以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:56 、訪客IP:3.145.153.251
姓名 李函穎(Han-Ying Li) 查詢紙本館藏 畢業系所 化學學系 論文名稱 利用水熱法合成含鉛碲(IV, VI)酸鹽化合物並鑑定之晶體結構
(Hydrothermal Synthesis and Crystal Structures of Lead Tellurium(IV, VI) Oxycompounds)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 本論文利用高溫高壓水熱合成法
及 中溫水熱合成法分別合成兩個
新穎的化合物 Ba3PbTe6O16 (BPTO)、 Na2Pb9( 66-O)2(Te2O10)2 (
這兩個化合物皆藉由單晶 X光繞射方法分析化合物的晶體結構,再以
粉末 X光繞射分析圖,確定樣品純度,並用 EDS確定化合物元素組成,
更進一步 以 XPS來確定碲金屬離子的價數。 BPTO空間群為 R-3屬於
中心對稱,結構中每 六 個蹺蹺板型的 TeO4 單元會與水平面上的 O(3)或 O(4)共角連接,沿著 ab平面形成六圓環的層狀結構,在六圓環結構
中,相鄰的 TeO4 單元其孤對電子朝向三個不同方向,並由鉛二正 離子
和鋇二正離子作為層與層之間的連接,形成三維網狀結構 。 NPTO空
間群為 Cmcm,結構中兩個 Te6+O6 多面體以共邊方式連接形成 Te2O10 二聚體 (dimer)並與 O@Pb5Na團簇上的鉛二正離子共享氧原子以共角
方式連接形成三維的網狀結構。 (O@Pb5Na表示一個 O2- 陰離子作為團
簇中心與五個 Pb2+ 和一個 Na+ 形成六配位八面體的團簇構型 )。在碲
酸鹽文獻中, BPTO結構中的六圓環無限延伸層和 NPTO結構中以 O2- 陰離子為團簇中心所形成的 O@Pb5Na團簇構型 皆 是十分稀有特別的
結構,因此利用高溫高壓水熱法和中溫水熱法 兩種合成方法有助於 新
穎結構化合物 的 生成 。摘要(英) This thesis reports two novel lead-tellurium-oxygen compounds, Ba3PbTe6O16 (BPTO) and Na2Pb9( 66-O)2(Te2O10)2 (NPTO), were synthesized under hydrothermal conditions at 560 and 210℃℃, respectively. The crystal structures of the compounds are analyzed by the single crystal X-ray diffraction method. The powder X-ray diffraction analysis datas are used to determine the purity of the samples. The element compositions of the compounds are determined by EDS. And XPS is further measured to determine the valence of the tellurium metal ion. The space group of BPTO is the centrosymmetric R3. The six-membered rings along the ab plane in the structure of BPTO every six seesaw-shaped TeO4 unit connects with O(3) or O(4) by sharing corner. The adjacent TeO4 units in the six-membered rings with lone pairs electrons force the seesaw-shaped TeO4 units toward three different directions, and the Ba2+ and Pb2+ cations are situated in the interlayer region forms a three-dimensional network structure. The space group of NPTO is Cmcm contains dimers of edge-sharing Te6+O6 octahedra, which are connected through five coordinate Pb2+ cations. A unique six-coordinate O atom is at the center of the octahedron formed by five Pb2+ and one Na+ cations. (O@Pb5Na represents an O2- anion as the cluster center and five Pb2+ and one Na+ to form a six-coordinate octahedral cluster configuration). In the tellurite literatures, the six-membered rings infinitely extended layer in the structure of the BPTO and the O@Pb5Na cluster configuration formed by the O2- anion as the cluster center in the structure of the NPTO are very rare and special structures. In other words, it is a very good strategy to synthesize novel structural compounds by hydrothermal method. 關鍵字(中) ★ 非線性光學
★ 碲酸鹽關鍵字(英) ★ nonlinear optical 論文目次 目錄
摘要
i
Abstract ii
謝誌
iii
目錄
iv
圖目錄
vii
表目錄
xi
附錄之表目錄
xii
第一章
緒論 1
1-1非線性光學 1
1-1-1非線性光學研究的起源與應用 1
1-1-2非線性光學的原理 2
1-1-3深紫外非線性光學晶體的理想條件 3
1-1-4非線性光學設計理念 4
1-1-5當前著名的非線性光學晶體 6
1-2碲酸鹽 8
1-2-1 碲酸鹽的化學性質與結構型態 9
1-2-3 目前已知具有非現 性光性質的碲酸鹽化合物 13
1-3 研究動機 19
1-4研究成果摘要 20
v
第二章
第二章 實驗與結構解析實驗與結構解析 ...................................................................................................................................................... 21
2-1合成方法合成方法 ............................................................................................................................................................................ 21
2-1-1 水熱法水熱法 ............................................................................................................................................................ 21
2-1-2封閉系統下固態反應法封閉系統下固態反應法 ...................................................................................................... 25
2-1-3使用設備清單使用設備清單 ...................................................................................................................................... 26
2-1-4使用藥品清單使用藥品清單 ...................................................................................................................................... 26
2-2 鑑定方法鑑定方法 .......................................................................................................................................................................... 27
2-2-1 鑑定之儀器型號列表鑑定之儀器型號列表 ............................................................................................................ 27
2-2-2 單晶單晶X光繞射儀與結構分析原理光繞射儀與結構分析原理 (SC-XRD) .......................... 28
