參考文獻 |
1. Kim, J. Y.; Lee, J.-W.; Jung, H. S.; Shin, H.; Park, N.-G., High-Efficiency Perovskite Solar Cells. Chem. Rev. 2020, 120, 7867-7918.
2. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050-6051.
3. Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; Gratzel, M.; Park, N.-G., Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep. 2012, 2, 591.
4. Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H., Hysteresis-less Inverted CH3NH3PbI3 Planar Perovskite Hybrid Solar Cells with 18.1% Power Conversion Efficiency. Energy Environ. Sci. 2015, 8, 1602-1608.
5. Yang, G.; Tao, H.; Qin, P.; Ke, W.; Fang, G., Recent Progress in Electron Transport Layers for Efficient Perovskite Solar Cells. J. Mater. Chem. A 2016, 4, 3970-3990.
6. Said, A. A.; Xie, J.; Zhang, Q., Recent Progress in Organic Electron Transport Materials in Inverted Perovskite Solar Cells. Small 2019, 15, 1900854.
7. Mohamad Noh, M. F.; Teh, C. H.; Daik, R.; Lim, E. L.; Yap, C. C.; Ibrahim, M. A.; Ahmad Ludin, N.; Mohd Yusoff, A. R. b.; Jang, J.; Mat Teridi, M. A., The Architecture of the Electron Transport Layer for a Perovskite Solar Cell. J. Mater. Chem. C 2018, 6, 682-712.
8. (a) Chen, J.; Kim, S.-G.; Ren, X.; Jung, H. S.; Park, N.-G., Effect of Bidentate and Tridentate Additives on the Photovoltaic Performance and Stability of Perovskite Solar Cells. J. Mater. Chem. A 2019, 7, 4977-4987; (b) Han, T.-H.; Lee, J.-W.; Choi, C.; Tan, S.; Lee, C.; Zhao, Y.; Dai, Z.; De Marco, N.; Lee, S.-J.; Bae, S.-H.; Yuan, Y.; Lee, H. M.; Huang, Y.; Yang, Y., Perovskite-Polymer Composite Cross-Linker Approach for Highly-Stable and Efficient Perovskite Solar Cells. Nat. Commun. 2019, 10, 520.
9. (a) Han, G. S.; Kim, J.; Bae, S.; Han, S.; Kim, Y. J.; Gong, O. Y.; Lee, P.; Ko, M. J.; Jung, H. S., Spin-Coating Process for 10 cm × 10 cm Perovskite Solar Modules Enabled by Self-Assembly of SnO2 Nanocolloids. ACS Energy Lett. 2019, 4, 1845-1851; (b) Saliba, M.; Matsui, T.; Domanski, K.; Seo, J.-Y.; Ummadisingu, A.; Zakeeruddin, S. M.; Correa-Baena, J.-P.; Tress, W. R.; Abate, A.; Hagfeldt, A.; Grätzel, M., Incorporation of Rubidium Cations into Perovskite Solar Cells Improves Photovoltaic Performance. Science 2016, 354, 206; (c) Hu, H.; Ren, Z.; Fong, P. W. K.; Qin, M.; Liu, D.; Lei, D.; Lu, X.; Li, G., Room-Temperature Meniscus Coating of >20% Perovskite Solar Cells: A Film Formation Mechanism Investigation. Adv. Funct. Mater. 2019, 29, 1900092.
10. (a) Jeon, N. J.; Na, H.; Jung, E. H.; Yang, T.-Y.; Lee, Y. G.; Kim, G.; Shin, H.-W.; Il Seok, S.; Lee, J.; Seo, J., A Fluorene-Terminated Hole-Transporting Material for Highly Efficient and Stable Perovskite Solar Cells. Nat. Energy 2018, 3, 682-689; (b) Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I., High-Performance Photovoltaic Perovskite Layers Fabricated through Intramolecular Exchange. Science 2015, 348, 1234.
11. Kung, P.-K.; Li, M.-H.; Lin, P.-Y.; Chiang, Y.-H.; Chan, C.-R.; Guo, T.-F.; Chen, P., A Review of Inorganic Hole Transport Materials for Perovskite Solar Cells. Adv. Mater. Interfaces 2018, 5, 1800882.
12. Ren, G.; Han, W.; Deng, Y.; Wu, W.; Li, Z.; Guo, J.; Bao, H.; Liu, C.; Guo, W., Strategies of Modifying Spiro-OMeTAD Materials for Perovskite Solar Cells: A Review. J. Mater. Chem. A 2021, 9, 4589-4625.
