參考文獻 |
1 Poliakoff, M.; Licence, P. Green chemistry. Nature. 2007, 450 (7171), 810-812.
2 Tang, S. L.; Smith, R. L.; Poliakoff, M. Principles of green chemistry: PRODUCTIVELY. Green Chem. 2005, 7 (11), 761-762..
3 Sheldon, R. A. The E factor: Fifteen years on. Green Chem. 2007, 9 (12), 1273-1283.
4 Anastas, P.; Eghbali, N. Green chemistry: Principles and practice. Chem. Soc. Rev. 2010, 39 (1), 301-312.
5 Kalidindi, S. B.; Jagirdar, B. R. Nanocatalysis and prospects of green chemistry. ChemSusChem 2012, 5 (1), 65-75.
6 Rogelj, J.; Schaeffer, M.; Meinshausen, M.; Knutti, R.; Alcamo, J.; Riahi, K.; Hare, W. Zero emission targets as long-term global goals for climate protection. Environ. Res. Lett. 2015, 10 (10), 105007.
7 Pandey, D.; Agrawal, M.; Pandey, J. S. Carbon footprint: current methods of estimation. Environ. Monit. Assess. 2011, 178 (1), 135-160.
8 Sheldon, R. A. E factors, green chemistry and catalysis: An odyssey. Chem. Commun. 2008, (29), 3352-3365.
9 Sheldon, R. A. Fundamentals of green chemistry: Efficiency in reaction design. Chem. Soc. Rev. 2012, 41 (4), 1437-1451.
10 Choct, M. Enzymes for the feed industry: Past, present and future. World′s Poult. Sci. J. 2006, 62 (1), 5-16.
11 Dirk, L.; Schmidt, J. J.; Cai, Y.; Barnes, J. C.; Hanger, K. M.; Nayak, N. R.; Williams, M. A.; Grossman, R. B.; Houtz, R. L.; Rodgers, D. W. Insights into the substrate specificity of plant peptide deformylase, an essential enzyme with potential for the development of novel biotechnology applications in agriculture. Biochem. J 2008, 413 (3), 417-427.
12 Campbell, G.; Bedford, M. Enzyme applications for monogastric feeds: A review. Can. J. Anim. Sci. 1992, 72 (3), 449-466.
13 Rasor, J. P.; Voss, E. Enzyme-catalyzed processes in pharmaceutical industry. Appl. Catal., A 2001, 221 (1-2), 145-158.
14 Margesin, R.; Schinner, F. Phosphomonoesterase, phosphodiesterase, phosphotriesterase, and inorganic pyrophosphatase activities in forest soils in an alpine area: effect of pH on enzyme activity and extractability. Biol. Fertil. Soils 1994, 18 (4), 320-326.
15 Van den Broeck, I.; Ludikhuyze, L. R.; Van Loey, A. M.; Hendrickx, M. E. Effect of temperature and/or pressure on tomato pectinesterase activity. J. Agric. Food Chem. 2000, 48 (2), 551-558.
16 Qi, B.; Chen, X.; Su, Y.; Wan, Y. Enzyme adsorption and recycling during hydrolysis of wheat straw lignocellulose. Bioresour. Technol. 2011, 102 (3), 2881-2889.
17 Sheldon, R. A. Green solvents for sustainable organic synthesis: state of the art. Green Chem. 2005, 7 (5), 267-278.
18 Mitta, M.; Kato, I.; Tsunasawa, S. The nucleotide sequence of human aminoacylase-1. Biochim. Biophys. Acta, Gene Struct. Expression 1993, 1174 (2), 201-203.
19 Guan, Z.; Song, J.; Xue, Y.; Yang, D.-C.; He, Y.-H. J. Enzyme-catalyzed asymmetric Mannich reaction using acylase from Aspergillus melleus. J. Mol. Catal. B: Enzym. 2015, 111, 16-20.
20 Latt, S. A.; Holmquist, B.; Vallee, B. L. Thermolysin: A zinc metalloenzyme. Biochem. Biophys. Res. Commun. 1969, 37 (2), 333-339.
