博碩士論文 108324037 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:18.227.48.237
姓名 曾馨儀(Hsin-I Tseng)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以毛豆為原料萃取煙醯胺單核苷酸之研究
(Extraction of Nicotinamide Mononucleotide from Edamame)
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 保健食品原料來源主要由動物、植物或微生物而來,而本實驗選擇植物來源做為原料。萃取有許多方法如蒸餾法、微波輔助萃取法、超臨界流體萃取等。純化方法也有許多種,如層析法、離子交換法、超臨界流體技術亦能作為純化方法。
煙醯胺單核苷酸(NMN)是衍生自核糖及煙醯胺的一種核苷酸,NMN是由體內的B群維生素製成的,是在所有生物體中天然存在的一種分子,能防止肥胖、抗衰老、保護神經、防止心血管疾病等優點。
本實驗使用煙醯胺單核苷酸含量最高之食物-毛豆作為原料,透過天然食物萃取出煙醯胺單核苷酸並純化,可作為新興保健食品。選用丙酮及水作為萃取煙醯胺單核苷酸之溶劑,並使用真空烘箱將毛豆萃取液做濃縮。結果顯示,利用水作為溶劑較易溶出煙醯胺單核苷酸。使用穿透式電子顯微鏡(TEM)觀察到煙醯胺單核苷酸大小約為50-70奈米。利用紫外光-可見光分光光譜儀(UV-Vis)顯示出煙醯胺單核苷酸之吸收波峰在290 nm。最後用薄層分析法(TLC)將純煙醯胺單核苷酸及毛豆萃取液做比較,確認毛豆萃取液中成功萃取出煙醯胺單核苷酸。
摘要(英) The raw material of health food is mainly from animal, plant or microorganism, and this experiment chose plant source as the raw material. There are many methods of extraction such as distillation, microwave-assisted extraction, supercritical fluid extraction, etc. There are also many purification methods, such as chromatography, ion exchange, supercritical fluid technology can also be used as purification methods.
  Nicotinamide mononucleotide (NMN) is a nucleotide derived from ribose and nicotinamide. NMN is made from the body′s B-complex vitamins, a naturally occurring molecule in all living organisms, and can prevent obesity, anti-aging, neuroprotection, cardiovascular disease, and other benefits.
In this study, the food with the highest content of nicotinamide mononucleotide, edamame, was used as the raw material. Extraction and purification of nicotinamide mononucleotides from natural food can be used as a new health food. Acetone and water were used as solvents to extract nicotinamide mononucleotides, and the extract was concentrated in a vacuum oven. The results show that the nicotinamide mononucleotides were more easily extracted by using water as the solvent than acetone. The size of nicotinamide mononucleotide was observed to be 50-70 nm by using transmission electron microscope. The absorption peak of nicotinamide mononucleotide was shown to be around 290 nm by UV-Vis spectroscopy. Finally, the pure nicotinamide mononucleotide was compared with edamame extract by thin layer analysis (TLC), and it was confirmed that nicotinamide mononucleotide was successfully extracted from edamame extract.