13. Wang, K.-C.; Shen, P.-S.; Li, M.-H.; Chen, S.; Lin, M.-W.; Chen, P.; Guo, T.-F., Low-Temperature Sputtered Nickel Oxide Compact Thin Film as Effective Electron Blocking Layer for Mesoscopic NiO/CH3NH3PbI3 Perovskite Heterojunction Solar Cells. ACS Appl. Mater. Interfaces 2014, 6, 11851-11858.
14. Qi, B.; Wang, J., Open-Circuit Voltage in Organic Solar Cells. J. Mater. Chem. 2012, 22, 24315-24325.
15. Wright, M.; Uddin, A., Organic-Inorganic Hybrid Solar Cells: A Comparative Review. Sol. Energy Mater. Sol. Cells 2012, 107, 87-111.
16. Urieta-Mora, J.; Garcia-Benito, I.; Zimmermann, I.; Arago, J.; Molina-Ontoria, A.; Orti, E.; Martin, N.; Nazeeruddin, M. K., Tetrasubstituted Thieno[3,2-b]thiophenes as Hole-Transporting Materials for Perovskite Solar Cells. J. Org. Chem. 2020, 85, 224-233.
17. Liang, L.; Wang, Y.; Zhang, Z.; Wang, J.; Feng, K.; Ma, S.; Li, Y.; Guo, X.; Gao, P., Core Fusion Engineering of Hole-Transporting Materials for Efficient Perovskite Solar Cells. ACS Appl. Energy Mater. 2021, 4, 1250-1258.
18. Fuentes Pineda, R.; Zems, Y.; Troughton, J.; Niazi, M. R.; Perepichka, D. F.; Watson, T.; Robertson, N., Star-Shaped Triarylamine-Based Hole-Transport Materials in Perovskite Solar Cells. Sustain. Energy Fuels 2020, 4, 779-787.
19. Truong, M. A.; Lee, H.; Shimazaki, A.; Mishima, R.; Hino, M.; Yamamoto, K.; Otsuka, K.; Handa, T.; Kanemitsu, Y.; Murdey, R.; Wakamiya, A., Near-Ultraviolet Transparent Organic Hole-Transporting Materials Containing Partially Oxygen-Bridged Triphenylamine Skeletons for Efficient Perovskite Solar Cells. ACS Appl. Energy Mater. 2021, 4, 1484-1495.
20. Fu, Y.; Li, Y.; Zeng, Q.; Wu, H.; Wang, L.; Tang, H.; Xing, G.; Cao, D., Influence of Donor Units on Spiro[fluorene-9,9′-xanthene]-Based Dopant-Free Hole Transporting Materials for Perovskite Solar Cells. Sol. Energy 2021, 216, 180-187.
21. Chang, Y.-M.; Li, C.-W.; Lu, Y.-L.; Wu, M.-S.; Li, H.; Lin, Y.-S.; Lu, C.-W.; Chen, C.-P.; Chang, Y. J., Spherical Hole-Transporting Interfacial Layer Passivated Defect for Inverted NiOx-Based Planar Perovskite Solar Cells with High Efficiency of over 20%. ACS Appl. Mater. Interfaces 2021, 13, 6450-6460.
22. Wu, F.; Shan, Y.; Qiao, J.; Zhong, C.; Wang, R.; Song, Q.; Zhu, L., Replacement of Biphenyl by Bipyridine Enabling Powerful Hole Transport Materials for Efficient Perovskite Solar Cells. ChemSusChem 2017, 10, 3833-3838.
23. Reddy, S. S.; Arivunithi, V. M.; Sree, V. G.; Kwon, H.; Park, J.; Kang, Y.-C.; Zhu, H.; Noh, Y.-Y.; Jin, S.-H., Lewis Acid-Base Adduct-Type Organic Hole Transport Material for High Performance and Air-Stable Perovskite Solar Cells. Nano Energy 2019, 58, 284-292.
24. Huang, P.; Manju; Kazim, S.; Sivakumar, G.; Salado, M.; Misra, R.; Ahmad, S., Pyridine Bridging Diphenylamine-Carbazole with Linking Topology as Rational Hole Transporter for Perovskite Solar Cells Fabrication. ACS Appl. Mater. Interfaces 2020, 12, 22881-22890.
25. Duan, L.; Chen, Y.; Jia, J.; Zong, X.; Sun, Z.; Wu, Q.; Xue, S., Dopant-Free Hole-Transport Materials Based on 2,4,6-Triarylpyridine for Inverted Planar Perovskite Solar Cells. ACS Appl. Energy Mater. 2020, 3, 1672-1683.
