參考文獻 |
1. Berche, B.; Henkel, M.; Kenna, R., Critical phenomena: 150 years since Cagniard de la Tour. arXiv preprint arXiv:0905.1886 2009.
2. Hyatt, J. A., Liquid and supercritical carbon dioxide as organic solvents. The Journal of Organic Chemistry 1984, 49 (26), 5097-5101.
3. Williams, D., Extraction with supercritical gases. Chemical Engineering Science 1981, 36(11), 1769-1788.
4. Ruhan, A.; Motonobu, G.; Mitsuru, S., Supercritical Fluid Extraction in Food Analysis. In Handbook of Food Analysis Instruments, CRC Press: 2008.
5. Feng, Y.; Meier, D., Supercritical carbon dioxide extraction of fast pyrolysis oil from softwood. The Journal of Supercritical Fluids 2017, 128, 6-17.
6. Grodowska, K.; Parczewski, A., Organic solvents in the pharmaceutical industry. Acta Poloniae Pharmaceutica. Drug Research 2010, 67 (1).
7. Özkal, S. G.; Salgın, U.; Yener, M. E., Supercritical carbon dioxide extraction of hazelnut oil. Journal of Food Engineering 2005, 69 (2), 217-223.
8. Rovetto, L. J.; Aieta, N. V., Supercritical carbon dioxide extraction of cannabinoids from Cannabis sativa L. The Journal of Supercritical Fluids 2017, 129, 16-27.
9. Kayathi, A.; Chakrabarti, P. P.; Bonfim-Rocha, L.; Cardozo-Filho, L.; Jegatheesan, V., Selective extraction of polar lipids of mango kernel using Supercritical Carbon dioxide (SC–CO2) extraction: Process optimization of extract yield/phosphorous content and economic evaluation. Chemosphere 2020, 260, 127639.
10. Qamar, S.; Torres, Y. J.; Parekh, H. S.; Falconer, J. R., Extraction of medicinal cannabinoids through supercritical carbon dioxide technologies: A review. Journal of Chromatography B 2021, 1167, 122581.
11. Barzotto, I. L. M.; Santos, K. A.; da Silva, E. A.; Sene, A. C.; da Silva, N. S.; Vieira, L., Supercritical extraction of Eugenia involucrata leaves: Influence of operating conditions on yield and α-tocopherol content. The Journal of Supercritical Fluids 2019, 143, 55-63.
12. Bassett, S. P.; Russell, A. D.; McKeown, P.; Robinson, I.; Forder, T. R.; Taresco, V.; Davidson, M. G.; Howdle, S. M., Low-temperature and purification-free stereocontrolled ring-opening polymerisation of lactide in supercritical carbon dioxide. Green Chemistry 2020,22 (7), 2197-2202.
13. Villegas, M.; Oliveira, A. L.; Bazito, R. C.; Vidinha, P., Development of an integrated one-pot process for the production and impregnation of starch aerogels in supercritical carbon dioxide. The Journal of Supercritical Fluids 2019, 154, 104592.
14. Bai, T.; Kobayashi, K.; Tamura, K.; Jun, Y.; Zheng, L., Supercritical CO2 dyeing for nylon, acrylic, polyester, and casein buttons and their optimum dyeing conditions by design of experiments. Journal of CO2 Utilization 2019, 33, 253-261.
15. Kong, X.-j.; Huang, T.-t.; Cui, H.-s.; Yang, D.-f.; Lin, J.-x., Multicomponent system of trichromatic disperse dye solubility in supercritical carbon dioxide. Journal of CO2 Utilization 2019, 33, 1-11.
16. Abou Elmaaty, T.; Abd El-Aziz, E., Supercritical carbon dioxide as a green media in textile dyeing: a review. Textile Research Journal 2018, 88 (10), 1184-1212.
17. Amenaghawon, A. N.; Anyalewechi, C. L.; Kusuma, H. S.; Mahfud, M., Chapter 13 -Applications of supercritical carbon dioxide in textile industry. In Green Sustainable Process for Chemical and Environmental Engineering and Science, Inamuddin; Asiri, A. M.; Isloor, A. M., Eds. Elsevier: 2020; pp 329-346.
18. Mahato, R. I.; Narang, A. S., Pharmaceutical dosage forms and drug delivery. CRC Press: 2011.
19. Huang, L.-F.; Tong, W.-Q. T., Impact of solid state properties on developability assessment of drug candidates. Advanced drug delivery reviews 2004, 56 (3), 321-334.