21 D′Ambrosio, C.; Talamo, F.; Vitale, R. M.; Amodeo, P; Tell, G.; Ferrara, L.; Scaloni, A. Probing the Dimeric Structure of Porcine Aminoacylase 1 by Mass Spectrometric and Modeling Procedures. Biochemistry. 2003, 42(15), 4430–4443
22 Wang, W.; Wu, Z.; Dai, Z.; Yang, Y.; Wang, J.; Wu, G. Glycine metabolism in animals and humans: implications for nutrition and health. Amino Acids. 2013, 45(3), 463–477.
23 Razak, M. A.; Begum, P. S.; Viswanath, B.; Rajagopal, S. Multifarious beneficial effect of nonessential amino acid, glycine: A review. Oxid. Med. Cell. Longevity. 2017, 2017, 1-8.
24 Wang, W.; Wu, Z.; Dai, Z.; Yang, Y.; Wang, J.; Wu, G. Glycine metabolism in animals and humans: implications for nutrition and health. J. Amino Acids 2013, 45 (3), 463-477.
25 Markel, A. L.; Achkasov, A. F.; Alekhina, T. A.; Prokudina, O. I.; Ryazanova, M. A.; Ukolova, T. N.; Efimov, V. M.; Boldyreva, E. V.; Boldyrev, V. V. Effects of the alpha-and gamma-polymorphs of glycine on the behavior of catalepsy prone rats. Pharmacol. Biochem. Behav. 2011, 98 (2), 234-240.
26 Max, J.-J.; Trudel, M.; Chapados, C. Infrared titration of aqueous glycine. Appl. Spectrosc. 1998, 52 (2), 226-233.
27 Brittain, H. G. Polymorphism and solvatomorphism 2010. J Pharm Sci. 2012, 101(2), 464–484.
28 Gu, C.-H.; Young Jr, V.; Grant, D. J. Polymorph screening: influence of solvents on the rate of solvent-mediated polymorphic transformation. J. Pharm. Sci. 2001, 90 (11), 1878-1890.
29 Karpinski, P. H. Polymorphism of active pharmaceutical ingredients. Chem. Eng. Technol. 2006, 29 (2), 233-237.
30 Yu, L.; Ng, K. Glycine crystallization during spray drying: The pH Effect on salt and polymorphic Forms. J Pharm Sci. 2002, 91(11), 2367–2375.
31 Srinivasan, K. Crystal growth of α and γ glycine polymorphs and their polymorphic phase transformations. J. Cryst. Growth. 2008, 311(1), 156–162.
32 Hrkovac, M.; Kardum, J. P.; Schuster A.; Ulrich J. Influence of additives on glycine crystal characteristics. Chem Eng Technol, 2011, 34(4), 611–618.
33 Ivanova, B. B. Solid state linear-dichroic infrared (IR-LD) spectroscopic characterization of α-and β-glycine polymorphs. Cent. Eur. J. Chem. 2006, 4(1), 111–117.
34 Yang, X.; Wang, X.; Ching, C. B. Solubility of form α and form γ of glycine in aqueous solutions. J. Chem. Eng. Data. 2008, 53(5), 1133–1137.
35 Ding, L.; Zong, S.; Dang, L.; Wang, Z.; Wei, H. Effects of inorganic additives on polymorphs of glycine in microdroplets. CrystEngComm 2018, 20 (2), 164-172.
36 Boldyreva, E.; Drebushchak, V.; Drebushchak, T.; Paukov, I.; Kovalevskaya, Y. A.; Shutova, E. Polymorphism of glycine, Part I. J. Therm. Anal. Calorim. 2003, 73 (2), 409-418.
37 Marsh, R. E. A refinement of the crystal structure of glycine.Acta Cryst. 1958, 11(9), 654–663.
38 Iitaka, Y. The crystal structure of β-glycine. Acta Cryst. 1960, 13(1), 35–45.
39 Iitaka, Y. The crystal structure of γ-glycine. Acta Cryst. 1961, 14(1), 1–10.
40 Dawson, A.; Allan, D. R.; Belmonte, S. A.; Clark, S. J.; David, W. I.; McGregor, P. A.; Parsons, S.; Pulham, C. R.; Sawyer, L. Effect of high pressure on the crystal structures of polymorphs of glycine. Cryst. Growth Des. 2005, 5 (4), 1415-1427.
