參考文獻 |
[1] Züttel, A. Remhof, A. Borgschulte and O. Friedrichs, “Hydrogen: the
future energy carrier”, Phil. Trans. R. Soc. A, 2010, 368, Pages 3329–3342
[2] W. Qi, J. G. Shapter, Q. Wu, T. Yin, G. Gao and D. Cui, “Nanostructured
anode materials for lithium-ion batteries: principle, recent progress and future perspectives”, J. Mater. Chem. A, 2017, 5, Pages 19521–19540
[3] S. Grugeon, P. Jankowski, D. Cailleu, C. Forestier, L. Sannier, M. Armand, P. Johansson and S. Laruelle “Towards a better understanding of vinylene carbonate derived SEI-layers by synthesis of reduction compounds”, Journal of Power Sources, 2019, Volume 427, Pages 77-84
[4] J. Liang, J. Luo, Q. Sun, X. Yang, R. Li and X. Sun, “Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries”, Energy Storage Materials, 2019, Volume 21, Pages 308-334
[5] D.E.Fenton, J.M.Parker and P.V.Wright, “Complexes of alkali metal ions with poly(ethylene oxide)”, Polymer, 1973, Volume 14, Issue 11, Page 589
[6] S. B. Aziz, T. J. Woo, M.F.Z. Kadir and H. M. Ahmed, “A conceptual review on polymer electrolytes and ion transport models”, Journal of Science: Advanced Materials and Devices, 2018, Volume 3, Issue 1, Pages 1-17
[7] H. Yuan, J. Luan, Z. Yang, J. Zhang, Y. Wu, Z. Lu and H. Liu, “Single Lithium-Ion Conducting Solid Polymer Electrolyte with Superior Electrochemical Stability and Interfacial Compatibility for Solid-State Lithium Metal Batteries”, ACS Appl. Mater. Interfaces, 2020, Pages 7249−7256
[8] K. S. Ngai , S. Ramesh , K. Ramesh and J. C. Juan, ”A review of polymer electrolytes: fundamental, approaches and applications”, Ionic, 2016, Volume 22, Pages 1259-1279
[9] K. J. Harry, D. T. Hallinan, D. Y. Parkinson, A. A. MacDowell and N. P. Balsara, “Detection of subsurface structures underneath dendrites formed on cycled lithiummetal electrodes”, Nature Materials, 2014, Volume 13, Pages 69–73
[10] N. J. Shah, S. Dadashi-Silab, M. D. Galluzzo, S. Chakraborty, W. S. Loo,
K. Matyjaszewski and N. P. Balsara, “Effect of Added Salt on Disordered
Poly(ethylene oxide)-Block-Poly(methyl- methacrylate) Copolymer
Electrolytes”, Macromolecules, 2021, 54, Pages 1414−1424
[11] H. Miyashiro, Y. Kobayashi, S. Seki, Y. Mita, A. Usami, M. Nakayama
and M. Wakihara “Fabrication of All-Solid-State Lithium Polymer
Secondary Batteries Using Al2O3-Coated LiCoO2”, Chem. Mater., 2005,
Volume 17, No. 23
[12] K. M. Abraham and M. Alamgir, ”Li+-Conductive Solid Polymer
Electrolytes with Liquid-Like Conductivity”, J. Electrochem. Soc., 1990,
Volume 137, No. 5
[13] P. Raghavan, J. Manuel, X. Zhao, D. S. Kim, J. y. Ahn and C. Nah,