20. Won, D.-H.; Kim, M.-S.; Lee, S.; Park, J.-S.; Hwang, S.-J., Improved physicochemical characteristics of felodipine solid dispersion particles by supercritical antisolvent precipitation process. Int. J. Pharm. 2005, 301 (1-2), 199-208.
21. Miguel, F.; Martin, A.; Gamse, T.; Cocero, M. J., Supercritical anti solvent precipitation of lycopene: Effect of the operating parameters. J. Supercrit. Fluids 2006, 36 (3), 225-235.
22. Charoenchaitrakool, M.; Dehghani, F.; Foster, N. R.; Chan, H. K., Micronization by rapid expansion of supercritical solutions to enhance the dissolution rates of poorly watersoluble pharmaceuticals. Ind. Eng. Chem. Res. 2000, 39 (12), 4794-4802.
23. Turk, M.; Hils, P.; Helfgen, B.; Schaber, K.; Martin, H. J.; Wahl, M. A., Micronization of pharmaceutical substances by the Rapid Expansion of Supercritical Solutions (RESS): a promising method to improve bioavailability of poorly soluble pharmaceutical agents. J.Supercrit. Fluids 2002, 22 (1), 75-84.
24. Basavoju, S.; Boström, D.; Velaga, S. P., Pharmaceutical cocrystal and salts of norfloxacin. Crystal growth & design 2006, 6 (12), 2699-2708.
25. MacEachern, L.; Kermanshahi-pour, A.; Mirmehrabi, M., Supercritical Carbon Dioxide for Pharmaceutical Co-Crystal Production. Crystal Growth & Design 2020, 20 (9), 6226-6244.
26. Padrela, L.; Rodrigues, M. A.; Tiago, J. o.; Velaga, S. P.; Matos, H. A.; de Azevedo, E. G., Insight into the mechanisms of cocrystallization of pharmaceuticals in supercritical solvents. Crystal Growth & Design 2015, 15 (7), 3175-3181.
27. Padrela, L.; Rodrigues, M. A.; Velaga, S. P.; Matos, H. A.; de Azevedo, E. G., Formation of indomethacin–saccharin cocrystals using supercritical fluid technology. European Journal of Pharmaceutical Sciences 2009, 38 (1), 9-17.
28. Cuadra, I. A.; Cabañas, A.; Cheda, J. A.; Türk, M.; Pando, C., Cocrystallization of the anticancer drug 5-fluorouracil and coformers urea, thiourea or pyrazinamide using supercritical CO2 as an antisolvent (SAS) and as a solvent (CSS). The Journal of Supercritical Fluids 2020, 160, 104813.
29. Ribas, M. M.; Sakata, G. S.; Santos, A. E.; Dal Magro, C.; Aguiar, G. P. S.; Lanza, M.; Oliveira, J. V., Curcumin cocrystals using supercritical fluid technology. The Journal of supercritical fluids 2019, 152, 104564.
30. Bao, P.; Dai, J., Relationships between the Solubility of CI Disperse Red 60 and Uptake on PET in Supercritical CO2. Journal of Chemical & Engineering Data 2005, 50 (3), 838-842.
31. Draper, S.; Montero, G.; Smith, B.; Beck, K., Solubility relationships for disperse dyes in supercritical carbon dioxide. Dyes and Pigments 2000, 45 (3), 177-183.
32. Kozak, A.; Marek, P. H.; Pindelska, E., Structural Characterization and Pharmaceutical Properties of Three Novel Cocrystals of Ethenzamide With Aliphatic Dicarboxylic Acids. Journal of Pharmaceutical Sciences 2019, 108 (4), 1476-1485.
33. Aitipamula, S.; Wong, A. B.; Chow, P. S.; Tan, R. B., Pharmaceutical cocrystals of ethenzamide: structural, solubility and dissolution studies. CrystEngComm 2012, 14 (24), 8515-8524.
34. Span, R.; Wagner, W., A new equation of state for carbon dioxide covering the fluid region from the triple‐point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data 1996, 25 (6), 1509-1596.
35. 100:2008, J., Evaluation of measurement data — Guide to the expression of uncertainty in measurement (GUM 1995 with minor corrections). 1 ed.; Joint Committee for Guides in Metrology: 2008.
36. Taylor, B. N.; Kuyatt, C. E., Guidelines for evaluating and expressing the uncertainty of NIST measurement results. U.S. Government Printing Office: Washington, DC, 1994.
37. Ellison, S. L. R.; Williams, A., Eurachem/CITAC guide: Quantifying uncertainty in analytical measurement. 3 ed.; 2012.
