參考文獻 |
Abdelaal, M. Y., & Mohamed, R. M. (2013). Novel Pd/ TiO2 nanocomposite prepared by modified sol–gel method for photocatalytic degradation of methylene blue dye under visible light irradiation. J. Alloys and Compounds, 576, 201–207.
Abdullah, H., Khan, M. M. R., Ong, H. R., & Yaakob, Z. (2017). Modified TiO2 photocatalyst for CO2 photocatalytic reduction: An overview. J. CO2 Utilization, 22, 15–32.
Amar Kundu, & Aparna Mondal. (2019). Kinetics, isotherm, and thermodynamic studies of methylene blue selective adsorption and photocatalysis of malachite green from aqueous solution using layered Na-intercalated Cu-doped Titania. Applied Clay Science, Volume 183.
Badvi, K., & Javanbakht, V. (2021). Enhanced photocatalytic degradation of dye contaminants with TiO2 immobilized on ZSM-5 zeolite modified with nickel nanoparticles. J. Cleaner Production, 280, 124518.
Biyoghe Bi Ndong, L., Ibondou, M. P., Gu, X., Lu, S., Qiu, Z., Sui, Q., & Mbadinga, S. M. (2014). Enhanced Photocatalytic Activity of TiO2 Nanosheets by Doping with Cu for Chlorinated Solvent Pollutants Degradation. Industrial & Engineering Chemistry Research, 53(4), 1368–1376.
Blaser, H.-U., Indolese, A., Schnyder, A., Steiner, H., & Studer, M. (2001). Supported palladium catalysts for fine chemicals synthesis. J. Molecular Catalysis A: Chemical, 173(1-2), 3–18.
Camposeco, R., Castillo, S., Mejía-Centeno, I., Navarrete, J., & Marín, J. (2014). Characterization of physicochemical properties of Pd/TiO 2 nanostructured catalysts prepared by the photodeposition method. Materials Characterization, 95, 201–210.
Chan, C.-C., Chang, C.-C., Hsu, W.-C., Wang, S.-K., & Lin, J. (2009). Photocatalytic activities of Pd-loaded mesoporous TiO2 thin films. J. Chemical Engineering, 152(2-3), 492–497.
Chen, S., & Liu, Y. (2007). Study on the photocatalytic degradation of glyphosate by TiO2 photocatalyst. Chemosphere, 67(5), 1010–1017.
Colón, G., Maicu, M., Hidalgo, M. C., & Navío, J. A. (2006). Cu-doped TiO2 systems with improved photocatalytic activity. Applied Catalysis B: Environmental, 67(1-2), 41–51.
Dambournet, D., Belharouak, I., & Amine, K. (2010). Tailored Preparation Methods of TiO2 Anatase, Rutile, Brookite: Mechanism of Formation and Electrochemical Properties†. Chemistry of Materials, 22(3), 1173–1179.
Dao AQ, Zheng B, Liu H, Dong S, Thi TT, Fu C, Liu H. (2016) Facile Synthesis of r-GO@Pd/ TiO2 Nanocomposites and Its Photocatalytic Activity Under Visible Light. J. Nanosci Nanotechnol. Apr;16(4):3557-63.
Di Paola, A., Garcı́a-López, E., Marcı̀, G., Martı́n, C., Palmisano, L., Rives, V., & Maria Venezia, A. (2004). Surface characterisation of metal ions loaded TiO2 photocatalysts: structure–activity relationship. Applied Catalysis B: Environmental, 48(3), 223–233.
Dong, H., Zeng, G., Tang, L., Fan, C., Zhang, C., He, X., & He, Y. (2015). An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Research, 79, 128–146.
Gao, F., Jiang, J., Du, L., Liu, X., & Ding, Y. (2018). Stable and Highly Efficient Cu/ TiO2 Nanocomposite Photocatalyst Prepared through Atomic Layer Deposition. Applied Catalysis A: General.
