參考文獻 |
[1] L. Lu, X. Han, J. Li, J. Hua, M. Ouyang, “A Review on the Key Issues for Lithium-Ion Battery Management in Electric Vehicles.”, Journal of Power Sources, vol. 226, pp. 272–288, 2013.
[2] A. Barré, B. Deguilhem, S. Grolleau, M. Gérard, “A Review on Lithium-Ion Battery Ageing Mechanisms and Estimations for Automotive Applications.”, Journal of Power Sources, vol. 241, pp. 680–689, 2013.
[3] L. Zhou, Y. Zheng, M. Ouyang, L. Lu, “A Study on Parameter Variation Effects on Battery Packs for Electric Vehicles.”, Journal of Power Sources, vol. 364, pp. 242–252, 2017.
[4] 郭妍希 : Molel S火燒車後續:電池遭撞擊起火、火勢似難滅。2013年10月3號,取自https://news.cnyes.com/news/id/1822137.
[5] 黃慧雯 : 三星公布Note7爆炸原因 元凶是它。2017年1月23號。取自https://www.chinatimes.com/realtimenews/20170123001920-260412?chdtv.
[6] G.Ceder, G. Hautier, A. Jain, S.P. Ong, “Recharging Lithium Battery Research with Fi Rst-Principles Methods.”, Materials Research Society, vol. 36, pp. 185–191, 2011.
[7] C. Liu, Z. Neale, G. Cao, “Understanding Electrochemical Potentials of Cathode Materials in Rechargeable Batteries.”, Materials Today, vol. 19, pp. 109–123, 2016.
[8] Y. Chen, Y. Kang, Y. Zhao, L. Wang, J. Liu, Y. Li, Z. Liang, X. He, X. Li, N. Tavajohi, B. Li,“A Review of Lithium-Ion Battery Safety Concerns: The Issues, Strategies, and Testing Standards.”, Journal of Energy Chemistry, vol. 59, pp. 83–99, 2021.
[9] Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, C. Chen, “Thermal Runaway Caused Fire and Explosion of Lithium Ion Battery.”, Journal of Power Sources, vol. 208, pp. 210–224, 2012.
[10] D. P. Abraham, E.P. Roth, R. Kostecki, K. McCarthy, S. MacLarend, D.H. Doughty, “Diagnostic Examination of Thermally Abused High-Power Lithium-Ion Cells.”, Journal of Power Sources, vol. 161, pp. 648–657, 2006.
[11] S. F. Schuster, T. Bach, E. Fleder, J. Müller, M. Brand, “Nonlinear Aging Characteristics of Lithium-Ion Cells under Different Operational Conditions.”, Journal of Energy Storage, vol. 1, pp. 44–53, 2015.
[12] T. C Bach, S. F. Schuster, E. Fleder, J. Müller, M. J. Brand, H. Lorrmann, A. Jossen, G. Sextl, “Nonlinear Aging of Cylindrical Lithium-Ion Cells Linked to Heterogeneous Compression.”, Journal of Energy Storage, vol. 5, pp. 212–223, 2016.
[13] X. G. Yang, Y. Leng, G. Zhang, S. Ge, C. Y. Wang, “Modeling of Lithium Plating Induced Aging of Lithium-Ion Batteries: Transition from Linear to Nonlinear Aging.”, Journal of Power Sources, vol. 360, pp. 28–40, 2017.
[14] J. Park, W. Y. Appiah, S. Byun, D. Jin, M. H. Ryou, Y. M. Lee, “Semi-Empirical Long-Term Cycle Life Model Coupled with an Electrolyte Depletion Function for Large-Format Graphite/LiFePO4 Lithium-Ion Batteries.”, Journal of Power Sources, vol. 365, pp. 257–265, 2017.
[15] F. Leng, Z. Wei, C. M. Tan, R. Yazami, “Hierarchical Degradation Processes in Lithium-Ion Batteries during Ageing.”, Electrochimica Acta, vol. 256, pp. 52–62, 2017.
[16] X. Han, L. Lu, Y. Zheng, X. Feng, Z. Li, J. Li, M. Ouyang, “A Review on the Key Issues of the Lithium Ion Battery Degradation among the Whole Life Cycle.”, eTransportation, vol. 1, 2019.
[17] Y. Kang, Z. Liang, Y. Zhao, H. Xu, K. Qian, X. He, T. Li, J. Li, “Large-Scale Synthesis of Lithium- and Manganese-Rich Materials with Uniform Thin-Film Al2O3 Coating for Stable Cathode Cycling.”, SCIENCE CHINA Materials, vol. 11, 2020.