關鍵字(中) ★ 毛豆
★ 煙胺醯單核苷酸
★ 萃取
關鍵字(英) ★ edamame
★ nicotinamide mononucleotide
★ extraction
論文目次 摘要……………………………………………………………………………………………………………………………….i
Abstract………………………………….………………………….………………………………………….……ii
致謝………………………………………………………………………………………………………………………..……iii
Table of contents………………………………………………………………………………………….…iv
List of Tables………………...………………………………………………………………………………vii
List of Figures..………………………………………..…………...………………..……..viii
Chapter 1 Introduction …………………………………………………...…………….………1
1.1 Research Background ………………………………………………………...………...1
1.1.1 Market Introduction………………………………………………..………....……..2
1.1.2 Nicotinamide Mononucleotide (NMN) Introduction…………4
1.1.3 Nicotinamide Mononucleotide (NMN) Synthesis Mechanism………………………………………………………………………………………………………………………………6
1.2 Research Motivation…………………………………………………………...…...……7
1.3 Research Objectives……………………………………………………...……………...8
Chapter 2 Literature Review…………………………………………………………......…..…9
2.1 Synthesis of Nicotinamide Mononucleotide……………………………………9
2.1.1 Chemical Synthesis of Nicotinamide Mononucleotide………9
2.1.2 Microbial Preparation of Nicotinamide Mononucleotide…………………………………………………………………………………………………………10
2.1.3 Application of Nicotinamide Mononucleotide……………………11
2.2 Natural Extract Preparation Technology………………………………..13
2.2.1 Extraction Technology……………………………………………………….…….13
2.2.2 Purification Technology……………………………………………………..……..17
Chapter 3 Experimental………………………………………………………………..…20
3.1 Materials……………………………………………………………………………..…20
3.2 Preparation of Nicotinamide Mononucleotide Solution Extracted from Edamame…….………………………………………………………………………………21
3.2.1 Edamame Processing………………………………………………………………22
3.2.2 Add Solvent and Mesh Edamame…………………………………………….……22
3.2.3 Centrifugal…………………………………………………………………....……23
3.2.4 Vacuum Oven……………………………………………………….………..……23
3.3 Characteristic Analysis of Nicotinamide Mononucleotide.…………………………………………………………………………………………………………24
3.3.1 Optical Microscope (OM)……………………………………………….…………24
3.3.2 Scanning Electron Microscope (SEM) and Energy-Dispersive X-ray Spectroscopy(EDS) Composition Analysis….25
3.3.3 Transmission Electron Microscope (TEM)…………………………………27
3.3.4 Fourier-Transform Infrared Spectroscopy (FT-IR)………28
3.3.5 Ultraviolet-Visible Spectroscopy (UV-Vis)………………….…30
3.3.6 Thin Layer Chromatography (TLC)…………………………………………….…31
Chapter 4 Discussion and Results……………………………………………………………..34
4.1 Pure NMN analysis……………………………………………………………………..34
4.1.1 Observe the Morphology of Pure NMN by Optical Microscope (OM)………………………………………………………………………………………………………………34
4.1.2 Observe the Morphology of Pure NMN by CFE-SEM………………34
4.1.3 Observe the Morphology of Pure NMN by TEM……………….36
4.1.4 The UV-Vis Spectral Analysis of Pure NMN……………………………38
4.1.5 Analysis of FT-IR Functional Group of Pure NMN Powder……………………………………………………………………………………………………………………………….…39
4.1.6 Pure NMN Powder was Dissolved in Acetone and Observed its Morphology by OM…. ……………………………………………………………………………..41
4.1.7 UV-Vis Spectroscopy Analysis of Pure NMN with Acetone as Solvent……………………………………………………………………………………………………………………42
4.2 Analysis of Extracting NMN from Edamame with Acetone as Solvent………………………………………………………………………………………………………………………43
4.2.1 Synthetic Image of NMN Solution Extracted from Edamame with Acetone as Solvent…………………….……………………………………………...………43
4.2.2 The Surface Morphology of the NMN Solution Extracted from Edamame with Acetone as the Solvent was Observed by OM…………….……………………………………………………………………………………………………………………………….…44
4.2.3 The UV-Vis Spectroscopy Analysis of the NMN Solution Extracted from Edamame with Acetone as the Solvent……………45
4.3 Analysis of NMN Extracted from Edamame with Water as the Solvent……………………………………………………………………46
4.3.1 Synthetic Diagram of NMN Solution Extracted from Edamame with Water as the Solvent.…………………………………46
4.3.2 Observation of the OM Surface Morphology of the NMN Solution Extracted from Edamame with Water as the Solvent………….…………………………………………………………………………………….48
4.3.3 Observation of the SEM Surface Morphology of the NMN Solution Extracted from Edamame with Water as the Solvent…………………………………………………………………………………………48
4.3.4 UV-Vis Spectroscopy Analysis of NMN Solution Extracted from Edamame with Water as the Solvent……………….…50
4.3.5 FT-IR Functional Groups Analysis of NMN Solution Extracted from Edamame with Water as the Solvent…………...51
4.4 Thin Layer Chromatography (TLC)…………………………………………….………52
4.4.1 Silica Gel Thin Layer Chromatography Aluminum Plates ……………………………………………………………………………………………………………………53
4.4.2 Thin Layer Chromatography Cellulose F Plates…………...58
4.5 Ultrasonic extraction………………………………………………………….….61
4.6 CO2 supercritical fluid extraction……………………………………63
4.7 Stability test………………………………………………………………………….…67
Chapter 5 Conclusions…………………………………………………………………...….69
References……………….……………………………………………………………..……71
Appendix……………………………………………………………………………………...77
參考文獻 [1]陳耀寬, 李至春, 溫淑緣, 王添泉。2019。煙醯胺單核甘酸輔酶激活素之微粒。中華民國發明專利第M590054號。
[2] Bogan, K.L., Brenner, C. Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu. Rev. Nutr. 28 (2008): 115–30.