“Preparation and electrochemical characterization of gel polymer
electrolyte based on electrospun polyacrylonitrile nonwoven membranes
for lithium batteries”, Journal of Power Sources, 2011, Volume 196, Issue
16, Pages 6742-6749
[14] J. Vondra´k, M. Sedlarˇı´kova´, J. Velicka´, B. Kla´psˇteˇ, V. Nova´k and
J. Reiter, “Gel polymer electrolytes based on PMMA”, Electrochimica
Acta, 2001, Volume 46, Issues 13–14, Pages 2047-2048
[15] Y. Liu, P. He and H. Zhou, “Rechargeable Solid-State Li–Air and Li–S
Batteries: Materials, Construction, and Challenges”, Adv. Energy Mater.,
2017, 1701602
[16] R. DeWees and H. Wang, “Synthesis and Properties of NASICON-type
LATP and LAGP Solid Electrolytes”, ChemSusChem, 2019, Volume 12,
Issue16, Pages 3713-3725
[17] B. Kumar, D. Thomas and J. Kumarz, “Space-Charge-Mediated
Superionic Transport in Lithium Ion Conducting Glass–Ceramics”,
Journal of The Electrochemical Society, 2009, Volume 156, No. 7, Pages
506-513
[18] D. Safanama and S. Adams, “High efficiency aqueous and hybrid lithium-
air batteries enabled by Li1.5Al0.5Ge1.5(PO4)3 ceramic anode-protecting
membranes”, Journal of Power Sources, 2017, Volume 340, Pages 294-301
[19] X. Zhang, Q. Xiang, S. Tang, A. Wang, X. Liu and J. Luo Long, “Cycling
Life Solid-State Li Metal Batteries with Stress Self-Adapted Li/Garnet
Interface”, Nano Lett., 2020, Volume 20, Pages 2871−2878
[20] Y.Zhu, X.He and Y.Mo, “Origin of Outstanding Stability in the Lithium
Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based
on First-Principles Calculations”, ACS Appl. Mater. Interfaces, 2015,
Volume 7, Pages 23685−23693
[21] L. He, Q. Sun, C. Chen, J. A. S. Oh, J. Sun, M. Li, W. Tu, H. Zhou, K.
Zeng and L. Lu, “Failure Mechanism and Interface Engineering for
NASICON-Structured All-Solid-State Lithium Metal Batteries”, ACS
Appl. Mater. Interfaces, 2019, Volume 11, Pages 20895−20904
[22] Y. Liu, Q. Sun, Y. Zhao, B. Wang, “Stabilizing the Interface of NASICON
Solid Electrolyte against Li Metal with Atomic Layer Deposition”, ACS
Appl. Mater. Interfaces, 2018, Volume 10, Pages 31240−31248
[23] M. P. O’Callaghan, D. R. Lynham, E. J. Cussen and G. Z. Chen ,
“Structure and Ionic-Transport Properties of Lithium-Containing Garnets
Li3Ln3Te2O12”, Chem. Mater., 2006, Volume 18, Pages 4681-4689
[24] V. Thangadurai, H. Kaack, and W. J. F. Weppner, ”Novel Fast Lithium Ion
Conduction in Garnet-Type Li5La3M2O12”, J. Am. Ceram. Soc., 2003,
Volume 86, Issue 3, Pages 437–440
[25] V. Thangadurai and W. Weppner, “Li6ALa2Nb2O12: A New Class of Fast
Lithium Ion Conductors with Garnet-Like Structure”, J. Am. Ceram.Soc.,
2005, Volume 88, Issue 2, Pages 411-418
