參考文獻 |
[1] X. Qin, B. Wang, X. Zhang, Y. Shi, S. Ye, Y. Feng, C. Liu, C. Shen, Superelastic and durable hierarchical porous thermoplastic polyurethane monolith with excellent hydrophobicity for highly efficient oil/water separation, Industrial & Engineering Chemistry Research 58(44) (2019) 20291-20299.
[2] H. Zhang, R. Zhao, M. Pan, J. Deng, Y. Wu, Biobased, Porous Poly (high internal phase emulsions): Prepared from biomass-derived vanillin and laurinol and applied as an oil adsorbent, Industrial & Engineering Chemistry Research 58(14) (2019) 5533-5542.
[3] J. Chen, X. Jiang, D. Yin, W. Zhang, Preparation of a Hydrogel-Based Adsorbent for Metal Ions through High Internal Phase Emulsion Polymerization, ACS omega 5(32) (2020) 19920-19927.
[4] N.C. Grant, A.I. Cooper, H. Zhang, Uploading and temperature-controlled release of polymeric colloids via hydrophilic emulsion-templated porous polymers, ACS applied materials & interfaces 2(5) (2010) 1400-1406.
[5] G. Duan, A.R. Bagheri, S. Jiang, J. Golenser, S. Agarwal, A. Greiner, Exploration of macroporous polymeric sponges as drug carriers, Biomacromolecules 18(10) (2017) 3215-3221.
[6] A.C. Nalawade, R.V. Ghorpade, S. Shadbar, M.S. Qureshi, N. Chavan, A.A. Khan, S. Ponrathnam, Inverse high internal phase emulsion polymerization (i-HIPE) of GMMA, HEMA and GDMA for the preparation of superporous hydrogels as a tissue engineering scaffold, Journal of Materials Chemistry B 4(3) (2016) 450-460.
[7] J.L. Robinson, R.S. Moglia, M.C. Stuebben, M.A. McEnery, E. Cosgriff-Hernandez, Achieving interconnected pore architecture in injectable PolyHIPEs for bone tissue engineering, Tissue Engineering Part A 20(5-6) (2014) 1103-1112.
[8] T. Zhang, Z. Xu, H. Gui, Q. Guo, Emulsion-templated, macroporous hydrogels for enhancing water efficiency in fighting fires, Journal of materials chemistry A 5(21) (2017) 10161-10164.
[9] Q. Hou, D.W. Grijpma, J. Feijen, Preparation of interconnected highly porous polymeric structures by a replication and freeze‐drying process, Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 67(2) (2003) 732-740.
[10] J.-W. Kim, K. Taki, S. Nagamine, M. Ohshima, Preparation of porous poly (L-lactic acid) honeycomb monolith structure by phase separation and unidirectional freezing, Langmuir 25(9) (2009) 5304-5312.
[11] N. Mac Kenna, A. Morrin, Inducing macroporosity in hydrogels using hydrogen peroxide as a blowing agent, Materials Chemistry Frontiers 1(2) (2017) 394-401.
[12] Y. Xin, T. Fujimoto, H. Uyama, Facile fabrication of polycarbonate monolith by non-solvent induced phase separation method, Polymer 53(14) (2012) 2847-2853.
[13] X. Sun, G. Sun, X. Wang, Morphology modeling for polymer monolith obtained by non-solvent-induced phase separation, Polymer 108 (2017) 432-441.
[14] T. Zhang, R.A. Sanguramath, S. Israel, M.S. Silverstein, Emulsion templating: porous polymers and beyond, Macromolecules 52(15) (2019) 5445-5479.
[15] T. Zhang, M.S. Silverstein, Microphase-separated macroporous polymers from an emulsion-templated reactive triblock copolymer, Macromolecules 51(10) (2018) 3828-3835.
[16] M. Tebboth, Q. Jiang, A. Kogelbauer, A. Bismarck, Inflatable elastomeric macroporous polymers synthesized from medium internal phase emulsion templates, ACS applied materials & interfaces 7(34) (2015) 19243-19250.
[17] J. Sjoblom, Emulsions and emulsion stability: Surfactant science series/61, crc press2005.
[18] S.-W. Hu, P.-J. Sung, T.P. Nguyen, Y.-J. Sheng, H.-K. Tsao, UV-Resistant Self-Healing Emulsion Glass as a New Liquid-like Solid Material for 3D Printing, ACS applied materials & interfaces 12(21) (2020) 24450-24457.
[19] K. Lissant, The geometry of high-internal-phase-ratio emulsions, Journal of colloid and interface science 22(5) (1966) 462-468.
[20] N.L. Krajnc, F. Smrekar, V. Frankovicˇ, A. Štrancar, A. Podgornik, Monolithic macroporous polymers as chromatographic matrices, Macroporous Polymers: Production Properties and Biotechnological/Biomedical Applications, CRC Press2009, pp. 291-334.
[21] D. Golub, P. Krajnc, Emulsion templated hydrophilic polymethacrylates. Morphological features, water and dye absorption, Reactive and Functional Polymers 149 (2020) 104515.
[22] T. Zhang, X. Li, W. Wang, Z. Xu, Y. Zhao, Interface‐Initiated Polymerization Enables One‐Pot Synthesis of Hydrophilic and Oleophobic Foams through Emulsion Templating, Macromolecular rapid communications 40(21) (2019) 1900288.