[3] Mills, K.F., Yoshida, S., Stein, L.R., Grozio, A., Kubota, S., Sasaki, Y., Redpath, P., Migaud, M.E., Apte, R.S., Uchida, K., Yoshino, J., Imai, S. Long-Term Administration of Nicotinamide Mononucleotide Mitigates Age-Associated Physiological Decline in Mice. Cell Metab. 24 (2016): 795–806.
[4] Yoshino, J., Mills,K.F., Yoon,M.J., Imai,S.I. Nicotinamide Mononucleotide, a Key NAD+ Intermediate, Treats the Pathophysiology of Diet- and Age-Induced Diabetes in Mice. Cell Metab. 14(2011):528–536.
[5] Liana,R.S., Imai,S.I. Specific ablation of Nampt in adult neural stem cells recapitulates their functional defects during aging. Embo. J. 33(2014):1321-1340.
[6] Fletcher, R.S., Lavery, G.G. The emergence of the nicotinamide riboside kinases in the regulation of NAD+ metabolism. J. Mol. Endocrinol. 61 (2018): R107–R121.
[7] Cambronne, X.A., Kraus, W.L. Location, Location, Location: Compartmentalization of NAD+ Synthesis and Functions in Mammalian Cells. Trends. Biochem. Sci. 45 (2020): 858–873.
[8] Berger, F., Ramirez-Hernandez, M.H., Ziegler, M. The new life of a centenarian: signalling functions of NAD(P). Trends Biochem. Sci. 29(2004):111–118.
[9] Belenky, P., Bogan, K.L., Brenner, C. NAD+ metabolism in health and disease. Trends Biochem. Sci 32(2007):12–19.
[10] Houtkooper, R.H., Canto, C., Wanders, R.J., Auwerx J The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev 31(2010):194–223.
[11] Imai, S., Guarente, L. NAD+ and sirtuins in aging and disease. Trends. Cell Bio. 24(2014):464–471.
[12] Owens, K., Park, J.H., Schuh, R., Kristian, T. Mitochondrial dysfunction and NAD+ metabolism alterations in the pathophysiology of acute brain injury. Transl. Stroke Res. 4(2013):618–634.
[13] Klimova, N., Long, A., Kristian, T. Significance of mitochondrial protein post-translational modifications in pathophysiology of brain injury. Transl. Stroke Res. 9(2018):223–237.
[14] Klimova, N., Kristian, T. Multi-targeted Effect of Nicotinamide Mononucleotide on Brain Bioenergetic Metabolism. Neurochem. Res. 44(2019):2280-2287.
[15] Venter, G., Oerlemans, F.T.J.J., Willemse, M., Wijers, M., Fransen, J.A.M., Wieringa, B. NAMPT-Mediated Salvage Synthesis of NAD+ Controls Morphofunctional Changes of Macrophages. Plos. One. 9 (2014): e97378.
[16] Bogan, K.L., Brenner, C. Nicotinic Acid, Nicotinamide, and Nicotinamide Riboside: A Molecular Evaluation of NAD+ Precursor Vitamins in Human Nutrition. Annu. Rev. Nutr. 28(2008):115–130.
[17] Eppig, J.T., Bult, C.J., Kadin, J.A., Richardson, J.E., Blake, J.A., Anagnostopoulos, A., Baldarelli, R.M., Baya, M., Beal, J.S., Bello, S.M. The Mouse Genome Database (MGD): From genes to mice— A community resource for mouse biology. Nucleic. Acids Res. 33(2005):D471–D475.
[18] Marinescu, G.C., Popescu, R.-G., Dinischiotu, A. Size Exclusion Chromatography Method for Purification of Nicotinamide Mononucleotide (NMN) from Bacterial Cells. Sci. Rep. 8(2018):4433.