[26] R. Murugan, V. Thangadurai and W. Weppner, “Fast Lithium Ion
Conduction in Garnet-Type Li7La3Zr2O12”, Angew. Chem. Int., 2007,
Volume 46, Pages 7778 –7781
[27] F. Han, Y. Zhu , X. He , Y. Mo and C. Wang, “Electrochemical Stability
of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes”, Adv. Energy Mater.,
2016, Volume 6, Issue 8, 1501590
[28] L. Truong and V. Thangadurai, “Soft-Chemistry of Garnet-Type
Li5+xBaxLa3-xNb2O12 (x = 0, 0.5, 1):Reversible H+ To Li+ Ion-Exchange
Reaction and Their X-ray, 7Li MAS NMR, IR, and AC Impedance
Spectroscopy Characterization”, Chem. Mater., 2011, Volume 23, Pages
3970–3977
[29] H. Xu, Y. Li, A. Zhou, N. Wu, S. Xin, Z. Li and J. B. Goodenough,
“Li3N‑Modified Garnet Electrolyte for All-Solid-State Lithium Metal
Batteries Operated at 40 °C”, Nano Lett., 2018, Volume 18, Pages
7414−7418
[30] Z. Zhang, A. R. Gonzalez, and K. L. Choy, “Boron Nitride Enhanced
Garnet-Type (Li6.25Al0.25La3Zr2O12) Ceramic Electrolyte for an All-Solid-
State Lithium-Ion Battery”, ACS Appl. Energy Mater., 2019, Volume 2,
Pages 7438−7448
[31] Y. Inaguma, C. Liquan, M. Itoh and T. Nakamura, “High Ionic
Conductivity In Lithium Lanthanum Titanate”, Solid State
Communications, 1993, Volume 86, No. 10, Pages 689-693
[32] K. Liu, R. Zhang, J. Sun, M. Wu, and T. Zhao, “Polyoxyethylene-
(PEO)|PEO−Perovskite|PEO Composite Electrolyte for All-Solid-State
Lithium Metal Batteries”, ACS Appl. Mater. Interfaces, 2019, Volume 11,
Pages 46930−46937
[33] L.C. Kin, Z. Liu, O. Astakhov, S. N. Agbo, H. Tempel, S. Yu, H. Kungl,
R. A. Eichel, U. Rau, T. Kirchartz and T. Merdzhanova, “Efficient Area
Matched Converter Aided Solar Charging of Lithium Ion Batteries Using
High Voltage Perovskite Solar Cells”, ACS Appl. Energy Mater., 2020,
Volume 3, Pages 431−439
[34] M. Y. Wang, S. H. Han, C.Q. Niu, Z. S. Chao, W. B. Luo, H. G. Jin, W. J.
Yi, Z. Q. Fan and J. C. Fan, “Perovskite Lithium Lanthanum Titanate-
Modified Separator as Both Adsorbent and Converter of Soluble
Polysulfides toward High-Performance Li‑S Battery”, ACS Sustainable
Chem. Eng., 2020, Volume 8, Pages 16477−16492
[35] X. Han, Y. Gong, K. Fu, X. He, G. T. Hitz, J. Dai, A. Pearse, B. Liu, H.
Wang, G. Rubloff, Y. Mo, V. Thangadurai, E. D. Wachsman and L. Hu,
“Negating interfacial impedance in garnet-based solid-state Li metal
batteries”, Nature Materials, 2017, Volume 16, Pages 572–579
[36] S. Wenzel, S. Randau, T. Leichtweiß, D. A. Weber, J. Sann, W. G. Zeier
and J. Janek, “Direct observation of the interfacial instability of the fast
ionic conductor Li10GeP2S12 at the lithium metal anode”, Chem.
