參考文獻 |
[1] N. Gao, F. Geyer, D.W. Pilat, S. Wooh, D. Vollmer, H.-J. Butt, R. Berger, How drops start sliding over solid surfaces, Nat. Phys. 14(2) (2018) 191-196.
[2] H.-Y. Kim, H.J. Lee, B.H. Kang, Sliding of liquid drops down an inclined solid surface, J. Colloid Interface Sci. 247(2) (2002) 372-380.
[3] A. Giacomello, L. Schimmele, S. Dietrich, Wetting hysteresis induced by nanodefects, PNAS 113(3) (2016) E262-E271.
[4] M. Ramiasa, J. Ralston, R. Fetzer, R. Sedev, D.M. Fopp-Spori, C. Morhard, C. Pacholski, J.P. Spatz, Contact line motion on nanorough surfaces: A thermally activated process, J. Am. Chem. Soc. 135(19) (2013) 7159-7171.
[5] H. Perrin, R. Lhermerout, K. Davitt, E. Rolley, B. Andreotti, Defects at the nanoscale impact contact line motion at all scales, Phys. Rev. Lett. 116(18) (2016) 184502.
[6] R. Pit, H. Hervet, L. Léger, Friction and slip of a simple liquid at a solid surface, Tribol. Lett. 7(2) (1999) 147-152.
[7] K. Huang, I. Szlufarska, Green-Kubo relation for friction at liquid-solid interfaces, Phys. Rev. E 89(3) (2014) 032119.
[8] D.R. Heine, G.S. Grest, E.B. Webb III, Spreading dynamics of polymer nanodroplets, Phys. Rev. E 68(6) (2003) 061603.
[9] A.V. Lukyanov, T. Pryer, Hydrodynamics of moving contact lines: Macroscopic versus microscopic, Langmuir 33(34) (2017) 8582-8590.
[10] E. Lauga, M. Brenner, H.A. Stone, Handbook of experimental fluid dynamics, chap. Microfluidics: The No-Slip Boundary Condition). Springer (2005).
[11] N. Savva, S. Kalliadasis, Dynamics of moving contact lines: A comparison between slip and precursor film models, EPL 94(6) (2011) 64004.
[12] M. Nosonovsky, Model for solid-liquid and solid-solid friction of rough surfaces with adhesion hysteresis, J. Chem. Phys. 126(22) (2007) 224701.
[13] M. Rivetti, T. Salez, M. Benzaquen, E. Raphaël, O. Bäumchen, Universal contact-line dynamics at the nanoscale, Soft matter 11(48) (2015) 9247-9253.
[14] H. Perrin, R. Lhermerout, K. Davitt, E. Rolley, B. Andreotti, Thermally activated motion of a contact line over defects, Soft matter 14(9) (2018) 1581-1595.
[15] E. Ramé, The interpretation of dynamic contact angles measured by the Wilhelmy plate method, J. Colloid Interface Sci. 185(1) (1997) 245-251.
[16] S. Biswas, L. Dubreil, D. Marion, Interfacial behavior of wheat puroindolines: study of adsorption at the air–water interface from surface tension measurement using Wilhelmy plate method, J. Colloid Interface Sci. 244(2) (2001) 245-253.
[17] P.-G. De Gennes, F. Brochard-Wyart, D. Quéré, Capillarity and wetting phenomena: drops, bubbles, pearls, waves, Springer Science & Business Media 2013. [18] S. Jiménez Bolaños, B. Vernescu, Derivation of the Navier slip and slip length for viscous flows over a rough boundary, Phys. Fluids 29(5) (2017) 057103.
[19] Y.-C. Liao, Y.-C. Li, H.-H. Wei, Drastic changes in interfacial hydrodynamics due to wall slippage: slip-intensified film thinning, drop spreading, and capillary instability, Phys. Rev. Lett. 111(13) (2013) 136001.
[20] A. Premlata, W. Hsien-Hung, The Basset problem with dynamic slip: slip-induced memory effect and slip–stick transition, J. Fluid Mech. 866 (2019) 431-449.
