbuj, B.B. Kale, J.O. Baeg (2010). "Hydrothermally derived nanosized Ni-doped TiO2: A visible light driven photocatalyst for methylene blue degradation" Materials Chemistry and Physics 124 (2010) 976–981

曾卉蓁 (2019). "Ag/TiO2 製備方法對於光催化活性的影響" 化學工程與材料工程系研究所, 國立中央大學. 碩士論文.

林永隆 (2009). "探討不同Ag/TiO2之製備方法在亞甲基藍光催化分解的影響" 化學工程與材料工程系研究所, 國立中央大學. 碩士論文.

Jean-Marie Herrmann (1999). "Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants" Catalysis Today 53 (1999) 115–129.
指導教授 陳郁文(Yu-Wen Chen) 審核日期 2021-6-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明