2-2-3 粉末粉末X光繞射儀光繞射儀 (PXRD) ............................................................................................ 35
2-2-4 傅立葉轉換紅外線光譜儀傅立葉轉換紅外線光譜儀 (FTIR) ................................................................ 36
2-2-5 能量散射能量散射X射線譜射線譜 (EDS) .......................................................................................... 37
2-2-6 熱重熱重/示差掃示差掃描熱分析儀描熱分析儀(DSC/TGA) .......................................................... 38
2-2-7 X光光電子能譜儀光光電子能譜儀 (XPS) .............................................................................................. 39
2-3 水熱法合成步驟水熱法合成步驟 .................................................................................................................................................. 40
2-3-1 Ba3PbTe6O16 (BPTO) 合成條件與長晶條件合成條件與長晶條件 .................................... 40
2-3-2 BPTO 粉末粉末X光繞射分析光繞射分析 (PXRD) ............................................................ 44
2-3-3 Na2Pb9(66-O)2(Te2O10)2 (NPTO) 合成條件合成條件 .......................................... 46
2-3-4 NPTO 粉末粉末X光繞射分析光繞射分析 (PXRD) ............................................................ 48
2-4 單晶單晶X光繞射結構解析光繞射結構解析 ........................................................................................................................ 50
2-4-1 單晶單晶X光繞射分析光繞射分析 .................................................................................................................. 50
vi
2-4-2 BPTO結構解析結構解析 ................................................................................................................................ 51
2-4-3 NPTO結構解析結構解析 ................................................................................................................................ 53
2-5 化合物鑑定與性質測量化合物鑑定與性質測量 .......................................................................................................................... 57
2-5-1 BPTO 能量散射能量散射X射光射光譜譜 (EDS).................................................................... 57
2-5-2 BPTO 傅立葉轉換紅外線光譜傅立葉轉換紅外線光譜 (FTIR) .................................................. 58
2-5-3 BPTO X光光電子能譜儀光光電子能譜儀 (XPS) ........................................................................ 59
2-5-3 NPTO 能量散射能量散射X射光譜射光譜 (EDS) .................................................................. 60
2-5-4 NPTO 傅立葉轉換紅外線光譜傅立葉轉換紅外線光譜 (FTIR) .................................................. 61
2-5-5 NPTO X光光電子能譜儀光光電子能譜儀 (XPS) ........................................................................ 62
第三章
第三章 結果與討論結果與討論 ...................................................................................................................................................................... 64
3-1 晶體結構描述晶體結構描述 .......................................................................................................................................................... 64
3-1-1 BPTO結構描述結構描述 ................................................................................................................................ 67
3-1-2 NPTO結構描述結構描述 ................................................................................................................................ 72
3-2 結果與討論結果與討論 .................................................................................................................................................................. 77
3-2-1 BPTO結構比較與討論結構比較與討論 ........................................................................................................ 77
3-2-2 NPTO結構比較與討論結構比較與討論 ...................................................................................................... 81
第四章
第四章 結論結論 .............................................................................................................................................................................................. 86
參考文獻
參考文獻 .......................................................................................................................................................................................................... 88
附錄
附錄 .......................................................................................................................................................................................................................... 94參考文獻 1. Franken, P. A.; Hill, A. E.; Peters, C. W.; Weinreich, G., Phys. Rev. Lett., 1961, 7, 118-119.