[21] Y.D. Shikhmurzaev, Singularities at the moving contact line. Mathematical, physical and computational aspects, Physica D: Nonlinear Phenomena 217(2) (2006) 121-133.
[22] D.N. Sibley, A. Nold, N. Savva, S. Kalliadasis, On the moving contact line singularity: Asymptotics of a diffuse-interface model, Eur. Phys. J. E Soft Matter 36(3) (2013) 1-7.
[23] J.-C. Fernández-Toledano, T. Blake, L. Limat, J. De Coninck, A molecular-dynamics study of sliding liquid nanodrops: Dynamic contact angles and the pearling transition, J. Colloid Interface Sci. 548 (2019) 66-76.
[24] E. Rio, A. Daerr, B. Andreotti, L. Limat, Boundary conditions in the vicinity of a dynamic contact line: experimental investigation of viscous drops sliding down an inclined plane, Phys. Rev. Lett. 94(2) (2005) 024503.
[25] P. Warren, Vapor-liquid coexistence in many-body dissipative particle dynamics, Phys. Rev. E 68(6) (2003) 066702.
[26] A. Ghoufi, J. Emile, P. Malfreyt, Recent advances in many body dissipative particles dynamics simulations of liquid-vapor interfaces, Eur. Phys. J. E Soft Matter 36(1) (2013) 1-12.
[27] W.-J. Liao, K.-C. Chu, Y.-H. Tsao, H.-K. Tsao, Y.-J. Sheng, Size-dependence and interfacial segregation in nanofilms and nanodroplets of homologous polymer blends, Phys. Chem. Chem. Phys. 22(38) (2020) 21801-21808.
[28] Y.-T. Cheng, K.-C. Chu, H.-K. Tsao, Y.-J. Sheng, Size-dependent behavior and failure of young’s equation for wetting of two-component nanodroplets, J. Colloid Interface Sci. 578 (2020) 69-76.
[29] M. Arienti, W. Pan, X. Li, G. Karniadakis, Many-body dissipative particle dynamics simulation of liquid/vapor and liquid/solid interactions, J. Chem. Phys. 134(20) (2011) 204114.
[30] P.B. Warren, No-go theorem in many-body dissipative particle dynamics, Phys. Rev. E 87(4) (2013) 045303.
[31] G. Wolansky, A. Marmur, Apparent contact angles on rough surfaces: the Wenzel equation revisited, Colloids Surf. A Physicochem. Eng. Asp. 156(1-3) (1999) 381-388.
[32] T.-Y. Han, J.-F. Shr, C.-F. Wu, C.-T. Hsieh, A modified Wenzel model for hydrophobic behavior of nanostructured surfaces, Thin Solid Films 515(11) (2007) 4666-4669.
[33] R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport phenomena, John Wiley & Sons2006.
[34] D.M. Huang, C. Sendner, D. Horinek, R.R. Netz, L. Bocquet, Water slippage versus contact angle: A quasiuniversal relationship, Phys. Rev. Lett. 101(22) (2008) 226101.
[35] K. Wu, Z. Chen, J. Xu, Y. Hu, J. Li, X. Dong, Y. Liu, M. Chen, A universal model of water flow through nanopores in unconventional reservoirs: relationships between slip, wettability and viscosity, SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, 2016.
[36] K. A. Dill, S. Bromberg, Molecular Driving Forces: Statistical Thermodynamics in Chemistry and Biology. Garland Science. (2003) p. 327.
[37] A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik (in German). 322 (1905) 549–560.
[38] S. G. Subramanian, S. Nair, S. DasGupta, Evaporation mediated translation and encapsulation of an aqueous droplet atop a viscoelastic liquid film, J. Colloid Interface Sci. 581 (2021) 334-349.
[39] B. E. Rapp, Microfluidics: Modelling, Mechanics and Mathematics, Elsevier 2017.
[40] Droplet Wetting and Evaporation, edited by D. Brutin, Academic Press, 2015. |