Mater., 2016, Volume 28, Issue 7, Pages 2400–2407
[37] A. Sakuda, A. Hayashi and M. Tatsumisago, “Interfacial Observation
between LiCoO2 Electrode and Li2S-P2S5 Solid Electrolytes of All-Solid-
State Lithium Secondary Batteries Using Transmission Electron
Microscopy”, Chem. Mater., 2010, Volume 22, Pages 949–956
[38] W. D. Richards, L. J. Miara, Y. Wang, J. C. Kim and G. Ceder, “Interface
Stability in Solid-State Batteries”, Chem. Mater., 2016, Volume 28, Issue 1,
Pages 266–273
[39] P. J. Lian, B. S. Zhao, L. Q. Zhang, N. Xu, M. T. Wu and X. P. Gao,
“Inorganic sulfide solid electrolytes for all-solid state lithium secondary
Batteries”, J. Mater. Chem. A, 2019, Volume 7, Issue 36, Pages 20540-
20557
[40] H. D. Lim, X. Yue, X. Xing, V. Petrova, M. Gonzalez, H. Liu and P. Liu
“Designing solution chemistries for the low-temperature synthesis of
sulfide-based solid electrolytes”, J. Mater. Chem. A, 2018, Volume 6,
Issue 17, Pages 7370-7374
[41] N. Minafra, K. Hogrefe, F. Barbon, B. Helm, C. Li, H. M. R. Wilkening
and W. G. Zeier, “Two-Dimensional Substitution: Toward a Better
Understanding of the Structure−Transport Correlations in the Li-
Superionic Thio-LISICONs”, Chem. Mater., 2021, Volume 33, Pages
727−740
[42] Y. Seino, T. Ota, K. Takada, A. Hayashic and M. Tatsumisago, “A
sulphide lithium super ion conductor is superior to liquid ion conductors
for use in rechargeable batteries”, Energy & Environmental Science, 2014,
Volume 7, Issue 2, Pages 627-631
[43] N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, “A lithium
superionic conductor”, Nature Materials, 2011, Volume 10, Pages 682–686
[44] M. Nagao, A. Hayashi, and M. Tatsumisago, “Bulk-Type Lithium Metal
Secondary Battery with Indium Thin Layer at Interface between Li
Electrode and Li2S-P2S5 Solid Electrolyte”, Electrochemistry, 2012,
Volume 80, Issue 10, Pages 734-736
[45] N. Ohta, K. Takada, L. Zhang, R. Ma, M. Osada, and T. Sasaki,
“Enhancement of the High-Rate Capability of Solid-State Lithium
Batteries by Nanoscale Interfacial Modification”, Adv. Mater., 2006,
Volume 18, Pages 2226–2229
[46] T. Ohtomo, A. Hayashi, M. Tatsumisago and K. Kawamoto, “All-solid-
state batteries with Li2O-Li2S-P2S5 glass electrolytes synthesized by two-
step mechanical milling”, Journal of Solid State Electrochemistry, 2013,
Volume 17, Pages 2551–2557
[47] S. Srivastava, J. L. Schaefer, Z. Yang, Z. Tu and L. A. Archer, “25th
Anniversary Article: Polymer–Particle Composites: Phase Stability and
Applications in Electrochemical Energy Storage”, Adv. Mater., 2014,
Volume 26, Pages 201–234
[48] S. Jayanthi, K. Kulasekarapandian, A. Arulsankar, K. Sankaranarayanan
and B. Sundaresan, “Influence of nano-sized TiO2 on the structural,
electrical, and morphological properties of polymer-blend electrolytes
PEO-PVC-LiClO4”, Journal of Composite Materials, 2015, Volume 49, Issue 9, Pages 1035-1045
[49] Y. Li and H. Wang, “Composite Solid Electrolytes with NASICON-Type
LATP and PVdF−HFP for Solid-State Lithium Batteries”, Ind. Eng. Chem.
Res., 2021, Volume 60, Pages 1494−1500
[50] Z. Wang, S. Wang, A. Wang, X. Liu, J. Chen, Q. Zeng, L. Zhang, W. Liu
and L. Zhang, “Covalently linked metal–organic framework(MOF)-
polymer all-solid-state electrolyte membranes for room temperature high
performance lithium batteries”, J. Mater. Chem. A, 2018, Volume 6, Pages
17227-17234
[51] X. Yuan, C. Sun, J.N. Duan, J. Fan, R. Yuan, J. Chen, J. K. Chang, M.