[18] J. Wang, Z. Hu, X. Yin, Y. Li, H. Huo, J. Zhou, L. Li, “Alumina/Phenolphthalein Polyetherketone Ceramic Composite Polypropylene Separator Film for Lithium Ion Power Batteries.”, Electrochimica Acta, vol. 159, pp. 61–65, 2015.
[19] D. Ren, X. Feng, L. Lu, M. Ouyang, S. Zheng, J. Li, X. He, “An Electrochemical-Thermal Coupled Overcharge-to-Thermal-Runaway Model for Lithium Ion Battery.”, Journal of Power Sources, vol. 364, pp. 328–340, 2017.
[20] Z. Wang, H. Yang, Y. Li, G. Wang, J. Wang, “Thermal Runaway and Fire Behaviors of Large-Scale Lithium Ion Batteries with Different Heating Methods.”, Journal of Hazardous Materials, vol. 379, 2019.
[21] P. Liu, C. Liu, K. Yang, M. Zhang, F. Gao, B. Mao, H. Li, Q. Duan, Q. Wang, “Thermal Runaway and Fire Behaviors of Lithium Iron Phosphate Battery Induced by over Heating.”, Journal of Energy Storage, vol. 31, 2020.
[22] Y. Zheng, X. Han, L. Lu, J. Li, M. Ouyang, “Lithium Ion Battery Pack Power Fade Fault Identification Based on Shannon Entropy in Electric Vehicles.”, Journal of Power Sources, vol. 223, pp. 136–146, 2013.
[23] X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia, X. He, “Thermal Runaway Mechanism of Lithium Ion Battery for Electric Vehicles: A Review.”, Energy Storage Materials, vol. 10, pp. 246–267, 2018.
[24] E. Hu, X. Yu, R. Lin, X. Bi, J. Lu, S. Bak, K. W. Nam, H. L. Xin, C. Jaye, D.A. Fischer, K. Amine, X. Q. Yang, “Evolution of Redox Couples in Li- and Mn-Rich Cathode Materials and Mitigation of Voltage Fade by Reducing Oxygen Release.”, Nature Energy, vol. 3, pp. 690–698, 2018.
[25] L. X. Yuan, Z. H. Wang, W. X. Zhang, X. L. Hu, J. T. Chen, Y. H. Huang, J. B. Goodenough, “Development and Challenges of LiFePO4 Cathode Material for Lithium-Ion Batteries.”, Energy & Environmental Science, vol. 4, pp. 269–284, 2011.
[26] H. Gao, F. Maglia, P. Lamp, K. Amine, Z. Chen, “Mechanistic Study of Electrolyte Additives to Stabilize High-Voltage Cathode−Electrolyte Interface in Lithium-Ion Batteries.”, ACS Appl. Mater. Interfaces, vol. 9, pp. 44542−44549, 2017.
[27] 莊志遠, “改良式具高分期結構添加劑對於電極界面鋰離子遷移之探討”, 國立中央大學化學系碩士論文, 2014
[28] Y. D, ZHANG, L. Yi, X. H. XIA, X. L. WANG, C. D. GU, J. P. TU, “High-Energy Cathode Materials for Li-Ion Batteries: A Review of Recent Developments.”, SCIENCE CHINA Technological Sciences, 2015.
[29] X. Chen, Y. Tian, “Review of Graphene in Cathode Materials for Lithium-Ion Batteries.”, Energy Fuels, vol. 35, pp. 3572−3580, 2021.
[30] K. Ozawa, “Lithium-Ion Rechargeable Batteries with LiCoO2 and Carbon Electrodes: The LiCoO2/C System.”, Solid State Ionies, vol. 69 pp. 212–221, 1994.
[31] J. Marzec, K. S´wierczek, J. Przewoz´nik, J. Molenda, D.R. Simon, E.M. Kelder, J. Schoonman, “Conduction Mechanism in Operating a LiMn2O4 Cathode.”, Solid State Ionies, vol. 146, pp. 225–237, 2002.
[32] F. Cao, J. Prakash, “A Comparative Electrochemical Study of LiMn2O4 Spinel Thin-Film and Porous Laminate.”, Electrochimica Acta, vol. 146, pp. 1607–1613, 2002.
[33] H. Q. Wang, F. Y. Lai, Y. Li, X. H. Zhang, Y. G. Huang, S. J. Hu, Q. Y. Li, “Excellent Stability of Spinel LiMn2O4-Based Cathode Materials for Lithium-Ion Batteries.”, Electrochimica Acta, 2015.
[34] A. Yamada, M. Tanaka, “Jahn-Teller Structural Phase Transition around 280K in LiMn2O4.”, Materials Research Bulletin, vol. 30, pp. 715–721, 1995.
