參考文獻 |
1. Armand, M.; Tarascon, J. M., Building better batteries. Nature 2008, 451 (7179), 652-7.
2. Wu, F.; Maier, J.; Yu, Y., Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 2020, 49 (5), 1569-1614.
3. Kwak, W.-J.; Rosy; Sharon, D.; Xia, C.; Kim, H.; Johnson, L. R.; Bruce, P. G.; Nazar, L. F.; Sun, Y.-K.; Frimer, A. A.; Noked, M.; Freunberger, S. A.; Aurbach, D., Lithium–oxygen batteries and related systems: potential, status, and future. Chem. Rev. 2020, 120 (14), 6626-6683.
4. Nishi, Y., Lithium ion secondary batteries; past 10 years and the future. J. Power Sources 2001, 100 (1), 101-106.
5. Diouf, B.; Pode, R., Potential of lithium-ion batteries in renewable energy. Renewable Energy 2015, 76, 375-380.
6. Pacala, S.; Socolow, R., Stabilization Wedges: Solving the Climate Problem for the Next 50 Years with Current Technologies. Science 2004, 305 (5686), 968-972.
7. Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G., Li-ion battery materials: present and future. Mater. Today 2015, 18 (5), 252-264.
8. Kamali-Heidari, E.; Kamyabi-Gol, A.; Heydarzadeh Sohi, M.; Ataie, A., Electrode materials for lithium ion batteries: a review. Journal of Ultrafine Grained and Nanostructured Materials 2018, 51 (1), 1-12.
9. Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B., LixCoO2 (0 < x < -1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 1980, 15 (6), 783-789.
10. Thackeray, M. M.; David, W. I. F.; Bruce, P. G.; Goodenough, J. B., Lithium insertion into manganese spinels. Mater. Res. Bull. 1983, 18 (4), 461-472.
11. Padhi, A. K., Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1997, 144 (4), 1188.
12. Islam, M. S.; Fisher, C. A. J., Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem. Soc. Rev. 2014, 43 (1), 185-204.
13. Julien, C. M.; Mauger, A.; Zaghib, K.; Groult, H., Comparative Issues of Cathode Materials for Li-Ion Batteries. Inorganics 2014, 2 (1), 132-154.
14. Takahashi, M.; Tobishima, S.-i.; Takei, K.; Sakurai, Y., Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries. Solid State Ionics 2002, 148 (3), 283-289.
15. Yamada, A.; Hosoya, M.; Chung, S.-C.; Kudo, Y.; Hinokuma, K.; Liu, K.-Y.; Nishi, Y., Olivine-type cathodes: Achievements and problems. J. Power Sources 2003, 119-121, 232-238.
16. Okada, S.; Sawa, S.; Egashira, M.; Yamaki, J.-i.; Tabuchi, M.; Kageyama, H.; Konishi, T.; Yoshino, A., Cathode properties of phospho-olivine LiMPO4 for lithium secondary batteries. J. Power Sources 2001, 97-98, 430-432.
17. Lloris, J. M.; Pérez Vicente, C.; Tirado, J. L., Improvement of the electrochemical performance of LiCoPO4 5 V material using a novel synthesis procedure. Electrochem. Solid-State Lett. 2002, 5 (10), A234.
18. Shang, S. L.; Wang, Y.; Mei, Z. G.; Hui, X. D.; Liu, Z. K., Lattice dynamics, thermodynamics, and bonding strength of lithium-ion battery materials LiMPO4 (M = Mn, Fe, Co, and Ni): a comparative first-principles study. J. Mater. Chem. 2012, 22 (3), 1142-1149.
19. Amine, K., Olivine LiCoPO4 as 4.8 V electrode material for lithium batteries. Electrochem. Solid-State Lett. 1999, 3 (4), 178.
20. Fang, L.; Zhang, H.; Zhang, Y.; Liu, L.; Wang, Y., Design and synthesis of two-dimensional porous Fe-doped LiCoPO4 nano-plates as improved cathode for lithium ion batteries. J. Power Sources 2016, 312, 101-108.
21. Ikuhara, Y. H.; Gao, X.; Fisher, C. A. J.; Kuwabara, A.; Moriwake, H.; Kohama, K.; Iba, H.; Ikuhara, Y., Atomic level changes during capacity fade in highly oriented thin films of cathode material LiCoPO4. J. Mater. Chem. A 2017, 5 (19), 9329-9338.
22. Zhang, M.; Garcia-Araez, N.; Hector, A. L., Understanding and development of olivine LiCoPO4 cathode materials for lithium-ion batteries. J. Mater. Chem. A 2018, 6 (30), 14483-14517.
23. Wolfenstine, J., Electrical conductivity of doped LiCoPO4. J. Power Sources 2006, 158 (2), 1431-1435.
24. Morgan, D.; Van der Ven, A.; Ceder, G., Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials. Electrochem. Solid-State Lett. 2003, 7 (2), A30.