[19] Sorci, L., Martynowski, D., Rodionov, D.A., Eyobo, Y., Zogaj, X., Klose, K.E., Nikolaev, E.V., Magni, G., Zhang, H., Osterman, A.L. Nicotinamide mononucleotide synthetase is the key enzyme for an alternative route of NAD biosynthesis in Francisella tularensis. Proc. Natl. Acad. Sci. 106(2009):3083–3088.
[20] Poddar, S.K., Sifat, A.E., Haque, S., Nahid, N.A., Chowdhury, S., Mehedi, I. Nicotinamide Mononucleotide: Exploration of Diverse Therapeutic Applications of a Potential Molecule. Biomolecules 9(2019):1-15.
[21] Preiss, J., Handler, P. Enzymatic synthesis of nicotinamide mononucleotide. J. Biol. Chem. (1957):759–770.
[22] Sauve, A., Mohammad, F.S., Heights, J. Efficient synthesis of nicotinamide mononucleotide. 2020. United States Patent No.US010590160B2.
[23] Fukamizu, Y., Tasaki, K., Tateyama,R. 2017. 含高含量之β-NMN的酵母萃取物。中華民國發明專利第201742924號。
[24] Shoji, S., Yamaji, T., Makino, H., Ishii, J., Kondo, A. Metabolic design for selective production of nicotinamide mononucleotide from glucose and nicotinamide. Metab. Eng. 18(2020):1–11.
[25] Marinescu, G.C., Popescu, R.G., Stoian, G., Dinischiotu,A. β-nicotinamide mononucleotide (NMN) production in Escherichia coli. Sci. Rep-UK. 8 (2018):12278.
[26] Zoukhri, D. Effect of inflammation on lacrimal gland function. Exp. Eye Res. 2006, 82, 885–898.
[27] Aredo, B., Zhang, K., Chen, X., Wang, C., Li, T., Ufret-Vincenty, R.L. Differences in the distribution, phenotype and gene expression of subretinal microglia/macrophages in C57BL/6N (Crb1rd8/rd8) versus C57BL6/J (Crb1wt/wt) mice. J. Neuroinflamm. 12(2015):19-23.
[28] Bertoldo, M.J., Listijono, D.R., Ho, W.H.J., Riepsamen, A.H., Goss, D.M., Richani, D., Jin, X.L., Mahbub, S., Campbell, J.M., Habibalahi, A., Loh, W.G.N., Youngson, N.A., Maniam, J., Wong, A.S.A., Selesniemi, K., Bustamante, S., Li, C., Zhao, Y.Q., Marinova, M.B., Kim, L.J., Lau, L., Wu, R.M., Mikolaizak, A.S., Araki, T., Le Couteur, D.G., Turner, N., Morris, M.J., Walters, K.A., Goldys, E., O′Neill, C., Gilchrist, R.B., Sinclair, D.A., Homer, H.A., Wu, L.E. NAD+ Repletion Rescues Female Fertility during Reproductive Aging. Cell Rep. 30 (2020): 1670–1689.
[29] Park, J.H., Long, A., Owens, K., Kristian, T. Nicotinamide mononucleotide inhibits post-ischemic NAD+ degradation and dramatically ameliorates brain damage following global cerebral ischemia. Neurobiol. Dis. 95(2016):102-110.
[30] Tarantini, S., Valcarcel-Ares, M.N., Toth, P., Yabluchanskiy, A. Tucsek, Z., Kiss, T., Hertelendy, P., Kinter, M., Ballabh, P., Süle, Z., Farkas, E., Baur, J.A., Sinclair, D.A., Csiszar, A., Ungvari, Z. Nicotinamide mononucleotide (NMN) supplementation rescues cerebromicrovascular endothelial function and neurovascular coupling responses and improves cognitive function in aged mice. Redox. Bio. 24(2019):101192.
[31] Liang, H., Gao, J., Zhang, C., Li, C., Wang, Q., Fan, J., Wu, Z., Wang, Q. Nicotinamide mononucleotide alleviates Aluminum induced bone loss by inhibiting the TXNIP-NLRP3 inflammasome. Toxicol. Appl. Pharm. 362(2019):20-27.