41 Yin Y.; Chow P.S.; and Tan B.H. Glycine open dimers in solution: New insights into α-glycine nucleation and growth. Cryst. Growth Des. 2012, 12 (10), 4771−4778.
42 Chocholoušová, J.; Vacek, J.; Huisken, F.; Werhahn, O.; Hobza, P. Stacked Structure of the glycine dimer is more stable than the cyclic planar geometry with Two O− H…O hydrogen bonds: Concerted action of empirical, high-level nonempirical ab initio, and experimental studies. J. Phys. Chem. A 2002, 106 (47), 11540-11549.
43 Chew, J. W.; Black, S. N.; Chow, P. S.; Tan, R. B.; Carpenter, K. J. Stable polymorphs: Difficult to make and difficult to predict. CrystEngComm 2007, 9 (2), 128-130.
44 Gidalevitz, D.; Feidenhans′l, R.; Matlis, S.; Smilgies, D. M.; Christensen, M. J.; Leiserowitz, L. Monitoring in situ growth and dissolution of molecular crystals: Towards determination of the growth units. Angew. Chem., Int. Ed. Engl. 1997, 36 (9), 955-959.
45 Perlovich, G.; Hansen, L. K.; Bauer-Brandl, A. The polymorphism of glycine. Thermochemical and structural aspects. J. Therm. Anal. Calorim. 2001, 66 (3), 699-715.
46 Ferrari, E. S.; Davey, R. J.; Cross, W. I.; Gillon, A. L.; Towler, C. S. Crystallization in polymorphic systems: The solution-mediated transformation of β to α glycine. Cryst. Growth Des. 2003, 3(1), 53–60.
47 Sakai, H.; Hosogai, H.; Kawakita, T.; Onuma, K.; Tsukamoto, K. Transformation of α-glycine to γ-glycine. J. Cryst. Growth 1992, 116 (3-4), 421-426.
48 Sun, X.; Garetz, B. A.; Myerson, A. S. Supersaturation and polarization dependence of polymorph control in the nonphotochemical laser-induced nucleation (NPLIN) of aqueous glycine solutions. Cryst. Growth Des. 2006, 6 (3), 684-689.
49 Srinivasan, K.; Renuka Devi, K.; Anbuchudar Azhagan, S. Characterization of α and γ polymorphs of glycine crystallized from water‐ammonia solution. Cryst. Res. Technol. 2011, 46 (2), 159-165.
50 Azhagan, S. A. C.; Ganesan, S. Effect of zinc acetate addition on crystal growth, structural, optical, thermal properties of glycine single crystals. Arabian J. Chem. 2017, 10, S2615-S2624.
51 Lee, T.; Kuo, C. S.; Chen, Y. H. Solubility, polymorphism, crystallinity, and crystal habit of acetaminophen and ibuprofen by initial solvent screening. Pharm. Technol. 2006, 30 (10), 72-93.
52 Lee, T.; Chen, J. W.; Lee, H. L.; Lin, T. Y.; Tsai, Y. C.; Cheng, S.-L.; Lee, S.-W.; Hu, J.-C.; Chen, L.-T. J. Stabilization and spheroidization of ammonium nitrate: Co-crystallization with crown ethers and spherical crystallization by solvent screening. Chem. Eng. J. 2013, 225, 809-817.
53 Chen, L.; Xue, X.; Jiang, D.; Yang, J.; Zhao, B.; Han, X. X.; Jung, Y. M. A turn-on resonance Raman scattering (BCS/Cu+) sensor for quantitative determination of proteins. Appl Spectrosc. 2016, 70 (2), 355-362.
54 https://www.flottweg.com/fileadmin/user_upload/data/pdf-downloads/Sedicanter-EN.pdf
55 Hirajima, T.; Sasaki, K.; Bissombolo, A.; Hirai, H.; Hamada, M.; Tsunekawa, M. Feasibility of an efficient recovery of rare earth-activated phosphors from waste fluorescent lamps through dense-medium centrifugation. Sep. Purif. Technol. 2005, 44 (3), 197-204.
