博碩士論文 108324035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:13.58.200.16
姓名 曹昱浩(Yu-Hao Tsao)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 奈米液滴在粗糙表面的滑動行為:熱擾效應
(Thermally assisted mobility of nanodroplets on surfaces with weak defects)
相關論文
★ 利用固相反應法與電鍍法製備鈣鈦礦太陽能電池之研究★ 設計以雙噻吩併環戊二烯為核心的電洞傳輸材料並製備高效率穩定鈣鈦礦太陽能電池
★ 反溶劑處理對於製備大面積鈣鈦礦太陽能電池影響★ 二氧化鈦奈米粒徑尺寸對介觀結構鈣鈦礦太陽能電池光伏特性之影響
★ 塗佈溫度與混合溶劑比例對於刮刀塗佈製備鈣鈦礦層影響及鈣鈦礦太陽能電池性能表現探討★ 熱處理效應對於混合陽離子鈣鈦礦太陽能電池之光電性質及電池穩定性影響
★ 蔗糖水熱碳化法及後續活化製備活性碳以及活性碳對空氣過濾的應用★ 雙金屬有機骨架結構混合基質膜合成及芳香烴吸附第一原理計算
★ 製膜溶劑對於混合基質膜中金屬有機框架結構沉澱影響與其氣體滲透特性之探討★ 金屬有機骨架材料與活性碳共填充之混和基材膜性質探討
★ 蒸氣相成長金屬有機框架材料合成★ 外表面積和靜電相互作用機理對MOFs染料吸附的重要性
★ 第一原理計算對於氮摻石墨烯在氧氣還原反應與拉曼增強的探討★ 金屬有機框架結構晶體形貌與缺陷對於混合基材薄膜特性與氣體滲透之探討
★ 鋯金屬有機框架結構之二氧化碳吸附性質探討★ 金屬有機框架結構晶體形貌與缺陷對於混合基材薄膜特性與氣體滲透之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 利用多體耗散動力學的模擬方法來研究奈米液滴在俱有弱缺陷的表面上的穩定滑動行為及隨機運動。利用滑移長度來代表基材表面粗糙度對流體的影響,而該表面的滑移長度是從流動液膜所產生的速度分佈中獲得的。我們發現滑移長度隨著缺陷密度的增加而下降。奈米液滴的滑動速度和施予的外力大小之間有著線性關係,而此線性關係之斜率則提供了奈米液滴的移動率,並且得知在弱缺陷的表面上是沒有接觸線停滯的情況。根據Navier條件,得出一個簡單的關係式,並指出移動率與滑移長度成正比,但與黏度和接觸面積的乘積成反比。我們的模擬結果與理論預測非常吻合。在沒有外力的情況下,觀察到奈米液滴的二維布朗運動,並且其均方位移會隨著缺陷密度的增加而減小。擴散率與移動率成正比,且符合愛因斯坦關係。此結果表示,熱擾效應能夠克服由弱缺陷引起的接觸線停滯。
摘要(英) Steady slide and random motion of nanodroplets on surfaces with weak defects is investigated by Many-body Dissipative Dynamics. The surface roughness is characterized by the slip length acquired from the velocity profile associated with the flowing film. The slip length is found to decline with increasing the defect density. The linear relationship between the sliding velocity and driving force gives the mobility and reveals the absence of contact line pinning. On the basis of the Navier condition, a simple relation is derived and states that the mobility is proportional to the slip length and the reciprocal of the product of viscosity and contact area. Our simulation results agree excellently with the theoretical prediction. In the absence of external forces, a two-dimensional Brownian motion of nanodroplets is observed and its mean square displacement decreases with increasing the defect density. The diffusivity is proportional to the mobility, consistent with the Einstein relation. This consequence suggests that thermal fluctuations are able to overcome contact line pinning caused by weak defects.
關鍵字(中) ★ 滑移長度
★ 奈米粗糙
★ 熱擾效應
★ 愛因斯坦關係
關鍵字(英) ★ slip length
★ nanorough surfaces
★ mobility of nanodroplet
★ thermal fluctuations
★ contact line pinning
★ Einstein relation
論文目次 摘要.................................................i
Abstract............................................ii
Lists of Figures....................................iv
1.Introduction.......................................1
2.Method.............................................3
3.Results and discussion.............................6
3.1 Characterization of rough surfaces by slip length .....................................................6
3.2 Sliding motion and mobility of droplets.........10
3.3 2-d Brownian motion of nanodroplets.............15
4.Conclusion........................................18
5.Reference.........................................20
參考文獻 [1] N. Gao, F. Geyer, D.W. Pilat, S. Wooh, D. Vollmer, H.-J. Butt, R. Berger, How drops start sliding over solid surfaces, Nat. Phys. 14(2) (2018) 191-196.
[2] H.-Y. Kim, H.J. Lee, B.H. Kang, Sliding of liquid drops down an inclined solid surface, J. Colloid Interface Sci. 247(2) (2002) 372-380.
[3] A. Giacomello, L. Schimmele, S. Dietrich, Wetting hysteresis induced by nanodefects, PNAS 113(3) (2016) E262-E271.
[4] M. Ramiasa, J. Ralston, R. Fetzer, R. Sedev, D.M. Fopp-Spori, C. Morhard, C. Pacholski, J.P. Spatz, Contact line motion on nanorough surfaces: A thermally activated process, J. Am. Chem. Soc. 135(19) (2013) 7159-7171.
[5] H. Perrin, R. Lhermerout, K. Davitt, E. Rolley, B. Andreotti, Defects at the nanoscale impact contact line motion at all scales, Phys. Rev. Lett. 116(18) (2016) 184502.
[6] R. Pit, H. Hervet, L. Léger, Friction and slip of a simple liquid at a solid surface, Tribol. Lett. 7(2) (1999) 147-152.
[7] K. Huang, I. Szlufarska, Green-Kubo relation for friction at liquid-solid interfaces, Phys. Rev. E 89(3) (2014) 032119.
[8] D.R. Heine, G.S. Grest, E.B. Webb III, Spreading dynamics of polymer nanodroplets, Phys. Rev. E 68(6) (2003) 061603.
[9] A.V. Lukyanov, T. Pryer, Hydrodynamics of moving contact lines: Macroscopic versus microscopic, Langmuir 33(34) (2017) 8582-8590.
[10] E. Lauga, M. Brenner, H.A. Stone, Handbook of experimental fluid dynamics, chap. Microfluidics: The No-Slip Boundary Condition). Springer (2005).
[11] N. Savva, S. Kalliadasis, Dynamics of moving contact lines: A comparison between slip and precursor film models, EPL 94(6) (2011) 64004.
[12] M. Nosonovsky, Model for solid-liquid and solid-solid friction of rough surfaces with adhesion hysteresis, J. Chem. Phys. 126(22) (2007) 224701.
[13] M. Rivetti, T. Salez, M. Benzaquen, E. Raphaël, O. Bäumchen, Universal contact-line dynamics at the nanoscale, Soft matter 11(48) (2015) 9247-9253.
[14] H. Perrin, R. Lhermerout, K. Davitt, E. Rolley, B. Andreotti, Thermally activated motion of a contact line over defects, Soft matter 14(9) (2018) 1581-1595.
[15] E. Ramé, The interpretation of dynamic contact angles measured by the Wilhelmy plate method, J. Colloid Interface Sci. 185(1) (1997) 245-251.
[16] S. Biswas, L. Dubreil, D. Marion, Interfacial behavior of wheat puroindolines: study of adsorption at the air–water interface from surface tension measurement using Wilhelmy plate method, J. Colloid Interface Sci. 244(2) (2001) 245-253.
[17] P.-G. De Gennes, F. Brochard-Wyart, D. Quéré, Capillarity and wetting phenomena: drops, bubbles, pearls, waves, Springer Science & Business Media 2013. [18] S. Jiménez Bolaños, B. Vernescu, Derivation of the Navier slip and slip length for viscous flows over a rough boundary, Phys. Fluids 29(5) (2017) 057103.
[19] Y.-C. Liao, Y.-C. Li, H.-H. Wei, Drastic changes in interfacial hydrodynamics due to wall slippage: slip-intensified film thinning, drop spreading, and capillary instability, Phys. Rev. Lett. 111(13) (2013) 136001.
[20] A. Premlata, W. Hsien-Hung, The Basset problem with dynamic slip: slip-induced memory effect and slip–stick transition, J. Fluid Mech. 866 (2019) 431-449.
[21] Y.D. Shikhmurzaev, Singularities at the moving contact line. Mathematical, physical and computational aspects, Physica D: Nonlinear Phenomena 217(2) (2006) 121-133.
[22] D.N. Sibley, A. Nold, N. Savva, S. Kalliadasis, On the moving contact line singularity: Asymptotics of a diffuse-interface model, Eur. Phys. J. E Soft Matter 36(3) (2013) 1-7.
[23] J.-C. Fernández-Toledano, T. Blake, L. Limat, J. De Coninck, A molecular-dynamics study of sliding liquid nanodrops: Dynamic contact angles and the pearling transition, J. Colloid Interface Sci. 548 (2019) 66-76.
[24] E. Rio, A. Daerr, B. Andreotti, L. Limat, Boundary conditions in the vicinity of a dynamic contact line: experimental investigation of viscous drops sliding down an inclined plane, Phys. Rev. Lett. 94(2) (2005) 024503.
[25] P. Warren, Vapor-liquid coexistence in many-body dissipative particle dynamics, Phys. Rev. E 68(6) (2003) 066702.
[26] A. Ghoufi, J. Emile, P. Malfreyt, Recent advances in many body dissipative particles dynamics simulations of liquid-vapor interfaces, Eur. Phys. J. E Soft Matter 36(1) (2013) 1-12.
[27] W.-J. Liao, K.-C. Chu, Y.-H. Tsao, H.-K. Tsao, Y.-J. Sheng, Size-dependence and interfacial segregation in nanofilms and nanodroplets of homologous polymer blends, Phys. Chem. Chem. Phys. 22(38) (2020) 21801-21808.
[28] Y.-T. Cheng, K.-C. Chu, H.-K. Tsao, Y.-J. Sheng, Size-dependent behavior and failure of young’s equation for wetting of two-component nanodroplets, J. Colloid Interface Sci. 578 (2020) 69-76.
[29] M. Arienti, W. Pan, X. Li, G. Karniadakis, Many-body dissipative particle dynamics simulation of liquid/vapor and liquid/solid interactions, J. Chem. Phys. 134(20) (2011) 204114.
[30] P.B. Warren, No-go theorem in many-body dissipative particle dynamics, Phys. Rev. E 87(4) (2013) 045303.
[31] G. Wolansky, A. Marmur, Apparent contact angles on rough surfaces: the Wenzel equation revisited, Colloids Surf. A Physicochem. Eng. Asp. 156(1-3) (1999) 381-388.
[32] T.-Y. Han, J.-F. Shr, C.-F. Wu, C.-T. Hsieh, A modified Wenzel model for hydrophobic behavior of nanostructured surfaces, Thin Solid Films 515(11) (2007) 4666-4669.
[33] R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport phenomena, John Wiley & Sons2006.
[34] D.M. Huang, C. Sendner, D. Horinek, R.R. Netz, L. Bocquet, Water slippage versus contact angle: A quasiuniversal relationship, Phys. Rev. Lett. 101(22) (2008) 226101.
[35] K. Wu, Z. Chen, J. Xu, Y. Hu, J. Li, X. Dong, Y. Liu, M. Chen, A universal model of water flow through nanopores in unconventional reservoirs: relationships between slip, wettability and viscosity, SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, 2016.
[36] K. A. Dill, S. Bromberg, Molecular Driving Forces: Statistical Thermodynamics in Chemistry and Biology. Garland Science. (2003) p. 327.
[37] A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik (in German). 322 (1905) 549–560.
[38] S. G. Subramanian, S. Nair, S. DasGupta, Evaporation mediated translation and encapsulation of an aqueous droplet atop a viscoelastic liquid film, J. Colloid Interface Sci. 581 (2021) 334-349.
[39] B. E. Rapp, Microfluidics: Modelling, Mechanics and Mathematics, Elsevier 2017.
[40] Droplet Wetting and Evaporation, edited by D. Brutin, Academic Press, 2015.
指導教授 張博凱(Bor-Kae Chang) 審核日期 2021-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明