Zheng and Q. Dong, “A polyoxometalate-based polymer electrolyte with
an improved electrode interface and ion conductivity for high-safety all-
solid-state batteries”, J. Mater. Chem. A, 2019, Volume 7, Pages 15924-
15932
[52] K. Zhu, Y. Liu and J. Liu, “A fast charging/discharging all-solid-state
lithium ion battery based on PEO-MIL-53(Al)-LiTFSI thin film
electrolyte”, RSC Adv., 2014, Volume 4, Pages 42278-42284
[53] S.K. Kim, Y.C. Jung, D.H. Kim, W.C. Shin, M. Ue and D.W. Kim,
“Lithium-Ion Cells Assembled with Flexible Hybrid Membrane
Containing Li+-Conducting Lithium Aluminum Germanium Phosphate”,
Journal of The Electrochemical Society, 2016, Volume 163, Issue 6,
Pages 974-980
[54] H. Huo, Y. Chen, J. Luo, X. Yang, X. Guo and X. Sun, “Rational Design
of Hierarchical “Ceramic-in-Polymer” and “Polymer-in-Ceramic”
Electrolytes for Dendrite-Free Solid-State Batteries”, Adv. Energy Mater.,
2019, Volume 9, Issue 17, 1804004
[55] S. Chena, J. Wanga, Z. Zhanga, L. Wu, L. Yao, Z. Wei, Y. Deng, D. Xie,
X. Yao and X. Xu, “In-situ preparation of poly(ethylene oxide)/Li3PS4
hybrid polymer electrolyte with good nanofiller distribution for
rechargeable solid-state lithium batteries”, Journal of Power Sources,
2018, Volume 387, Pages 72-80
[56] I. Villaluenga, K. H. Wujcik, W. Tong, D. Devaux, D. H. C. Wong, J. M.
DeSimone and N. P. Balsara, “Compliant glass–polymer hybrid single ion-
conducting electrolytes for lithium batteries”, PNAS, 2016, Volume
113, Issue 1, Pages 52-57
[57] E. Rangasamy, G. Sahu, J. K. Keum, A. J. Rondinone, N. J. Dudney and
C. Liang, “A high conductivity oxide–sulfide composite lithium superionic
conductor”, J. Mater. Chem. A, 2014, Volume 2, Issue 12, Pages 4111-
4116
[58] F. Baskoro, H. Q. Wong and H. J. Yen, “Strategic Structural Design of a
Gel Polymer Electrolyte toward a High Efficiency Lithium-Ion Battery”,
ACS Appl. Energy Mater., 2019, Volume 2, Pages 3937−3971
[59] M. Marcinek, J. Syzdek, M. Marczewski, M. Piszcz, “Electrolytes for Li-
ion transport – Review”, Solid State Ionics, 2015, Volume 276, Pages 107-
126
[60] K. Xu, “Electrolytes and Interphases in Li-Ion Batteries and Beyond”,
Chem. Rev., 2014, Volume 114, Pages 11503−11618
[61] J. H. Baik, S. Kim, D. G. Hong, and J. C. Lee, “Gel Polymer Electrolytes
Based on Polymerizable Lithium Salt and Poly(ethylene glycol) for
Lithium Battery Applications”, ACS Appl. Mater. Interfaces, 2019,
Volume 11, Pages 29718−29724
[62] C. Wang, Q. Sun, Y. Liu, Y. Zhao, X. Li, X. Lin, M. N. Banis, M. Li, W.
Li, K. R. Adair, D. Wang, J. Liang, R. Li, L. Zhang, R. Yang, S. Lu and X.
Sun, “Boosting the Performance of Lithium Batteries with Solid-Liquid
Hybrid Electrolytes:Interfacial Properties and Effects of Liquid
Electrolytes”, Nano Energy, 2018, Volume 48, Pages 35-43
[63] B. Fan, Y. Xu, R. Ma, Z. Luo, F. Wang, X. Zhang, H. Ma, P. Fan, B. Xue
and W. Han, “Will Sulfide Electrolytes be Suitable Candidates for
Constructing a Stable Solid/Liquid Electrolyte Interface?”, ACS Appl.
Mater. Interfaces, 2020, Volume 12, Pages 52845−52856
[64] W. Zhang, J. Nie, F. Li, Z. L. Wang and C. Sun, “A durable and safe solid-
state lithium battery with a hybrid electrolyte Membrane”, Nano Energy,
2018, Volume 45, Pages 413-419
[65] M.A.K.L. Dissanayake, P.A.R.D. Jayathilaka, R.S.P. Bokalawala, I.