García-Zaleta, D. S., Torres-Huerta, A. M., Domínguez-Crespo, M. A., García-Murillo, A., Silva-Rodrigo, R., & González, R. L. (2016). Influence of Phases Content on Pt/TiO2, Pd/TiO2Catalysts for Degradation of 4-Chlorophenol at Room Temperature. J. Nanomaterials, 2016, 1–15.
Garlisi, C., Scandura, G., Szlachetko, J., Ahmadi, S., Sa, J., & Palmisano, G. (2016). E-beam evaporated TiO2 and Cu-TiO2 on glass: Performance in the discoloration of methylene blue and 2-propanol oxidation. Applied Catalysis A: General, 526, 191–199.
Grassi, M., Kaykioglu, G., Belgiorno, V., & Lofrano, G. (2012). Removal of Emerging Contaminants from Water and Wastewater by Adsorption Process. Emerging Compounds Removal from Wastewater, 15–37.
Guan, H., Zhou, X., Wen, W., Jin, B., Li, J., & Zhang, S. (2018). Efficient and Robust Cu/TiO2 Nanorod Photocatalysts for Simultaneous Removal of Cr(VI) and Methylene Blue under Solar Light. J. the Chinese Chemical Society, 65(6), 706–713.
Hariharan, D., Thangamuniyandi, P., Selvakumar, P., Devan, U., Pugazhendhi, A., Vasantharaja, R., & Nehru, L. C. (2019). Green approach synthesis of Pd@TiO2 nanoparticles: characterization, visible light active picric acid degradation and anticancer activity. Process Biochemistry.
Ibhadon, A., & Fitzpatrick, P. (2013). Heterogeneous Photocatalysis: Recent Advances and Applications. Catalysts, 3(1), 189–218.
Janczarek, M., & Kowalska, E. (2017). On the Origin of Enhanced Photocatalytic Activity of Copper-Modified Titania in the Oxidative Reaction Systems. Catalysts, 7(11), 317.
Jung, M., Scott, J., Ng, Y. H., Jiang, Y., & Amal, R. (2014). CuO x dispersion and reducibility on TiO2 and its impact on photocatalytic hydrogen evolution. International J. Hydrogen Energy, 39(24), 12499–12506.
Kant, R. (2012) Textile dyeing industry an environmental hazard. Natural Science, 4, 22-26.
Khan, H., Usen, N., & Boffito, D. C. (2019). Spray-dried microporous Pt/TiO2 degrades 4-chlorophenol under UV and visible light. J. Environmental Chemical Engineering, 7(4), 103267.
Kumar, Azad. (2017). A Review on the Factors Affecting the Photocatalytic Degradation of Hazardous Materials. Material Science & Engineering International Journal. 1. 10.15406/mseij.2017.01.00018.
Kurtoglu, M. E., Longenbach, T., & Gogotsi, Y. (2011). Preventing Sodium Poisoning of Photocatalytic TiO2 Films on Glass by Metal Doping. International J. Applied Glass Science, 2(2), 108–116.
Kuvarega, A. T., Krause, R. W. M., & Mamba, B. B. (2014). Comparison between Base Metals and Platinum Group Metals in Nitrogen, M Codoped TiO2(M = Fe, Cu, Pd, Os) for Photocatalytic Removal of an Organic Dye in Water. J. Nanomaterials, 2014, 1–12.
Landmann, M., Rauls, E., & Schmidt, W. G. (2012). The electronic structure and optical response of rutile, anatase and brookite TiO2. Journal of Physics: Condensed Matter, 24(19), 195503.
Lee, H., Shin, M., Lee, M., & Hwang, Y. J. (2015). Photo-oxidation activities on Pd-doped TiO2 nanoparticles: critical PdO formation effect. Applied Catalysis B: Environmental, 165, 20–26.