38. Kragten, J., Calculating standard deviations and confidence intervals with a universally applicable spreadsheet technique. Analyst 1994, 119 (10), 2161-2165.
39. Vetter, T. W. In Quantifying measurement uncertainty in analytical chemistry–A simplified practical approach, Measurement Science Conference, Anaheim, CA, January 18-19, 2001; National Institute of Standards and Technology (NIST): Anaheim, CA, 2001.
40. Tsai, C.-C.; Lin, H.-m.; Lee, M.-J., Phase equilibrium and micronization for flufenamic acid with supercritical carbon dioxide. Journal of the Taiwan Institute of Chemical Engineers 2017, 72, 19-28.
41. Zhan, S.; Li, S.; Zhao, Q.; Wang, W.; Wang, J., Measurement and correlation of curcumin solubility in supercritical carbon dioxide. Journal of Chemical & Engineering Data 2017, 62 (4), 1257-1263.
42. Jin, J.; Wang, Y.; Wu, H.; Li, J.; Zhang, Z., Equilibrium solubilities of ammonium benzoate, benzamide and their mixture in supercritical carbon dioxide. Fluid phase equilibria 2012, 334, 152-156.
43. Juan, C.; Oyarzún, B.; Quezada, N.; del Valle, J. M., Solubility of carotenoid pigments (lycopene and astaxanthin) in supercritical carbon dioxide. Fluid Phase Equilibria 2006, 247(1-2), 90-95.
44. Asiabi, H.; Yamini, Y.; Latifeh, F.; Vatanara, A., Solubilities of four macrolide antibiotics in supercritical carbon dioxide and their correlations using semi-empirical models. The Journal of Supercritical Fluids 2015, 104, 62-69.
45. Chrastil, J., Solubility of solids and liquids in supercritical gases. The Journal of Physical Chemistry 1982, 86 (15), 3016-3021.
46. Méndez-Santiago, J.; Teja, A. S., The solubility of solids in supercritical fluids. Fluid Phase Equilib. 1999, 158-160, 501-510.
47. Bartle, K.; Clifford, A.; Jafar, S.; Shilstone, G., Solubilities of solids and liquids of low volatility in supercritical carbon dioxide. Journal of Physical and Chemical Reference Data 1991, 20 (4), 713-756.
48. Kumar, S. K.; Johnston, K. P., Modelling the solubility of solids in supercritical fluids with density as the independent variable. The Journal of Supercritical Fluids 1988, 1 (1), 15-22.
49. Lee, C.-A.; Tang, M.; Chen, Y.-P., Measurement and correlation for the solubilities of cinnarizine, pentoxifylline, and piracetam in supercritical carbon dioxide. Fluid Phase Equilib. 2014, 367, 182-187.
50. Manna, L.; Banchero, M., Solubility of Tolbutamide and Chlorpropamide in Supercritical Carbon Dioxide. J. Chem. Eng. Data 2018, 63 (5), 1745-1751.
51. Li, Q.; Pan, P.; Lu, T.; Blackburn, S.; Leeke, G. A., Solubility of Azoxystrobin and Benflumetol in Compressed CO2—Measured by the Static Precise Mass Measuring Method. J. Chem. Eng. Data 2019, 64 (1), 9-15.
52. Ongkasin, K.; Sauceau, M.; Masmoudi, Y.; Fages, J.; Badens, E., Solubility of cefuroxime axetil in supercritical CO2: Measurement and modeling. J. Supercrit. Fluids 2019,152, 104498.
53. Sodeifian, G.; Hazaveie, S. M.; Sajadian, S. A.; Saadati Ardestani, N., Determination of the Solubility of the Repaglinide Drug in Supercritical Carbon Dioxide: Experimental Data and Thermodynamic Modeling. J. Chem. Eng. Data 2019, 64 (12), 5338-5348.
54. Li, B.; Guo, W.; Ramsey, E. D., Solubility Measurements of Chloramphenicol in Supercritical Fluid CO2 Using Static Solubility Apparatus Interfaced with Online Supercritical Fluid Chromatography. J. Chem. Eng. Data 2020, 65 (1), 153-159.
55. Foster, N. R.; Gurdial, G. S.; Yun, J. S.; Liong, K. K.; Tilly, K. D.; Ting, S. S.; Singh, H.; Lee, J. H., Significance of the crossover pressure in solid-supercritical fluid phase equilibria. Industrial & engineering chemistry research 1991, 30 (8), 1955-1964 |