26. Ma, S.; Liu, X.; Zhang, X.; Ghadari, R.; Ding, Y.; Cai, M.; Dai, S., Introducing Ammonium Salt into Hole Transporting Materials for Perovskite Solar Cells. Chem. Commun. (Cambridge, U. K.) 2020, 56, 14471-14474.
27. Sonigara, K. K.; Shao, Z.; Prasad, J.; Machhi, H. K.; Cui, G.; Pang, S.; Soni, S. S., Organic Ionic Plastic Crystals as Hole Transporting Layer for Stable and Efficient Perovskite Solar Cells. Adv. Funct. Mater. 2020, 30, 2001460.
28. Du, Y.; Wu, J.; Zhang, X.; Zhu, Q.; Zhang, M.; Liu, X.; Zou, Y.; Wang, S.; Sun, W., Surface Passivation Using Pyridinium Iodide for Highly Efficient Planar Perovskite Solar Cells. J. Energy Chem. 2021, 52, 84-91.
29. Mahadik, S. S.; Garud, D. R.; Ware, A. P.; Pingale, S. S.; Kamble, R. M., Design, Synthesis and Opto-electrochemical Properties of Novel Donor–Acceptor Based 2,3-di(hetero-2-yl)pyrido[2,3-b]pyrazine amine derivatives as Blue-Orange Fluorescent Materials. Dyes Pigm. 2021, 184, 108742.
30. Agarwala, P.; Kabra, D., A Review on Triphenylamine (TPA) Based Organic Hole Transport Materials (HTMs) for Dye Sensitized Solar Cells (DSSCs) and Perovskite Solar Cells (PSCs): Evolution and Molecular Engineering. J. Mater. Chem. A 2017, 5, 1348-1373.
31. Chen, Y.; Zhao, J.; Guo, H.; Xie, L., Geometry Relaxation-Induced Large Stokes Shift in Red-Emitting Borondipyrromethenes (BODIPY) and Applications in Fluorescent Thiol Probes. J. Org. Chem. 2012, 77, 2192-2206.
32. (a) Li, H.; Fu, K.; Hagfeldt, A.; Graetzel, M.; Mhaisalkar, S. G.; Grimsdale, A. C., A Simple 3,4-Ethylenedioxythiophene Based Hole-Transporting Material for Perovskite Solar Cells. Angew. Chem., Int. Ed. 2014, 53, 4085-4088; (b) Pham, H. D.; Do, T. T.; Kim, J.; Charbonneau, C.; Manzhos, S.; Feron, K.; Tsoi, W. C.; Durrant, J. R.; Jain, S. M.; Sonar, P., Molecular Engineering Using an Anthanthrone Dye for Low-Cost Hole Transport Materials: A Strategy for Dopant-Free, High-Efficiency, and Stable Perovskite Solar Cells. Adv. Energy Mater. 2018, 8, 1703007; (c) Chi, W.-J.; Li, Z.-S., The Theoretical Investigation on the 4-(4-phenyl-4-α-naphthylbutadieny)-triphenylamine Derivatives as Hole Transporting Materials for Perovskite-Type Solar Cells. Phys. Chem. Chem. Phys. 2015, 17, 5991-5998; (d) Chi, W.-J.; Sun, P.-P.; Li, Z.-S., A Strategy to Improve the Efficiency of Hole Transporting Materials: Introduction of a Highly Symmetrical Core. Nanoscale 2016, 8, 17752-17756.
33. Krishna, A.; Grimsdale, A. C., Hole Transporting Materials for Mesoscopic Perovskite Solar Cells – Towards a Rational Design? J. Mater. Chem. A 2017, 5, 16446-16466.
34. Wu, J.-T.; Liou, G.-S., A Novel Panchromatic Shutter based on an Ambipolar Electrochromic System without Supporting Electrolyte. Chem. Commun. (Cambridge, U. K.) 2018, 54, 2619-2622.
35. Tian, X.; Qian, F.; Wu, M.; Liang, X.; Zhang, F.; Li, D.; Guo, K.; Liu, Z.; Li, J., Synthesis and Properties of Triphenylamine Functionalized Tetrathiafulvalene. Tetrahedron Lett. 2020, 61, 151949.
36. Li, G.; Yang, S.; Liu, T.; Li, J.; Yang, W.; Luo, Z.; Yan, C.; Li, D.; Wang, X.; Cui, G.; Yang, T.; Xu, L.; Zhan, S.-Z.; Huo, L.; Yan, H.; Tang, B., Functionalizing Tetraphenylpyrazine with Perylene Diimides (PDIs) as High-Performance Nonfullerene Acceptors. J. Mater. Chem. C 2019, 7, 14563-14570. |