Li, Z., Wang, C., Su, Z., Zhang, W., Wang, N., Mele, G., & Li, J. (2020). New porphyrin/Cu(II) porphyrin-TiO2 nanohybrids for improved photocatalytic oxidation and reduction activities. Materials Chemistry and Physics, 123228.
Linsebigler, A. L., Lu, G., & Yates, J. T. (1995). Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews, 95(3), 735–758.
Liu, L., & Chen, X. (2014). Titanium Dioxide Nanomaterials: Self-Structural Modifications. Chemical Reviews, 114(19), 9890–9918.
Luan Yong, Fu Pingfeng, Dai Xuegang*, Du Zhuwei. (2004). Effects of Metal Ion Dopants on TiO2 Photocatalysis[J]. Progress in Chemistry, 16(05): 738-.
Mathew, S., Ganguly, P., Rhatigan, S., Kumaravel, V., Byrne, C., Hinder, S., … Pillai, S. (2018). Cu-Doped TiO2: Visible Light Assisted Photocatalytic Antimicrobial Activity. Applied Sciences, 8(11), 2067.
Meng, A., Zhang, L., Cheng, B., & Yu, J. (2019). Dual Cocatalysts in TiO2 Photocatalysis. Advanced Materials, 1807660.
Meng, Y., Xia, S., Pan, G., Xue, J., Jiang, J., & Ni, Z. (2017). Preparation and photocatalytic activity of composite metal oxides derived from Salen-Cu(II) intercalated layered double hydroxides. Korean Journal of Chemical Engineering, 34(8), 2331–2341.
Merenda, A., Weber, M., Bechelany, M., Allioux, F.-M., Hyde, L., Kong, L., & Dumée, L. F. (2019). Fabrication of Pd-TiO2 nanotube photoactive junctions via Atomic Layer Deposition for persistent pesticide pollutants degradation. Applied Surface Science, 483, 219–230.
Moongraksathum, B., & Chen, Y.-W. (2017). CeO2–TiO2 mixed oxide thin films with enhanced photocatalytic degradation of organic pollutants. J. Sol-Gel Science and Technology, 82(3), 772–782.
Nakata, K., & Fujishima, A. (2012). TiO2 photocatalysis: Design and applications. J. Photochemistry and Photobiology C: Photochemistry Reviews, 13(3), 169–189.
Ohno, T., Sarukawa, K., Tokieda, K., & Matsumura, M. (2001), Morphology of a TiO2 Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases. J. Catal. 203, 82–86.
P. Magalhães, L. Andrade, O. C. Nunes, A. Mendes. (2017). Titanium dioxide photocatalysis: fundamentals and application on photoinactivation, Rev. Adv. Mater. Sci. 51, 91-129.
Parra, S., Elena Stanca, S., Guasaquillo, I., & Ravindranathan Thampi, K. (2004). Photocatalytic degradation of atrazine using suspended and supported TiO2. Applied Catalysis B: Environmental, 51(2), 107–116.
Pava-Gómez, B., Vargas-Ramírez, X., & Díaz-Uribe, C. (2018). Physicochemical study of adsorption and photodegradation processes of methylene blue on copper-doped TiO2 films. J. Photochemistry and Photobiology A: Chemistry, 360, 13–25.
Pawar, M., Topcu Sendoğdular, S., & Gouma, P. (2018). A Brief Overview of TiO2 Photocatalyst for Organic Dye Remediation: Case Study of Reaction Mechanisms Involved in Ce-TiO2 Photocatalysts System. J. Nanomaterials, 2018, 1–13.
Peña, M., Coca, M., González, G., Rioja, R., & Garcı́a, M. T. (2003). Chemical oxidation of wastewater from molasses fermentation with ozone. Chemosphere, 51(9), 893–900.
Perego, C., & Villa, P. (1997). Catalyst preparation methods. Catalysis Today, 34(3-4), 281–305.
Raghu, S., & Ahmed Basha, C. (2007). Chemical or electrochemical techniques, followed by ion exchange, for recycle of textile dye wastewater. J. Hazardous Materials, 149(2), 324–330.