[32] Revollo, J.R., Korner. A., Mills, K.F., Satoh, A., Wang, T., Garten, A. Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab. 6(2007):363–75
[33] Yang, S. J., Choi, J. M., Kim, L., Park, S. E., Rhee, E. J., Lee, W. Y., Oh, K. W., Park, S. W., Park, C. Y.. Nicotinamide improves glucose metabolism and affects the hepatic NAD-sirtuin pathway in a rodent model of obesity and type 2 diabetes. J. Nutr. Biochem. 25(2014):66-72.
[34] 陳敏恆, 叢德滋, 方Fig. 南等。《化工原理(下冊)(第四版)》. 化學工業出版社。p153。
[35] Ganzler, K., Salgo, A., Valko, K. Microwave extraction. A novel sample preparation method for chromatography. J. Chromatogr. A. 371(1986):299-306.
[36]楊義芳,孔德云(2010)。中藥提取分離新技術。北京:化工工業出版社。
[37] Pan, X., Niu, G., Liu, H. Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chem. Eng. Process. 42(2003):129-133.
[38] Hong, N., Yaylayan, V.A., Raghavan, G.S., Pare, J.R., Belanger, J.M. Microwave-assisted extraction of phenolic compounds from grape seed. Nat. Prod. Lett. 15(2001):197-204.
[39]許海燕。固定多糖苷提取物及其前體脂體的研究。上海:上海醫藥工業研究院。(2006)。
[40]張珩,楊藝虹。綠色製藥技術。北京:化學工業出版社。(2006):194-200。
[41]韓麗。實用中藥製劑新技術。北京:化學工業出版社。(2002):142-147。
[42]劉建文,賈偉。中草藥成分超聲提取。西北大學學報(自然科學網路版)。(2005):70-76。
[43]郭孝武。超聲技術在提取中藥鹼類成分中的應用。世界科學技術-中藥現代化。4(2002):59-63。
[44]徐春龍,林書玉。超聲提取中草藥成分研究進展。藥物分析雜誌。27(2007):933-937。
[45]張曉東,潘國風,呂圭源。超聲提取在中藥化學成分提取中的應用研究進展。時珍國醫國藥。15(2004):861-862。
[46]董嘉德。超聲技術在中藥提取中的應用。傳統醫藥。11(2002):55-56。
[47]劉元。二氧化碳超臨界流體萃取概述。化工之友。12(2006):56-58。
[48]王國義。超臨界流體萃取技術及其應用。技術討論。9(2006):32-34。
[49]張子欽。掃描式電子顯微鏡原理與應用。碧威股份有限公司。
[50]羅聖全。科學基礎研究之重要利器-掃描式電子顯微鏡(SEM)。工業技術研究院奈米科技網。
[51] H. P. Myers. Introductory Solid State Physics. Taylor & Francis. 2002.
[52] 新國科技應用工程師。淺談FTIR分析技術。SCINCO Co., ltd. http://www.scinco.tw/support/technical_01.asp。
[53]國立台灣大學化學系有機教研小組,大學有機化學實驗,第七版,國立台灣大學出版中心:台北市,2004。
[54] Pavia, D. L; Lampman, G. M.; Kriz, G. S. Introduction to Organic Laboratory Techniques: a Contemporary Approach; Saunders College Publishing: New York, 1976.
[55] Shugar, G. J., Shugar, R. A., Bauman, L.; Bauman, R. S. Chemical Technicians’ Ready Reference Handbook; 2nd. ed.; McGraw-Hill Book Co.: New York, 1981.
[56] NMN – NICOTINAMIDE MONONUCLEOTIDE (5 GRAMS) – SUBLINGUAL POWDER. Vital Health Supplements. https://vitalhealthsupplements.com/product/nmn-nicotinamide-mononucleotide-5-grams-sublingual-powder/.
[57] Kemmer, G., Reilly, T.J., Schmidt-Brauns, j., Zlotnik, G.W., GREEN, B. A., FISKE, M.J., Herbert, M., Kraib, A. Schlor, S., Smith, A., Reidl, J. NadN and e (P4) Are Essential for Utilization of NAD and Nicotinamide Mononucleotide but Not Nicotinamide Riboside in Haemophilus influenza. J. Bacteriol. 183(2001):3974-3981.
指導教授 陳郁文(Yu-Wen Chen) 審核日期 2021-7-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明