2. Kang, L.; Liang, F.; Lin, Z.; Huang, B., Sci. China Mater., 2020, 63, 1597-1612.
3. Boyd, R. W., Nonlinear optics. Academic press: 2020.
4. Choudhary, S.; Boyd, R., Frontiers in Modern Optics, 2016, 190, 31.
5. Wu, B.; Tang, D.; Ye, N.; Chen, C., Opt. Mater., 1996, 5, 105-109.
6. Halasyamani, P. S.; Zhang, W., Inorganic materials for UV and deep-UV nonlinear-optical applications. ACS Publications: 2017.
7. Kang, L.; Liang, F.; Lin, Z.; Huang, B., Sci. China Mater., 2020, 63, 1597-1612.
8. Yang Zhi-hua , P. S.-l. P., J Synth Cryst, 2019, 48, 1174-1188.
9. Wang, L.; Wang, H.; Zhang, D.; Gao, D.; Bi, J.; Huang, L.; Zou, G., Inorg. Chem. Front., 2021.
10. Feng, Y.; Fan, H.; Zhong, Z.; Wang, H.; Qiu, D., lnorg. Chem., 2016, 55, 11987-11992.
11. Liu, H.; Yao, J.; Puri, A., Opt. Commun., 1994, 109, 139-144.
12. Kokh, A.; Kononova, N.; Mennerat, G.; Villeval, P.; Durst, S.; Lupinski, D.; Vlezko, V.; Kokh, K., J. Cryst. Growth, 2010, 312, 1774-1778.
13. Chen, C.; Lu, J.; Togashi, T.; Suganuma, T.; Sekikawa, T.; Watanabe, S.; Xu, Z.; Wang, J., Opt. Lett., 2002, 27, 637-639.
89
14. Zou, G.; Huang, L.; Ye, N.; Lin, C.; Cheng, W.; Huang, H., J. Am. Chem. Soc., 2013, 135, 18560-18566.
15. Bashir, B.; Zhang, B.; Pan, S.; Yang, Z., J. Alloys Compd., 2018, 758, 85-90.
16. Yu, H.; Wu, H.; Pan, S.; Yang, Z.; Hou, X.; Su, X.; Jing, Q.; Poeppelmeier, K. R.; Rondinelli, J. M., J Am Chem Soc, 2014, 136, 1264-7.
17.Zhang, J.; Zhang, Z.; Zhang, W.; Zheng, Q.; Sun, Y.; Zhang, C.; Tao, X., Chem. Mater., 2011, 23, 3752-3761.
18. Yu, H.; Zhang, W.; Young, J.; Rondinelli, J. M.; Halasyamani, P. S., J. Am. Chem. Soc., 2016, 138, 88-91.
19. Yu, H.; Koocher, N. Z.; Rondinelli, J. M.; Halasyamani, P. S., Angew. Chem. Int. Ed. Engl., 2018, 57, 6100-6103.
20. Xia, M.; Jiang, X.; Lin, Z.; Li, R., J. Am. Chem. Soc., 2016, 138, 14190-14193.
21. Li, L.; Wang, Y.; Lei, B.-H.; Han, S.; Yang, Z.; Poeppelmeier, K. R.; Pan, S., J. Am. Chem. Soc., 2016, 138, 9101-9104.
