博碩士論文 108324056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.144.122.20
姓名 洪嘉彣(Jia-Wen Hong)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 弱分離嵌段共聚物與均聚物雙元混合物在薄膜中的相行為
(Phase Behavior in Thin Films of Weakly-Segregated Block Copolymer/Homopolymer Binary Blends)
相關論文
★ 利用高分子模版製備具有表面增強拉曼訊號之奈米銀陣列基板★ 溶劑退火法調控雙團鏈共聚物薄膜梯田狀表面浮凸物與奈米微結構
★ 新穎硬桿-柔軟雙嵌段共聚物與高分子混摻之介觀形貌★ 超分子側鏈型液晶團鏈共聚物自組裝薄膜
★ 利用溶劑退火法調控雙團鏈共聚物奈米薄膜之自組裝結構★ 溶劑退火誘導聚苯乙烯聚4-乙烯吡啶薄膜不穩定性現象之研究
★ 光化學法調控嵌段共聚物有序奈米結構薄膜及其模板之應用★ 製備具可調控孔洞大小的奈米結構碳材用於增強拉曼效應之研究
★ 結合嵌段共聚物自組裝及微乳化法製備三維侷限多層級結構★ 嵌段共聚物/多巴胺混摻體自組裝製備三維多尺度孔隙模板
★ 摻雜效應對聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸紫外光照-導電度刺激響應之影響與其應用★ 可撓式聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸熱電裝置研究:微結構調控增進熱電性質
★ 由嵌段共聚物膠束模板化的多層級孔洞碳材: 從膠束(微胞)組裝到電化學應用★ 聚苯乙烯聚4-乙烯吡啶共聚物微胞薄膜之聚變與裂變動態結構演化之研究
★ 除潤現象誘導非對稱型團鏈共聚物薄膜之層級結構★ 極性/非極性共溶劑退火法調控雙團鏈共聚物薄膜奈米微結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 我們已經研究對稱型且弱分離的嵌段共聚物—聚苯乙烯-b-聚(甲基丙烯酸甲酯),及其與低分子量均聚物—聚苯乙烯的混合物在混摻比例下的薄膜相行為。通過熱退火過程,根據混合物中均聚物的不同含量,獲得了幾種形態。為了觀察薄膜的內部結構並增加PS和PMMA域之間的對比度,使用氧氣等離子體蝕刻選擇性地去除了PMMA塊和PS表層。借助光學顯微鏡(OM)、原子力顯微鏡(AFM)、掃描式電子顯微鏡(SEM)、低掠角小角度 X 光散射技術(GISAXS)仔細識別了薄膜結構。這些獲得的形態包含穿孔層(Perforated Layer, PL)、雙連續螺旋(bicontinuous Double Gyroids, DG)、圓柱(Cylinder, C)等結構。穿孔層和雙連續螺旋僅存在於一個狹窄的體積分率。除了PS混合比例以外,空間侷限效應和熱退火溫度也會影響穿孔層和雙連續螺旋之間的相穩定性。在薄膜中,聚苯乙烯-b-聚(甲基丙烯酸甲酯)和聚苯乙烯的複雜二元相混摻的存在可歸因於通過添加聚苯乙烯來減輕packing frustration。
摘要(英) We have demonstrated the phase behavior in thin films of a symmetric weakly-segregated block copolymer, polystyrene-block-poly (methyl methacrylate), PS-b-PMMA, and its mixtures with a low molecular weight homopolymer (polystyrene, PS) at different blending ratios. Through thermal annealing, several morphologies were obtained, depending on the different contents of homopolymer PS in the mixtures and annealing temperatures. To observe the inner structures in thin films and to increase the contrast between the PS and PMMA domains, oxygen plasma etching was used to selectively remove the PMMA block and PS skin layer. The thin film structures were carefully identified by means of optical microscopy(OM), atomic force microscopy(AFM), scanning electron microscope(SEM) and grazing-incidence small-angle X-ray scattering(GISAXS). These obtained morphologies include perforated layers(PLs), double gyroids(DGs)and cylinders(Cs). PLs and DGs only existed in a narrow region. In addition to the blending ratios, spatial confinement effects and annealing temperatures also affected the phase stability between PLs and DGs. The presence of complex binary phases in thin blend films of PS-b-PMMA/PS is ascribed to alleviation of packing frustration through the addition of PS.