25. Allen, J. L.; Jow, T. R.; Wolfenstine, J., Improved cycle life of Fe-substituted LiCoPO4. J. Power Sources 2011, 196 (20), 8656-8661.
26. Hanafusa, R.; Oka, Y.; Nakamura, T., Electrochemical and magnetic studies of Li-deficient Li1-xCo1-xFexPO4 olivine cathode compounds. J. Electrochem. Soc. 2014, 162 (2), A3045.
27. Brutti, S.; Manzi, J.; Meggiolaro, D.; Vitucci, F. M.; Trequattrini, F.; Paolone, A.; Palumbo, O., Interplay between local structure and transport properties in iron-doped LiCoPO4 olivines. J. Mater. Chem. A 2017, 5 (27), 14020-14030.
28. Han, Y.; Ni, J.; Liu, J.; Wang, H.; Gao, L., Improving electrochemical performance of LiCoPO4 via Mn substitution. Mater. Technol. 2013, 28 (5), 265-269.
29. Dimesso, L.; Spanheimer, C.; Jaegermann, W., Influence of isovalent ions (Ca and Mg) on the properties of LiCo0.9M0.1PO4 powders. J. Power Sources 2013, 243, 668-675.
30. Karthickprabhu, S.; Hirankumar, G.; Maheswaran, A.; Bella, R. D.; Sanjeeviraja, C., Structural and electrical studies on Zn2+ doped LiCoPO4. J. Electrostat. 2014, 72 (3), 181-186.
31. Shanmukaraj, D.; Murugan, R., Synthesis and characterization of LiNiyCo1−yPO4 (y = 0–1) cathode materials for lithium secondary batteries. Ionics 2004, 10 (1-2), 88-92.
32. Kishore, M. V. V. M. S.; Varadaraju, U. V., Influence of isovalent ion substitution on the electrochemical performance of LiCoPO4. Mater. Res. Bull. 2005, 40 (10), 1705-1712.
33. Rommel, S. M.; Rothballer, J.; Schall, N.; Brünig, C.; Weihrich, R., Characterization of the carbon-coated LiNi1−yCoyPO4 solid solution synthesized by a non-aqueous sol-gel route. Ionics 2015, 21 (2), 325-333.
34. Ludwig, J.; Marino, C.; Haering, D.; Stinner, C.; Gasteiger, H. A.; Nilges, T., Morphology-controlled microwave-assisted solvothermal synthesis of high-performance LiCoPO4 as a high-voltage cathode material for Li-ion batteries. J. Power Sources 2017, 342, 214-223.
35. Wu, B. R.; Xu, H. L.; Mu, D. B.; Shi, L. L.; Jiang, B.; Gai, L.; Wang, L.; Liu, Q.; Ben, L. B.; Wu, F., Controlled solvothermal synthesis and electrochemical performance of LiCoPO4 submicron single crystals as a cathode material for lithium ion batteries. J. Power Sources 2016, 304, 181-188.
36. Ahrens, L. H., The use of ionization potentials Part 1. Ionic radii of the elements. Geochim. Cosmochim. Acta 1952, 2 (3), 155-169.
37. Wang, D.; Wang, Z.; Huang, X.; Chen, L., Continuous solid solutions LiFe1−xCoxPO4 and its electrochemical performance. J. Power Sources 2005, 146 (1), 580-583.
38. Nytén, A.; Thomas, J. O., A neutron powder diffraction study of LiCoxFe1−xPO4 for x=0, 0.25, 0.40, 0.60 and 0.75. Solid State Ionics 2006, 177 (15), 1327-1330.
39. Islam, M. S.; Driscoll, D. J.; Fisher, C. A. J.; Slater, P. R., Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Chem. Mater. 2005, 17 (20), 5085-5092.
40. Morgan, D.; Van der Ven, A.; Ceder, G., Li conductivity in LixMPO4 (M= Mn, Fe, Co, Ni) olivine materials. Electrochem. Solid-State Lett. 2003, 7 (2), A30.
41. Zhou, F.; Cococcioni, M.; Marianetti, C. A.; Morgan, D.; Ceder, G., First-principles prediction of redox potentials in transition-metal compounds with LDA+U. Phys. Rev. B 2004, 70 (23), 235121.
42. Chen, G.; Song, X.; Richardson, T. J., Electron microscopy study of the LiFePO4 to FePO4 phase transition. Electrochem. Solid-State Lett. 2006, 9 (6), A295.
43. Wang, L.; Zhou, F.; Meng, Y. S.; Ceder, G., First-principles study of surface properties of LiFePO4: Surface energy, structure, Wulff shape, and surface redox potential. Phys. Rev. B 2007, 76 (16), 165435.
44. Johannes, M. D.; Hoang, K.; Allen, J. L.; Gaskell, K., Hole polaron formation and migration in olivine phosphate materials. Phys. Rev. B 2012, 85 (11), 115106.
45. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C., Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys Rev B Condens Matter 1992, 46 (11), 6671-6687.
46. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77 (18), 3865-3868.
47. Becke, A. D., Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38 (6), 3098-3100.
48. Anisimov, V. I.; Zaanen, J.; Andersen, O. K., Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 1991, 44 (3), 943-954.
49. Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D., Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 1992, 64 (4), 1045-1097.
50. Halgren, T. A.; Lipscomb, W. N., The synchronous-transit method for determining reaction pathways and locating molecular transition states. Chem. Phys. Lett. 1977, 49 (2), 225-232.
51. Henkelman, G.; Uberuaga, B. P.; Jónsson, H., A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113 (22), 9901-9904.
52. Schlegel, H. B., Exploring potential energy surfaces for chemical reactions: An overview of some practical methods. J. Comput. Chem. 2003, 24 (12), 1514-1527.
53. Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C., First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 2002, 14 (11), 2717-2744.
54. Vanderbilt, D., Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41 (11), 7892-7895.
55. Kao, S.-N.; Hung, Y.-C.; Shimoyama, Y.; Hsieh, C.-M.; Chang, B. K., Investigating lithium intercalation and diffusion in Nb-doped TiO2 by first principles calculations. J. Taiwan Inst. Chem. Eng. 2021.
56. Yeh, H.-L.; Tai, S.-H.; Hsieh, C.-M.; Chang, B. K., First-principles study of lithium intercalation and diffusion in oxygen-defective titanium dioxide. J. Phys. Chem. C 2018, 122 (34), 19447-19454.
57. BIOVIA, D. S. J. S. D., CA, Biovia Materials Studio. 2016.
58. Ludwig, J.; Haering, D.; Doeff, M. M.; Nilges, T., Particle size-controllable microwave-assisted solvothermal synthesis of the high-voltage cathode material LiCoPO4 using water/ethylene glycol solvent blends. Solid State Sci. 2017, 65, 100-109.
59. Wang, F.; Di Valentin, C.; Pacchioni, G., DFT study of hydrogen adsorption on the monoclinic WO3 (001) surface. J. Phys. Chem. C 2012, 116 (19), 10672-10679.
60. https://www.geogebra.org/.
61. Zhou, F.; Kang, K.; Maxisch, T.; Ceder, G.; Morgan, D., The electronic structure and band gap of LiFePO4 and LiMnPO4. Solid State Commun. 2004, 132 (3), 181-186.
62. Maxisch, T.; Zhou, F.; Ceder, G., Ab initio study of the migration of small polarons in olivine LixFePO4 and their association with lithium ions and vacancies. Phys. Rev. B 2006, 73 (10), 104301.
63. Allen, J. L.; Thompson, T.; Sakamoto, J.; Becker, C. R.; Jow, T. R.; Wolfenstine, J., Transport properties of LiCoPO4 and Fe-substituted LiCoPO4. J. Power Sources 2014, 254, 204-208.
64. Hoang, K.; Johannes, M., Tailoring native defects in LiFePO4: Insights from first-principles calculations. Chem. Mater. 2011, 23 (11), 3003-3013.
65. Hoang, K.; Johannes, M. D., First-principles studies of the effects of impurities on the ionic and electronic conduction in LiFePO4. J. Power Sources 2012, 206, 274-281.
66. Vineyard, G. H., Frequency factors and isotope effects in solid state rate processes. J. Phys. Chem. Solids 1957, 3 (1), 121-127.
67. Kang, K.; Morgan, D.; Ceder, G., First principles study of Li diffusion in I-Li2NiO2 structure. Phys. Rev. B 2009, 79 (1), 014305.
68. Xie, J.; Imanishi, N.; Zhang, T.; Hirano, A.; Takeda, Y.; Yamamoto, O., Li-ion diffusion kinetics in LiCoPO4 thin films deposited on NASICON-type glass ceramic electrolytes by magnetron sputtering. J. Power Sources 2009, 192 (2), 689-692.
69. Eftekhari, A., Surface modification of thin-film based LiCoPO4 5 V cathode with metal oxide. J. Electrochem. Soc. 2004, 151 (9), A1456.
70. Dinh, V. A.; Nara, J.; Ohno, T., A new Insight into the polaron–Li complex diffusion in cathode material LiFe1-yMnyPO4 for Li ion batteries. Appl. Phys. Express 2012, 5 (4), 045801.
71. Luong, H. D.; Pham, T. D.; Morikawa, Y.; Shibutani, Y.; Dinh, V. A., Diffusion mechanism of Na ion–polaron complex in potential cathode materials NaVOPO4 and VOPO4 for rechargeable sodium-ion batteries. Phys. Chem. Chem. Phys. 2018, 20 (36), 23625-23634.
72. Bui, K. M.; Dinh, V. A.; Okada, S.; Ohno, T., Hybrid functional study of the NASICON-type Na3V2(PO4)3: crystal and electronic structures, and polaron–Na vacancy complex diffusion. Phys. Chem. Chem. Phys. 2015, 17 (45), 30433-30439. |