22. Zhao, S.; Gong, P.; Luo, S.; Bai, L.; Lin, Z.; Ji, C.; Chen, T.; Hong, M.; Luo, J., J. Am. Chem. Soc., 2014, 136, 8560-8563.
23. Slater, J. C., J. Chem. Phys., 1941, 9, 16-33.
24. Van der Poel, C.; Bierlein, J.; Brown, J.; Colak, S., Appl. Phys. Lett., 1990, 57, 2074-2076.
25. Shi, G.; Wang, Y.; Zhang, F.; Zhang, B.; Yang, Z.; Hou, X.; Pan, S.; Poeppelmeier, K. R., J. Am. Chem. Soc., 2017, 139, 10645-10648.
26. Pilz, T.; Jansen, M., Z. Anorg. Allg. Chem., 2011, 637, 2148-2152.
27. Tran, T. T.; He, J.; Rondinelli, J. M.; Halasyamani, P.
90
S., J. Am. Chem. Soc., 2015, 137, 10504-10507.
28. Dunitz, J. D.; Schomaker, V.; Trueblood, K. N., J. Phys. Chem., 1988, 92, 856-867.
29. Zhou, J.; Wu, H.; Yu, H.; Jiang, S.; Hu, Z.; Wang, J.; Wu, Y.; Halasyamani, P. S., J. Am. Chem. Soc., 2020, 142, 4616-4620.
30. Yan, M.; Xue, H.-G.; Guo, S.-P., Cryst. Growth Des., 2021, 21, 698-720.
31. Yap, Y.; Inagaki, M.; Nakajima, S.; Mori, Y.; Sasaki, T., Opt. Lett., 1996, 21, 1348-1350.
32. WANG Xiao-yang, L. L.-j., Chinese Opt., 2020, 13, 427.
33. Christy, A.; Mills, S.; Kampf, A., Mineral Mag, 2016, 80, 415-545.
34. Zhang, J.; Zhang, Z.; Sun, Y.; Zhang, C.; Zhang, S.; Liu, Y.; Tao, X., J. Mater. Chem., 2012, 22, 9921-9927.
35. Zhao, S.; Luo, J.; Zhou, P.; Zhang, S.-Q.; Sun, Z.; Hong, M., RSC Adv., 2013, 3, 14000-14006.
36. Jin, C.; Li, Z.; Huang, L.; He, M., J. Cryst. Growth, 2013, 369, 43-46.
37. Nguyen, S. D.; Kim, S.-H.; Halasyamani, P. S., lnorg. Chem., 2011, 50, 5215-5222.
38. Feng, Y.; Fan, H.; Zhong, Z.; Wang, H.; Qiu, D., lnorg. Chem., 2016, 55, 11987-11992.
39. Feng, J.-H.; Xu, X.; Mao, J.-G., J. Solid State Chem., 2015, 232, 144-149.
40.Kim, Y. H.; Lee, D. W.; Ok, K. M., lnorg. Chem., 2014, 53, 5240-5245.
41. Lee, D. W.; Bak, D.-b.; Kim, S. B.; Kim, J.; Ok, K. M., lnorg. Chem., 2012, 51, 7844-7850.
42. Kong, F.; Xu, X.; Mao, J.-G., lnorg. Chem., 2010, 49, 11573-11580.
43. Song, J. L.; Qian, C., ChemistrySelect, 2017, 2, 1681-
91
1685.
44.Zhao, S.; Jiang, X.; He, R.; Zhang, S.-q.; Sun, Z.; Luo, J.; Lin, Z.; Hong, M., J. Mater. Chem. C, 2013, 1, 2906-2912.