56 Lakowicz, J. R. Protein fluorescence. In Principles of fluorescence spectroscopy, Springer: 1983; pp 341-381.
57 Huang, M.-Q.; Zhou, H.-M. Alkaline unfolding and salt-induced folding of aminoacylase at high pH. Enzyme Protein 1994, 48(4), 229-237.
58 Sankar, S.; Manikandan, M.; Ram, S. G.; Mahalingam, T.; Ravi, G. Gel growth of α and γ glycine and their characterization. J. Cryst. Growth. 2010, 312 (19), 2729-2733.
59 Sander, A.; Penović, T.; Šipušić, J. Crystallization of β‐glycine by spray drying. Cryst. Res. Technol. 2011, 46 (2), 145-152.
60 Seyedhosseini, E.; Ivanov, M.; Bystrov, V.; Bdikin, I.; Zelenovskiy, P.; Shur, V. Y.; Kudryavtsev, A.; Mishina, E. D.; Sigov, A. S.; Kholkin, A. L. Growth and nonlinear optical properties of β-glycine crystals grown on Pt substrates. Cryst. Growth Des. 2014, 14 (6), 2831-2837.
61 Md. Badruddoza, A. Z.; Toldy, A. I.; Hatton, T. A.; Khan, S. A. Functionalized silica nanoparticles as additives for polymorphic control in emulsion-based crystallization of glycine. Cryst. Growth Des. 2013, 13 (6), 2455-2461.
62 Di Profio, G.; Tucci, S.; Curcio, E.; Drioli, E. Selective glycine polymorph crystallization by using microporous membranes. Cryst. Growth Des. 2007, 7 (3), 526-530.
63 Yang, X.; Lu, J.; Wang, X.-J.; Ching, C.-B. Effect of sodium chloride on the nucleation and polymorphic transformation of glycine. J. Cryst. Growth 2008, 310 (3), 604-611.
64 Chai, Q.; Yang, C. H.; Teo, K. L.; Gui, W. H. Optimal control of an industrial-scale evaporation process: Sodium aluminate solution. Control. Eng. Pract. 2012, 20 (6), 618-628.
65 Lavrov, K.; Zalunin, I.; Kotlova, E.; Yanenko, A. A new acylamidase from Rhodococcus erythropolis TA37 can hydrolyze N-substituted amides. Biochemistry. 2010, 75 (8), 1006-1013.
66 Lee, T.; Yeh, K. L.; You, J. X.; Fan, Y. C.; Cheng, Y. S.; Pratama, D. E. Reproducible crystallization of sodium dodecyl sulfate· 1/8 hydrate by evaporation, antisolvent addition, and cooling. ACS Omega 2020, 5 (2), 1068-1079.
67 Rosado, M. T.; Duarte, M. L. T.; Fausto, R. Vibrational spectra of acid and alkaline glycine salts. Vib Spectrosc. 1998, 16 (1), 35-54.
68 Weissbuch, I.; Torbeev, V. Y.; Leiserowitz, L.; Lahav, M. Solvent effect on crystal polymorphism: why addition of methanol or ethanol to aqueous solutions induces the precipitation of the least stable β form of glycine. Angew. Chem. 2005, 117 (21), 3290-3293.
69 Threlfall, T. Crystallisation of polymorphs: Thermodynamic insight into the role of solvent. Org. Process Res. Dev. 2000, 4 (5), 384-390.
70 Kitamura, M. Controlling factor of polymorphism in crystallization process. J. Cryst. Growth 2002, 237, 2205-2214.
71 Shiau, L.-D. Modelling of the polymorph nucleation based on classical nucleation theory. Crystals 2019, 9 (2), 69.
72 Yang, X.; Wang, X.; Ching, C. B. Solubility of form α and form γ of glycine in aqueous solutions. J. Chem. Eng. Data. 2008, 53(5), 1133-1137.