[35] P. P. Prosini, M. Lisi, D. Zane, M. Pasquali, “Determination of the Chemical Diffusion Coefficient of Lithium in LiFePO4.”, Solid State Ionics, vol. 148, pp. 45–51, 2002.
[36] S. Shi, L. Liu, C. Ouyang, D. S. Wang, Z. Wang, L. Chen, X. Huang, “Enhancement of Electronic Conductivity of LiFePO4 by Cr doping and Its Identification by First-Principles Calculations.”, PHYSICAL REVIEW B, vol. 68, pp. 195108, 2003.
[37] Z. Liu, A. Yu, J. Y. Lee, “Synthesis and Characterization of LiNi1-x-yCoxMnyO2 as the Cathode Materials of Secondary Lithium Batteries.”, Journal of Power Sources, vol. 81–82, pp. 416–419, 1999.
[38] 張育豪, “改善鋰離子電池電性之新穎電解液添加劑”, 國立中央大學化學系碩士論文, 2016
[39] N. L. Hamidah, F. M. Wang, G. Nugroho “The Understanding of Solid Electrolyte Interface (SEI) Formation and Mechanism as the Effect of Flouro‐o-Phenylenedimaleimaide (F‐MI) Additive on Lithium‐ion Battery.”, Surf Interface Anal., vol. 51, pp. 345–352, 2018.
[40] L. Wang, B. W. Eichhorn, “Compositions and Formation Mechanisms of Solid-Electrolyte Interphase on Microporous Carbon/Sulfur Cathodes.”, Chem. Mater., vol. 32,pp. 3765−3775, 2020.
[41] P. Verma, P. Maire, P. Novak, “A Review of the Features and Analyses of the Solid Electrolyte Interphase in Li-Ion Batteries.”, Electrochimica Acta, vol. 55, pp. 6332–6341, 2010.
[42] 陳佑頎;吳昱賢;張家欽, “鋰離子電解質-鋰離子傳遞的橋樑”, 科學發展, 第564期, pp. 16-20, 2019.
[43] J. B. Goodenough, Y. Kim, “Challenges for Rechargeable Li Batteries.”, Chem. Mater., vol. 22, pp. 587–603, 2010.
[44] V. A. Agubra, J. W. Fergus, “The Formation and Stability of the Solid Electrolyte Interface on the Graphite Anode.”, Journal of Power Sources, vol. 268, pp. 153–162, 2014.
[45] S. Y. Luchkin, S. A. Lipovskikh, N. S. Katorova, A. A. Savina, A. M. Abakumov, K. J. Stevenson, “Solid-Electrolyte Interphase Nucleation and Growth on Carbonaceous Negative Electrodes for Li-Ion Batteries Visualized with in Situ Atomic Force Microscopy.”, Scientific Reports, 2020.
[46] D. Aurbach, B. Markovsky, M.D. Levi, E. Levi, A. Schechter, M. Moshkovich, Y. Cohen, “New Insights into the Interactions between Electrode Materials and Electrolyte Solutions for Advanced Nonaqueous Batteries.”, Journal of Power Sources, vol. 81–82, pp. 95–111, 1999.
[47] T. Eriksson, A. M. Andersson, A. G. Bishop, C. Gejke, T. Gustafsson, J. O. Thomas, “Surface Analysis of LiMn2O4 Electrodes in Carbonate-Based Electrolytes.”, Journal of The Electrochemical Society, vol. 149, pp. A69–A78, 2002.
[48] H. Zhang, D. Wang, C. Shen “In-Situ EC-AFM and Ex-Situ XPS Characterization to Investigate the Mechanism of SEI Formation in Highly Concentrated Aqueous Electrolyte for Li-Ion Batteries.”, Applied Surface Science, 2019.
[49] A. M. Haregewoin, A. S. Wotango, B. J. Hwang, “Electrolyte Additives for Lithium Ion Battery Electrodes: Progress and Perspectives.”, Energy Environ. Sci, vol. 9, pp. 1955–1988, 2016.
[50] S Komaba., B. Kaplan, T. Ohtsuka, Y. Kataoka, N. Kumagai, H. Groult “Inorganic Electrolyte Additives to Suppress the Degradation of Graphite Anodes by Dissolved Mn(II) for Lithium-Ion Batteries.”, Journal of Power Sources, vol. 119–121, pp. 378–382, 2003.
[51] K. C. Mo¨ller, H.J. Santner, W. Kern, S. Yamaguchi, J.O. Besenhard, M. Winter, “In Situ Characterization of the SEI Formation on Graphite in the Presence of a Vinylene Group Containing Film-Forming Electrolyte Additives.”, Journal of Power Sources, vol. 119–121, pp. 561–566, 2003.