Albinsson, B.E. Mellander, “Effect of concentration and grain size of
alumina filler on the ionic conductivity enhancement of the
(PEO)9LiCF3SO3:Al2O3 composite polymer electrolyte”, Journal of Power
Sources, 2003, Volume 119–121, Pages 409–414
[66] W. Gang, J. Roos and D. Brinkmann, “Comparison of NMR and
conductivity in (PEO)8LiClO4+γ-LiAlO2”, Solid State Ionics, 1992,
Volume 53-59, Pages 1102-1105
[67] J. Zhang , N. Zhao, M. Zhang, Y. Li, P. K. Chu, X. Guo, Z. Di, X. Wang and H. Li, “Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide”, Nano Energy, 2016, Volume 28, Pages 447–454
[68] W. Liu, N. Liu, J. Sun,. P.C. Hsu, Y. Li, H. W. Lee and Y. Cui, “Ionic
Conductivity Enhancement of Polymer Electrolytes with Ceramic
Nanowire Fillers”, Nano Lett., 2015, Volume 15, Pages 2740−2745
[69] Y. C. Jung, M. S. Park, C. H. Doh, D. W. Kim, “Organic-inorganic hybrid
solid electrolytes for solid-state lithium cells operating at room
temperature”, Electrochimica Acta, 2016, Volume 218, Pages 271–277
[70] 張育豪, “改善鋰離子電池電性之新穎電解液添加劑”, 碩士論文, 化學
學系, 國立中央大學, 2017
[71] K. Arbi, W. Bucheli, R. Jiménez, J. Sanz, “High lithium ion conducting
solid electrolytes based on NASICON Li1+xAlxM2−x(PO4)3 materials (M =
Ti, Ge and 0 ≤ x ≤ 0.5)”, Journal of the European Ceramic Society, 2015,
Volume 35, Issue 5, Pages 1477-1484
[72] Z. J. Huang, J. Jiang, G. Xue and D. S. Zhou, “β-Phase Crystallization of
Poly(vinylidene fluoride) in Poly(vinylidenefluoride)/Poly(ethyl-
methacrylate) Blends”, Chinese J. Polym. Sci., 2019, Volume 37, Pages
94–100
[73] L. F. Malmonge, J. A. Malmonge and W. K. Sakamoto, “Study of
Pyroelectric Activity of PZT/PVDF-HFP Composite”, Material Research,
2003, Volume 6, No. 4, Pages 469-473
[74] K. Gohel, D. K. Kanchan and C. Maheshwaran, “Electrical and Dielectric Properties of PVdF-HFP –PMMA – (PC+DEC)- LiClO4 Based Gel Polymer Electrolyte”, AIP Conference Proceedings, 2018, Volume 1942, Issue 1, 140081
[75] H. Yu, J. S. Han, G. C. Hwang, J. S. Cho, D. W. Kang and J. K. Kim,
“Optimization of high potential cathode materials and lithium conducting
hybrid solid electrolyte for high-voltage all-solid-state batteries”,
Electrochimica Acta, 2021, Volume 365, 137349
[76] P. Bai, J. Guo, M. Wang, A. Kushima, L. Su, J. Li, F. R. Brushett and M.
Z. Bazant, “Interactions between Lithium Growths and Nanoporous
Ceramic Separators”, Joule, 2018, Volume 2, Issue 11, Pages 2434-2449
[77] P. Hartmann, T. Leichtweiss, M. R. Busche, M. Schneider, M. Reich, J.
Sann, P. Adelhelm and J. Janek, “Degradation of NASICON-Type
Materials in Contact with Lithium Metal:Formation of Mixed Conducting
Interphases (MCI) on Solid Electrolytes”, J. Phys. Chem. C, 2013, Volume
117, Pages 21064−21074
[78] 葉珈伶, “官能基化二氧化鈦複合電解質於固態鋰電池研究”, 碩士論
文, 化學學系, 國立中央大學, 2019 |