Rajbongshi, B. M. (2020). Photocatalyst: mechanism, challenges, and strategy for organic contaminant degradation. Handbook of Smart Photocatalytic Materials, 127–149.
Sakthivel, S., Shankar, M.., Palanichamy, M., Arabindoo, B., Bahnemann, D.., & Murugesan, V. (2004). Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Research, 38(13), 3001–3008.
Salimi, A., & Roosta, A. (2019). Experimental solubility and thermodynamic aspects of methylene blue in different solvents. Thermochimica Acta, 675, 134–139.
Sangpour, P., Hashemi, F., & Moshfegh, A. Z. (2010). Photoenhanced Degradation of Methylene Blue on Cosputtered M: TiO2 (M = Au, Ag, Cu) Nanocomposite Systems: A Comparative Study. J. Physical Chemistry C, 114(33), 13955–13961.
Sunada, K., Watanabe, T., & Hashimoto, K. (2003). Bactericidal Activity of Copper-Deposited TiO2Thin Film under Weak UV Light Illumination. Environmental Science & Technology, 37(20), 4785–4789.
Tran, T.-K., Chiu, K.-F., Lin, C.-Y., & Leu, H.-J. (2017). Electrochemical treatment of wastewater: Selectivity of the heavy metals removal process. International J. Hydrogen Energy, 42(45), 27741–27748.
Tseng, I.-H., Chang, W.-C., & Wu, J. C. S. (2002). Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts. Applied Catalysis B: Environmental, 37(1), 37–48.
Tseng, I.-H., Wu, J. C.., & Chou, H.-Y. (2004). Effects of sol–gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction. J. Catalysis, 221(2), 432–440.
Türgay, O., Ersöz, G., Atalay, S., Forss, J., & Welander, U. (2011). The treatment of azo dyes found in textile industry wastewater by anaerobic biological method and chemical oxidation. Separation and Purification Technology, 79(1), 26–33.
WebElements, https://www.webelements.com, accessed April 2021.
Wold, A. (1993). Photocatalytic properties of titanium dioxide (TiO2). Chemistry of Materials, 5(3), 280–283.
Wu, G., Guan, N., & Li, L. (2011). Low temperature CO oxidation on Cu–Cu2O/TiO2 catalyst prepared by photodeposition. Catalysis Science & Technology, 1(4), 601.
Wu, M.-C., Wu, P.-Y., Lin, T.-H., & Lin, T.-F. (2018). Photocatalytic performance of Cu-doped TiO2 nanofibers treated by the hydrothermal synthesis and air-thermal treatment. Applied Surface Science, 430, 390–398.
Xin, B., Wang, P., Ding, D., Liu, J., Ren, Z., & Fu, H. (2008). Effect of surface species on Cu- TiO2 photocatalytic activity. Applied Surface Science, 254(9), 2569–2574.
Yan, Y., Yu, Y., Huang, S., Yang, Y., Yang, X., Yin, S., & Cao, Y. (2017). Adjustment and Matching of Energy Band of TiO2-Based Photocatalysts by Metal Ions (Pd, Cu, Mn) for Photoreduction of CO2 into CH4. J. Physical Chemistry C, 121(2), 1089–1098.
Zanella, R., Avella, E., Ramírez-Zamora, R. M., Castillón-Barraza, F., & Durán-Álvarez, J. C. (2017). Enhanced photocatalytic degradation of sulfamethoxazole by deposition of Au, Ag and Cu metallic nanoparticles on TiO2. Environmental Technology, 39(18), 2353–2364.
Zhou, W., Guan, Y., Wang, D., Zhang, X., Liu, D., Jiang, H., … Chen, S. (2014). PdO/ TiO2 and Pd/ TiO2 Heterostructured Nanobelts with Enhanced Photocatalytic Activity. Chemistry - An Asian Journal, 9(6), 1648–1654. |