[52] E. G. Leggesse, J. C. Jiang, “Theoretical Study of the Reductive Decomposition of Ethylene Sulfite: A Film-Forming Electrolyte Additive in Lithium Ion Batteries.”, J. Phys. Chem. A, vol. 116, pp. 11025−11033, 2012.
[53] A. Naji, J. Ghanbaja, P. Willmann, D. Billaud, “New Halogenated Additives to Propylene Carbonate-Based Electrolytes for Lithium-Ion Batteries.”, Electrochimica Acta, vol. 45, pp. 1893–1899, 2000.
[54] K. Abe, T. Takaya, H. Yoshitake, Y. Ushigoe, M. Yoshio, H. Wang, “Functional Electrolyte: Additives for Improving the Cyclability of Cathode Materials.”, Electrochemical and Solid-State Letters, vol. 7, pp. A462–A465, 2004.
[55] J. Xia, N. N. Sinha, L. P. Chen, J. R. Dahn, “A Comparative Study of a Family of Sulfate Electrolyte Additives.”, Journal of The Electrochemical Society, vol. 161, pp. A264–A274, 2014.
[56] L. Liao, X. Cheng, Y. Ma, P. Zuo, W. Fang, G. Yin, Y. Gao “Fluoroethylene Carbonate as Electrolyte Additive to Improve Low Temperature Performance of LiFePO4 Electrode.”, Electrochimica Acta, vol. 87, pp. 466–472, 2013.
[57] A. K. Haridas, Q. A. Nguyen, T. Terlier, R. Blaser, S. L. Biswal, “Investigating the Compatibility of TTMSP and FEC Electrolyte Additives for LiNi0.5Mn0.3Co0.2O2 (NMC)−Silicon Lithium-Ion Batteries.”, Appl. Mater. Interfaces, vol. 13, p. 2662−2673, 2021.
[58] X. Wang, E. Yasukawa, S. Kasuya, “Nonflammable Trimethyl Phosphate Solvent-Containing Electrolytes for Lithium-Ion Batteries.”, Journal of The Electrochemical Society, vol. 148, pp. A1058–A1065, 2001.
[59] H. F. Xiang, H.Y. Xu, Z.Z. Wang, C.H. Chen, “Dimethyl Methylphosphonate (DMMP) as an Efficient Flame Retardant Additive for the Lithium-Ion Battery Electrolytes.”, Journal of Power Sources, vol. 173, pp. 562–564, 2007.
[60] R. P. Dunn, J. Kafle, F. C. Krause, C. Hwang, B. V. Ratnakumar, M. C. Smart, B. L. Lucht, “Electrochemical Analysis of Li-Ion Cells Containing Triphenyl Phosphate.”, Journal of The Electrochemical Society, vol. 159, pp. A2100–A2108, 2012.
[61] B. Wu, P. Pei, Y. Wu, R. Mao, X. Ai, H. Yang, Y. Cao, “An Electrochemically Compatible and Flame-Retardant Electrolyte Additive for Safe Lithium Ion Batteries.”, Journal of Power Sources, vol. 227, pp. 106–110, 2013.
[62] K. Xu, M. S. Ding, S. Zhang, J. L. Allen, T. R. Jow, “An Attempt to Formulate Nonflammable Lithium Ion Electrolytes with Alkyl Phosphates and Phosphazenes.”, Journal of The Electrochemical Society, vol. 149, pp. A622–A626, 2002.
[63] Z. Lin, Y. Liu, S. Raghavan, K. Moon, S. K. Sitaraman, C. P. Wong, “Magnetic Alignment of Hexagonal Boron Nitride Platelets in Polymer Matrix: Toward High Performance Anisotropic Polymer Composites for Electronic Encapsulation.”, Appl. Mater. Interfaces, vol. 5, p. 7633−7640, 2013.
[64] Z. Rozynek, H. Mauroy, R. C. Castberg, K. D. Knudsen, J. O. Fossum, “DIPOLAR ORDERING OF CLAY PARTICLES IN VARIOUS CARRIER FLUIDS.”, REVISTA CUBANA DE FÍSICA, vol. 29, 2012.
[65] K. Kim, H. Ju, J. Kim, “Filler Orientation of Boron Nitride Composite via External Electric Field for Thermal Conductivity Enhancement.”, Ceramics International, vol. 42, 2000, pp. 8657–8663, 2016.
[66] 江恒瑋, “提升矽陽極鋰離子電池之循環穩定性之研究”, 國立臺灣師範大學化學系碩士論文, 2013 |