45. Feng, J.-H.; Hu, C.-L.; Xia, H.-P.; Kong, F.; Mao, J.-G., lnorg. Chem., 2017, 56, 14697-14705.
46. Kong, F.; Mao, J.-G., Dalton Trans., 2020, 49, 8433-8437.
47. Chen, Y.-G.; Yang, N.; Yao, X.-N.; Li, C.-B.; Guo, Y.; Zhang, X.-M., lnorg. Chem., 2018, 57, 5406-5412.
48. Rabenau, A., Angew. Chem. Int. Ed. Engl., 1985, 24, 1026-1040.
49. Feng, S.; Xu, R., Acc. Chem. Res., 2001, 34, 239-247.
50.Kennedy, G. C., American Journal of Science, 1950, 248, 540-564.
51. Whittig, L.; Allardice, W., Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 1986, 5, 331-362.
52. Popa, N., J. Appl. Crystallogr., 1998, 31, 176-180.
53. Kacher, J.; Landon, C.; Adams, B. L.; Fullwood, D., Ultramicroscopy, 2009, 109, 1148-1156.
54. Dacorogna, B., Direct methods in the calculus of variations. Springer Science & Business Media: 2007; Vol. 78.
55.Sheldrick, G. M.; Dauter, Z.; Wilson, K.; Hope, H.; Sieker, L., Acta Crystallogr. Sect. D. Biol. Crystallogr., 1993, 49, 18-23.
56. Sheldrick, G. M., Acta Crystallogr. C Struct. Chem., 2015, 71, 3-8.
57.Brese, N.; O′keeffe, M., Acta Crystallogr. Sect. B: Struct. Sci., 1991, 47, 192-197.
58.Brown, I. t.; Wu, K. K., Acta Crystallogr. B Struct. Cryst.
92
Cryst. Chem., 1976, 32, 1957-1959.
59. Mills, S. J.; Christy, A. G., Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater., 2013, 69, 145-149.
60. Koenig, J. L., Applied Spectroscopy, 1975, 29, 293-308.
61. Hottentot, D.; Loopstra, B., Acta Crystallogr. Sect. C: Cryst. Struct. Commun., 1983, 39, 320-322.
62. Ma, Y.; Wang, W.; Zhang, L.; Sichuan, C., Modern Physics 2017.
63. Johnston, M. G.; Harrison, W. T., J. Am. Chem. Soc., 2002, 124, 4576-4577.
64.Kampf, A. R.; Cooper, M. A.; Mills, S. J.; Housley, R. M.; Rossman, G. R., Mineral Mag, 2016, 80, 1055-1065.
65. Li, H.-Y.; Lii, K.-H., Dalton Trans., 2021.
66. Walsh, A.; Watson, G. W., J. Solid State Chem., 2005, 178, 1422-1428.
67. Gross, S., J. Am. Chem. Soc., 1943, 65, 1107-1110.
68. Kuo, Y.-C.; Liu, H.-K.; Wang, S.-L.; Lii, K.-H., Dalton Trans., 2020, 49, 6220-6226.
69. Yu, Z.-T.; Shi, Z.; Jiang, Y.-S.; Yuan, H.-M.; Chen, J.-S., Chem. Mater., 2002, 14, 1314-1318.
70. Zhang, F.; Zhang, F.; Lei, B.-H.; Yang, Z.; Pan, S., J. Phys. Chem. C, 2016, 120, 12757-12764.
71. Kim, Y.; Lee, D. W.; Ok, K. M., lnorg. Chem., 2015, 54, 389-395.
72. Li, P.-F.; Kong, F.; Mao, J.-G., J. Solid State Chem., 2020, 286, 121288.
73. Krivovichev, S. V.; Mentré, O.; Siidra, O. I.; Colmont, M.; Filatov, S. K., Chem. Rev., 2013, 113, 6459-6535.
74. Siidra, O. I.; Krivovichev, S. V.; Depmeier, W., Glass Phys. Chem, 2009, 35, 406-410.
75. Abakumov, A. M.; Rozova, M. G.; Chizhov, P. S.;
93
Antipov, E. V.; Hadermann, J.; Van Tendeloo, G., J. Solid State Chem., 2004, 177, 2855-2861.指導教授 李光華(Kwang-Hwa Lii) 審核日期 2021-7-19 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare