博碩士論文 108324048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:3.145.26.35
姓名 吳冠青(Kuan-Ching Wu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以第一原理計算探討鋰離子於鐵摻雜磷酸鋰鈷之塊材與表面附近之擴散路徑
(First Principles Calculations on Lithium Diffusion near Surface and in Bulk of Fe Doped LiCoPO4)
相關論文
★ 以第一原理計算探討鋰於鈮摻雜二氧化鈦之嵌入與擴散路徑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-30以後開放)
摘要(中) 橄欖石結構之磷酸鹽磷酸鋰鈷 (LiCoPO4) 具有高氧化還原電位 (4.8 V)、高能量密度 (800 Wh/Kg) 和穩定的結構特性,是一種很有前景的高壓鋰離子電池陰極材料。儘管LiCoPO4具有如此多優異的特點,但卻仍然面臨著電子電導率低、鋰離子擴散速率差等挑戰。在鋰離子擴散過程中,鋰離子必須克服LiCoPO4表面附近與塊材中的能障。一般來說,表面能障為被認為是速度決定步驟。為了提高LiCoPO4的電化學性能,金屬離子摻雜已被證明能夠改善材料性能,實驗研究已報導鐵摻雜可以提高LiCoPO4的電化學性能。因此,我們以DFT計算鐵摻雜LiCoPO4為研究重點,從微觀角度闡明了材料電化學性質改善的緣由。
本研究通過第一原理計算探討LiCoPO4摻雜鐵離子前後的晶體結構、電子結構和鋰離子擴散路徑。根據以往實驗研究報導中最佳的電化學表現,將鐵的摻雜濃度設定為x = 0.2 (LiFe0.2Co0.8PO4)。在摻雜鐵離子之後,透過觀察計算求得之晶格結構,確認穩定的橄欖石結構能將摻雜鐵離子所導致之晶體變形限制在局部空間內。並進一步計算摻雜鐵籬子LiCoPO4的電子結構,透過與純LiCoPO4之計算結果進行比較,確認摻雜鐵離子能有效降低LiCoPO4材料之能隙與提升導電性。為了研究LiCoPO4的表面性質,計算了不同 Miller indices表面的表面能。結果表明在 (0 1 0) 表面為能量最穩定的表面,因此選擇此面來做接下來的計算。採用Nudged Elastic Band (NEB) 方法計算了材料在塊材與接近表面的最小能量路徑和能量屏障。計算結果表明通過鐵摻雜改性可以有效降低鋰離子擴散的能障。此外,亦進一步探討極化子和鋰離子在材料中同時遷移的擴散過程。
摘要(英) The olivine phosphate LiCoPO4 is a prospective cathode material in high voltage lithium ion batteries with high energy density (800 Wh/kg), high redox potential (4.8 V), and stable crystal structure. Despite these excellent properties, it still faces challenges, such as poor lithium ion diffusivity and low electronic conductivity. In lithium ion diffusion process, lithium ion must overcome the diffusion energy barrier near to the surface and in the bulk of LiCoPO4. In general, the surface barrier is regarded as the rate-determining step. To enhance the electrochemical performance of LiCoPO4, metal ion doping has been demonstrated to be able to improve material properties. Experimental studies have reported that Fe doping can improve the electrochemical performance of LiCoPO4. Therefore, this study focused on using density functional theory (DFT) calculation to elucidate the origin of electrochemical performance improvements for Fe doped LiCoPO4 from a microscopic viewpoint.
In this work, the structural stability, electronic structure, and lithium ion diffusion barrier of LiCoPO4 before and after doping with Fe ions were calculated with DFT calculations. The Fe doping concentration is set to x = 0.2 (LiFe0.2Co0.8PO4), according to the best electrochemical performance in a previous experimental study. The electronic structure of Fe doped LiCoPO4 was calculated and compared to that of pristine LiCoPO4. To investigate the surface properties of LiCoPO4, the surface energies for surfaces with different indices were calculated. The results showed that (0 1 0) surface was the most stable surface, and was therefore chosen for further investigation. Lithium diffusion energy barriers were calculated via the nudged elastic band (NEB) method for lithium diffusion in the bulk and near the surface of the material. The calculation results showed that the energy barrier of lithium ion diffusion is reduced due to Fe doping modification. Furthermore, the phenomena of polaron and lithium ion simultaneous migration were discussed as well.
關鍵字(中) ★ 磷酸鋰鈷
★ 橄欖石結構
★ 鋰離子電池
★ 鋰離子擴散路徑
★ 密度泛函理論
★ 第一原理計算
★ 正極材料
★ 鐵摻雜
關鍵字(英) ★ LiCoPO4
★ olivine phosphate
★ Lithium ion batteries
★ Lithium ion diffusion
★ Density functional theory
★ First Principles Calculations
★ cathode material
★ Fe doping
論文目次 摘要 i
Abstract ii
Acknowledgment iii
List of figures vi
List of tables x
Chapter 1 Background 1
1.1 Introduction 1
1.2 Development of cathode materials for lithium ion batteries 2
1.3 Olivine phosphate cathode material 3
1.4 Olivine-type LiCoPO4 cathode material 3
1.5 Modified LiCoPO4 4
1.6 Computational study for olivine phosphate 8
1.7 Motivation 15
Chapter 2 Theory 16
2.1 First principles calculation 16
2.2 Density functional theory (DFT) 16
2.3 Hohenberg-Kohn Theorem 17
2.4 Kohn-Sham equation 18
2.5 Local density approximation (LDA) 19
2.6 Generalized gradient approximation (GGA) 19
2.7 GGA+U 20
2.8 Self-consistent field (SCF) 21
2.9 Bloch’s theorem 21
2.10 Pseudopotential 22
2.11 Cut-off energy 24
2.12 K-point 25
2.13 Transitional state theory 26
Chapter 3 Computational Details 28
3.1 Software 29
3.2 Convergence testing 30
3.3 Pristine LiCoPO4 32
3.4 Fe doped LiCoPO4 33
3.5 Construction of Surface Model 34
3.6 The lithium diffusion pathway 46
Chapter 4 Results and Discussion 47
4.1 Structure with geometrical optimization 47
4.2 Electronic structure 54
4.3 Electron density difference mapping 59
4.4 Mulliken population analysis 62
4.5 Diffusion pathways of lithium ion 64
4.6 Complex Diffusion 71
Chapter 5 Conclusions 76
Reference 77
參考文獻 1. Armand, M.; Tarascon, J. M., Building better batteries. Nature 2008, 451 (7179), 652-7.
2. Wu, F.; Maier, J.; Yu, Y., Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 2020, 49 (5), 1569-1614.
3. Kwak, W.-J.; Rosy; Sharon, D.; Xia, C.; Kim, H.; Johnson, L. R.; Bruce, P. G.; Nazar, L. F.; Sun, Y.-K.; Frimer, A. A.; Noked, M.; Freunberger, S. A.; Aurbach, D., Lithium–oxygen batteries and related systems: potential, status, and future. Chem. Rev. 2020, 120 (14), 6626-6683.
4. Nishi, Y., Lithium ion secondary batteries; past 10 years and the future. J. Power Sources 2001, 100 (1), 101-106.
5. Diouf, B.; Pode, R., Potential of lithium-ion batteries in renewable energy. Renewable Energy 2015, 76, 375-380.
6. Pacala, S.; Socolow, R., Stabilization Wedges: Solving the Climate Problem for the Next 50 Years with Current Technologies. Science 2004, 305 (5686), 968-972.
7. Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G., Li-ion battery materials: present and future. Mater. Today 2015, 18 (5), 252-264.
8. Kamali-Heidari, E.; Kamyabi-Gol, A.; Heydarzadeh Sohi, M.; Ataie, A., Electrode materials for lithium ion batteries: a review. Journal of Ultrafine Grained and Nanostructured Materials 2018, 51 (1), 1-12.
9. Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B., LixCoO2 (0 < x < -1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 1980, 15 (6), 783-789.
10. Thackeray, M. M.; David, W. I. F.; Bruce, P. G.; Goodenough, J. B., Lithium insertion into manganese spinels. Mater. Res. Bull. 1983, 18 (4), 461-472.
11. Padhi, A. K., Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1997, 144 (4), 1188.
12. Islam, M. S.; Fisher, C. A. J., Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem. Soc. Rev. 2014, 43 (1), 185-204.
13. Julien, C. M.; Mauger, A.; Zaghib, K.; Groult, H., Comparative Issues of Cathode Materials for Li-Ion Batteries. Inorganics 2014, 2 (1), 132-154.
14. Takahashi, M.; Tobishima, S.-i.; Takei, K.; Sakurai, Y., Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries. Solid State Ionics 2002, 148 (3), 283-289.
15. Yamada, A.; Hosoya, M.; Chung, S.-C.; Kudo, Y.; Hinokuma, K.; Liu, K.-Y.; Nishi, Y., Olivine-type cathodes: Achievements and problems. J. Power Sources 2003, 119-121, 232-238.
16. Okada, S.; Sawa, S.; Egashira, M.; Yamaki, J.-i.; Tabuchi, M.; Kageyama, H.; Konishi, T.; Yoshino, A., Cathode properties of phospho-olivine LiMPO4 for lithium secondary batteries. J. Power Sources 2001, 97-98, 430-432.
17. Lloris, J. M.; Pérez Vicente, C.; Tirado, J. L., Improvement of the electrochemical performance of LiCoPO4 5 V material using a novel synthesis procedure. Electrochem. Solid-State Lett. 2002, 5 (10), A234.
18. Shang, S. L.; Wang, Y.; Mei, Z. G.; Hui, X. D.; Liu, Z. K., Lattice dynamics, thermodynamics, and bonding strength of lithium-ion battery materials LiMPO4 (M = Mn, Fe, Co, and Ni): a comparative first-principles study. J. Mater. Chem. 2012, 22 (3), 1142-1149.
19. Amine, K., Olivine LiCoPO4 as 4.8 V electrode material for lithium batteries. Electrochem. Solid-State Lett. 1999, 3 (4), 178.
20. Fang, L.; Zhang, H.; Zhang, Y.; Liu, L.; Wang, Y., Design and synthesis of two-dimensional porous Fe-doped LiCoPO4 nano-plates as improved cathode for lithium ion batteries. J. Power Sources 2016, 312, 101-108.
21. Ikuhara, Y. H.; Gao, X.; Fisher, C. A. J.; Kuwabara, A.; Moriwake, H.; Kohama, K.; Iba, H.; Ikuhara, Y., Atomic level changes during capacity fade in highly oriented thin films of cathode material LiCoPO4. J. Mater. Chem. A 2017, 5 (19), 9329-9338.
22. Zhang, M.; Garcia-Araez, N.; Hector, A. L., Understanding and development of olivine LiCoPO4 cathode materials for lithium-ion batteries. J. Mater. Chem. A 2018, 6 (30), 14483-14517.
23. Wolfenstine, J., Electrical conductivity of doped LiCoPO4. J. Power Sources 2006, 158 (2), 1431-1435.
24. Morgan, D.; Van der Ven, A.; Ceder, G., Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials. Electrochem. Solid-State Lett. 2003, 7 (2), A30.
25. Allen, J. L.; Jow, T. R.; Wolfenstine, J., Improved cycle life of Fe-substituted LiCoPO4. J. Power Sources 2011, 196 (20), 8656-8661.
26. Hanafusa, R.; Oka, Y.; Nakamura, T., Electrochemical and magnetic studies of Li-deficient Li1-xCo1-xFexPO4 olivine cathode compounds. J. Electrochem. Soc. 2014, 162 (2), A3045.
27. Brutti, S.; Manzi, J.; Meggiolaro, D.; Vitucci, F. M.; Trequattrini, F.; Paolone, A.; Palumbo, O., Interplay between local structure and transport properties in iron-doped LiCoPO4 olivines. J. Mater. Chem. A 2017, 5 (27), 14020-14030.
28. Han, Y.; Ni, J.; Liu, J.; Wang, H.; Gao, L., Improving electrochemical performance of LiCoPO4 via Mn substitution. Mater. Technol. 2013, 28 (5), 265-269.
29. Dimesso, L.; Spanheimer, C.; Jaegermann, W., Influence of isovalent ions (Ca and Mg) on the properties of LiCo0.9M0.1PO4 powders. J. Power Sources 2013, 243, 668-675.
30. Karthickprabhu, S.; Hirankumar, G.; Maheswaran, A.; Bella, R. D.; Sanjeeviraja, C., Structural and electrical studies on Zn2+ doped LiCoPO4. J. Electrostat. 2014, 72 (3), 181-186.
31. Shanmukaraj, D.; Murugan, R., Synthesis and characterization of LiNiyCo1−yPO4 (y = 0–1) cathode materials for lithium secondary batteries. Ionics 2004, 10 (1-2), 88-92.
32. Kishore, M. V. V. M. S.; Varadaraju, U. V., Influence of isovalent ion substitution on the electrochemical performance of LiCoPO4. Mater. Res. Bull. 2005, 40 (10), 1705-1712.
33. Rommel, S. M.; Rothballer, J.; Schall, N.; Brünig, C.; Weihrich, R., Characterization of the carbon-coated LiNi1−yCoyPO4 solid solution synthesized by a non-aqueous sol-gel route. Ionics 2015, 21 (2), 325-333.
34. Ludwig, J.; Marino, C.; Haering, D.; Stinner, C.; Gasteiger, H. A.; Nilges, T., Morphology-controlled microwave-assisted solvothermal synthesis of high-performance LiCoPO4 as a high-voltage cathode material for Li-ion batteries. J. Power Sources 2017, 342, 214-223.
35. Wu, B. R.; Xu, H. L.; Mu, D. B.; Shi, L. L.; Jiang, B.; Gai, L.; Wang, L.; Liu, Q.; Ben, L. B.; Wu, F., Controlled solvothermal synthesis and electrochemical performance of LiCoPO4 submicron single crystals as a cathode material for lithium ion batteries. J. Power Sources 2016, 304, 181-188.
36. Ahrens, L. H., The use of ionization potentials Part 1. Ionic radii of the elements. Geochim. Cosmochim. Acta 1952, 2 (3), 155-169.
37. Wang, D.; Wang, Z.; Huang, X.; Chen, L., Continuous solid solutions LiFe1−xCoxPO4 and its electrochemical performance. J. Power Sources 2005, 146 (1), 580-583.
38. Nytén, A.; Thomas, J. O., A neutron powder diffraction study of LiCoxFe1−xPO4 for x=0, 0.25, 0.40, 0.60 and 0.75. Solid State Ionics 2006, 177 (15), 1327-1330.
39. Islam, M. S.; Driscoll, D. J.; Fisher, C. A. J.; Slater, P. R., Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Chem. Mater. 2005, 17 (20), 5085-5092.
40. Morgan, D.; Van der Ven, A.; Ceder, G., Li conductivity in LixMPO4 (M= Mn, Fe, Co, Ni) olivine materials. Electrochem. Solid-State Lett. 2003, 7 (2), A30.
41. Zhou, F.; Cococcioni, M.; Marianetti, C. A.; Morgan, D.; Ceder, G., First-principles prediction of redox potentials in transition-metal compounds with LDA+U. Phys. Rev. B 2004, 70 (23), 235121.
42. Chen, G.; Song, X.; Richardson, T. J., Electron microscopy study of the LiFePO4 to FePO4 phase transition. Electrochem. Solid-State Lett. 2006, 9 (6), A295.
43. Wang, L.; Zhou, F.; Meng, Y. S.; Ceder, G., First-principles study of surface properties of LiFePO4: Surface energy, structure, Wulff shape, and surface redox potential. Phys. Rev. B 2007, 76 (16), 165435.
44. Johannes, M. D.; Hoang, K.; Allen, J. L.; Gaskell, K., Hole polaron formation and migration in olivine phosphate materials. Phys. Rev. B 2012, 85 (11), 115106.
45. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C., Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys Rev B Condens Matter 1992, 46 (11), 6671-6687.
46. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77 (18), 3865-3868.
47. Becke, A. D., Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38 (6), 3098-3100.
48. Anisimov, V. I.; Zaanen, J.; Andersen, O. K., Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 1991, 44 (3), 943-954.
49. Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D., Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 1992, 64 (4), 1045-1097.
50. Halgren, T. A.; Lipscomb, W. N., The synchronous-transit method for determining reaction pathways and locating molecular transition states. Chem. Phys. Lett. 1977, 49 (2), 225-232.
51. Henkelman, G.; Uberuaga, B. P.; Jónsson, H., A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113 (22), 9901-9904.
52. Schlegel, H. B., Exploring potential energy surfaces for chemical reactions: An overview of some practical methods. J. Comput. Chem. 2003, 24 (12), 1514-1527.
53. Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C., First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 2002, 14 (11), 2717-2744.
54. Vanderbilt, D., Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41 (11), 7892-7895.
55. Kao, S.-N.; Hung, Y.-C.; Shimoyama, Y.; Hsieh, C.-M.; Chang, B. K., Investigating lithium intercalation and diffusion in Nb-doped TiO2 by first principles calculations. J. Taiwan Inst. Chem. Eng. 2021.
56. Yeh, H.-L.; Tai, S.-H.; Hsieh, C.-M.; Chang, B. K., First-principles study of lithium intercalation and diffusion in oxygen-defective titanium dioxide. J. Phys. Chem. C 2018, 122 (34), 19447-19454.
57. BIOVIA, D. S. J. S. D., CA, Biovia Materials Studio. 2016.
58. Ludwig, J.; Haering, D.; Doeff, M. M.; Nilges, T., Particle size-controllable microwave-assisted solvothermal synthesis of the high-voltage cathode material LiCoPO4 using water/ethylene glycol solvent blends. Solid State Sci. 2017, 65, 100-109.
59. Wang, F.; Di Valentin, C.; Pacchioni, G., DFT study of hydrogen adsorption on the monoclinic WO3 (001) surface. J. Phys. Chem. C 2012, 116 (19), 10672-10679.
60. https://www.geogebra.org/.
61. Zhou, F.; Kang, K.; Maxisch, T.; Ceder, G.; Morgan, D., The electronic structure and band gap of LiFePO4 and LiMnPO4. Solid State Commun. 2004, 132 (3), 181-186.
62. Maxisch, T.; Zhou, F.; Ceder, G., Ab initio study of the migration of small polarons in olivine LixFePO4 and their association with lithium ions and vacancies. Phys. Rev. B 2006, 73 (10), 104301.
63. Allen, J. L.; Thompson, T.; Sakamoto, J.; Becker, C. R.; Jow, T. R.; Wolfenstine, J., Transport properties of LiCoPO4 and Fe-substituted LiCoPO4. J. Power Sources 2014, 254, 204-208.
64. Hoang, K.; Johannes, M., Tailoring native defects in LiFePO4: Insights from first-principles calculations. Chem. Mater. 2011, 23 (11), 3003-3013.
65. Hoang, K.; Johannes, M. D., First-principles studies of the effects of impurities on the ionic and electronic conduction in LiFePO4. J. Power Sources 2012, 206, 274-281.
66. Vineyard, G. H., Frequency factors and isotope effects in solid state rate processes. J. Phys. Chem. Solids 1957, 3 (1), 121-127.
67. Kang, K.; Morgan, D.; Ceder, G., First principles study of Li diffusion in I-Li2NiO2 structure. Phys. Rev. B 2009, 79 (1), 014305.
68. Xie, J.; Imanishi, N.; Zhang, T.; Hirano, A.; Takeda, Y.; Yamamoto, O., Li-ion diffusion kinetics in LiCoPO4 thin films deposited on NASICON-type glass ceramic electrolytes by magnetron sputtering. J. Power Sources 2009, 192 (2), 689-692.
69. Eftekhari, A., Surface modification of thin-film based LiCoPO4 5 V cathode with metal oxide. J. Electrochem. Soc. 2004, 151 (9), A1456.
70. Dinh, V. A.; Nara, J.; Ohno, T., A new Insight into the polaron–Li complex diffusion in cathode material LiFe1-yMnyPO4 for Li ion batteries. Appl. Phys. Express 2012, 5 (4), 045801.
71. Luong, H. D.; Pham, T. D.; Morikawa, Y.; Shibutani, Y.; Dinh, V. A., Diffusion mechanism of Na ion–polaron complex in potential cathode materials NaVOPO4 and VOPO4 for rechargeable sodium-ion batteries. Phys. Chem. Chem. Phys. 2018, 20 (36), 23625-23634.
72. Bui, K. M.; Dinh, V. A.; Okada, S.; Ohno, T., Hybrid functional study of the NASICON-type Na3V2(PO4)3: crystal and electronic structures, and polaron–Na vacancy complex diffusion. Phys. Chem. Chem. Phys. 2015, 17 (45), 30433-30439.
指導教授 謝介銘 張博凱 審核日期 2021-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明