[23] T. Zhang, M.S. Silverstein, Robust, highly porous hydrogels templated within emulsions stabilized using a reactive, crosslinking triblock copolymer, Polymer 168 (2019) 146-154.
[24] P. Jing, X. Fang, J. Yan, J. Guo, Y. Fang, Ultra-low density porous polystyrene monolith: facile preparation and superior application, Journal of Materials Chemistry A 1(35) (2013) 10135-10141.
[25] S. Yu, H. Tan, J. Wang, X. Liu, K. Zhou, High porosity supermacroporous polystyrene materials with excellent oil–water separation and gas permeability properties, ACS applied materials & interfaces 7(12) (2015) 6745-6753.
[26] G. Wang, H. Uyama, Facile synthesis of flexible macroporous polypropylene sponges for separation of oil and water, Scientific reports 6(1) (2016) 1-6.
[27] X. Liu, F. Guo, Y. Dong, W. Li, Synthesis of an amphibious superamphiphilic carbon-based materials with unique properties, New Journal of Chemistry 44(38) (2020) 16351-16357.
[28] Z. Bao, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, Superamphiphilic and underwater superoleophobic membrane for oil/water emulsion separation and organic dye degradation, Journal of Membrane Science 598 (2020) 117804.
[29] Z. Zhu, Y. Tian, Y. Chen, Z. Gu, S. Wang, L. Jiang, Superamphiphilic silicon wafer surfaces and applications for uniform polymer film fabrication, Angewandte Chemie 129(21) (2017) 5814-5818.
[30] V.-T. Bui, X. Liu, S.H. Ko, H.-S. Choi, Super-amphiphilic surface of nano silica/polyurethane hybrid coated PET film via a plasma treatment, Journal of colloid and interface science 453 (2015) 209-215.
[31] X. Song, Y. Chen, M. Rong, Z. Xie, T. Zhao, Y. Wang, X. Chen, O.S. Wolfbeis, A phytic acid induced super‐amphiphilic multifunctional 3D graphene‐based foam, Angewandte Chemie International Edition 55(12) (2016) 3936-3941.
[32] K. Yang, J. Du, Z. Zhang, D. Liu, T. Ren, Facile and eco-friendly preparation of super-amphiphilic porous polycaprolactone, Journal of colloid and interface science 560 (2020) 795-801.
[33] X. Zhang, D. Liu, G. Sui, Superamphiphilic polyurethane foams synergized from cellulose nanowhiskers and graphene nanoplatelets, Advanced Materials Interfaces 5(2) (2018) 1701094.
[34] J. Yong, Q. Yang, X. Hou, F. Chen, Relationship and Interconversion Between Superhydrophilicity, Underwater Superoleophilicity, Underwater Superaerophilicity, Superhydrophobicity, Underwater Superoleophobicity, and Underwater Superaerophobicity: A Mini-Review, Frontiers in Chemistry 8 (2020).
[35] M. Jin, J. Wang, X. Yao, M. Liao, Y. Zhao, L. Jiang, Underwater Oil Capture by a Three-Dimensional Network Architectured Organosilane Surface, Advanced Materials 23(25) (2011) 2861-2864.
[36] Y. Sun, J. Huang, Z. Guo, W. Liu, Is superhydrophobicity equal to underwater superoleophilicity? Hydrophilic wetting defects on a superhydrophobic matrix with switchable superdewetting in both air and water, Journal of Materials Chemistry A 9(3) (2021) 1471-1479.
[37] S. Fu, H. Zhou, H. Wang, H. Niu, W. Yang, H. Shao, T. Lin, Amphibious superamphiphilic fabrics with self-healing underwater superoleophilicity, Materials Horizons 6(1) (2019) 122-129.
[38] H. Hamamoto, K. Himei, S. Inoue, H. Aota, A. Matsumoto, Microgel-like network polymer precursor formation in free-radical cross-linking multiallyl polymerization, Polymer Journal 42(12) (2010) 923-927.
[39] A. Matsumoto, Polymerization of multiallyl monomers, Progress in Polymer Science 26(2) (2001) 189-257.
[40] S. Bednarz, A. Błaszczyk, D. Błażejewska, D. Bogdał, Free-radical polymerization of itaconic acid in the presence of choline salts: Mechanism of persulfate decomposition, Catalysis Today 257 (2015) 297-304.
[41] C. Ye, V.S.D. Voet, R. Folkersma, K. Loos, Robust Superamphiphilic Membrane with a Closed-Loop Life Cycle, Advanced Materials 33(15) (2021) 2008460.
[42] J. Yang, Q. Xiao, X. Jia, Y. Li, S. Wang, H. Song, Enhancement of wastewater treatment by underwater superelastic fiber-penetrated lamellar monolith, Journal of Hazardous Materials 403 (2021) 124016.
[43] C.-F. Wang, H.-C. Huang, L.-T. Chen, Protonated Melamine Sponge for Effective Oil/Water Separation, Scientific Reports 5(1) (2015) 14294.
[44] T.-S. Wong, S.H. Kang, S.K.Y. Tang, E.J. Smythe, B.D. Hatton, A. Grinthal, J. Aizenberg, Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity, Nature 477(7365) (2011) 443-447. |