73 Thomas, P. D.; Dill, K. A. Local and nonlocal interactions in globular proteins and mechanisms of alcohol denaturation. Protein Sci. 1993, 2 (12), 2050-2065.
74 Schubert, P. F.; Finn, R. K. Alcohol precipitation of proteins: the relationship of denaturation and precipitation for catalase. Biotechnol. Bioeng. 1981, 23 (11), 2569-2590.
75 Konno, T.; Tanaka, N.; Kataoka, M.; Takano, E.; Maki, M. A circular dichroism study of preferential hydration and alcohol effects on a denatured protein, pig calpastatin domain I. Biochim. Biophys. Acta 1997, 1342 (1), 73-82.
76 Parambil, J. V.; Poornachary, S. K.; Tan, R. B.; Heng, J. Y. Influence of solvent polarity and supersaturation on template-induced nucleation of carbamazepine crystal polymorphs. J. Cryst. Growth 2017, 469, 84-90.
77 Peterson, G. W.; Rossin, J. A.; Karwacki, C. J.; Glover, T. G. Surface chemistry and morphology of zirconia polymorphs and the influence on sulfur dioxide removal. J. Phys. Chem. C 2011, 115 (19), 9644-9650.
78 Parambil, J. V.; Poornachary, S. K.; Tan, R. B.; Heng, J. Y. Template-induced polymorphic selectivity: the effects of surface chemistry and solute concentration on carbamazepine crystallisation. CrystEngComm 2014, 16 (23), 4927-4930.
79 Božič, A. L.; Podgornik, R. pH dependence of charge multipole moments in proteins. Biophys. J. 2017, 113 (7), 1454-1465.
80 Dawson, R. M. C.; Elliott, D. C.; Elliott, W. H.; Jones, K. M., Data for biochemical research. Clarendon Press: 2002; Vol. 3.
81 Mitta, M.; Ohnogi, H.; Yamamoto, A.; Kato, I.; Sakiyama, F.; Tsunasawa, S. The primary structure of porcine aminoacylase 1 deduced from cDNA sequence. J. Biochem. 1992, 112 (6), 737-742.
82 Monsellier, E.; Bedouelle, H. Quantitative measurement of protein stability from unfolding equilibria monitored with the fluorescence maximum wavelength. Protein Eng. Des. Sel. 2005, 18 (9), 445-456.
83 Xie, Q.; Guo, T.; Wang, T.; Lu, J.; Zhou, H. M. Aspartate-induced aminoacylase folding and forming of molten globule. Int. J. Biochem. Cell Biol. 2003, 35 (11), 1558-1572.
84 Liao, F. S.; Lo, W. S.; Hsu, Y. S.; Wu, C. C.; Wang, S. C.; Shieh, F. K.; Morabito, J. V.; Chou, L. Y.; Wu, K. C. W.; Tsung, C. K. Shielding against unfolding by embedding enzymes in metal–organic frameworks via a de novo approach. J. Am. Chem. Soc. 2017, 139 (19), 6530-6533.
85 Shang, L.; Wang, Y.; Jiang, J.; Dong, S. pH-dependent protein conformational changes in albumin: gold nanoparticle bioconjugates: a spectroscopic study. Langmuir 2007, 23 (5), 2714-2721.
86 Arand, K.; Stock, D.; Burghardt, M.; Riederer, M. J. pH-dependent permeation of amino acids through isolated ivy cuticles is affected by cuticular water sorption and hydration shell size of the solute. J. Exp. Bot. 2010, 61 (14), 3865-3873.
87 Schmitz, K. S., Physical Chemistry: Multidisciplinary Applications in Society. Elsevier: 2018.
88 Matulis, D.; Baumann, C. G.; Bloomfield, V. A.; Lovrien, R. E. 1‐Anilino‐8‐naphthalene sulfonate as a protein conformational tightening agent. Biopolymers 1999, 49 (6), 451-458.
89 Uversky, V. N.; Winter, S.; Löber, G. Use of fluorescence decay times of 8-ANS-protein complexes to study the conformational transitions in proteins which unfold through the molten globule state. Biophys. Chem. 1996, 60 (3), 79-88. |