關鍵字(中) ★ 混摻
★ 薄膜
★ 嵌段共聚物
★ 相行為
★ 自組裝
關鍵字(英) ★ blend
★ thin film
★ block copolymer
★ phase behavior
★ self-assembly
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 xv
第一章 簡介 1
1-1 共聚物之自組裝機制 1
1-2 塊材系統之自組裝 2
1-3 薄膜系統之自組裝 3
1-3-1 結構多樣性 4
1-3-2 奈米結構排向及梯田結構的形成 4
1-3-3 厚度效應引起之相轉換 6
1-3-4 厚度效應對晶格排列之影響 8
1-3-5自由鏈段在表面或界面聚集對奈米結構形態之影響 9
1-4 嵌段共聚物與均聚物之混摻系統 10
1-5 研究動機 15
第二章 實驗 17
2-1 實驗材料 17
2-1-1高分子材料 17
2-1-2 溶劑 18
2-1-3 基材 18
2-2 實驗儀器 18
2-3 實驗製備與設計 19
2-3-1 基材之前處理 19
2-3-2 聚(苯乙烯-b-甲基丙烯酸甲酯)混摻聚苯乙烯均聚物之薄膜製備 19
2-3-3 移除潤濕層之方法—氧氣離子電漿蝕刻 20
2-3-4 增加嵌段共聚物對比之方法 20
2-4 儀器原理 21
2-4-1 光學顯微鏡(OM) 21
2-4-2 原子力顯微鏡(AFM) 22
2-4-3 掃描式電子顯微鏡(SEM) 23
2-4-4 低掠角小角度X光散射儀(GISAXS) 25
第三章 結果與討論 34
3-1 組成效應對相行為之影響 34
3-2 厚度和溫度效應對相行為之影響 40
3-3 穿孔層和雙連續螺旋之臨界層數與厚度 48
3-4 穿孔層與雙連續螺旋之相轉變 50
3-4-1 兩相轉變之初步探討 50
3-4-2 雙連續螺旋轉變為穿孔層與否 54
3-4-3 低溫回火影響高溫回火 55
3-4-4 多邊形區塊的表面形貌 63
3-4-5 高溫回火影響低溫回火 65
3-5 在不同組成下之混摻物分子量效應 67
3-5-1 混摻比例75/25—穿孔層與雙連續螺旋相 67
3-5-2 混摻比例40/60—球狀結構 68
第四章 結論 70
第五章 參考文獻 72
第六章 附錄 78
參考文獻 [1] 共聚物,維基百科。2021年4月30日,取自https://zh.wikipedia.org/zh-tw/%E5%85%B1%E8%81%9A%E7%89%A9。
[2] Matsen, M. W.; Bates, F. S. Unifying weak-and strong-segregation block copolymer theories. Macromolecules 1996, 29, 1091–1098.
[3] Kim, I.; Li, S. Recent progress on polydispersity effects on block copolymer phase behavior. Polymer Reviews, 2019.
[4] Khandpur, A. K.; Foerster, S.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W.; Almadal, K.; Mortensen, K. Polyisoprene-polystyrene diblock copolymer phase diagram near the order-disorder transition. Macromolecules 1995, 28, 8796–8806.
[5] Black, C. T.; Ruiz, R.; Breyta, G.; Cheng, J. Y.; Colburn, M. E.; Guarini, K. W.; Kim, H.; Zhang, Y. Polymer self assembly in semiconductor microelectronics. IBM Journal of Research and Development 2007, 51(5), 605–633.
[6] Kim, J. K.; Yang, S. Y.; Lee, Y.; Kim, Y. Functional nanomaterials based on block copolymer self-assembly. Progress in Polymer Science 2010, 35(11), 1325–1349.
[7] Horvat, A.; Lyakhova, K. S.; Sevink, G. J. A.; Zvelindovsky, A. V.; Magerle, R. Phase behavior in thin films of cylinder-forming ABA block copolymers: Mesoscale modeling. J. Chem. Phys. 2004, 120, 1117–1126.
[8] Lyakhova, K. S.; Sevink, G. J. A.; Zvelindovsky, A. V.; Horvat, A.; Magerle, R. Role of dissimilar interfaces in thin films of cylinder-forming block copolymers. J. Chem. Phys. 2004, 120, 1127–1137.
[9] Knoll, A.; Horvat, A.; Lyakhova, K. S.; Krausch, G.; Sevink, G. J. A.; Zvelindovsky, A. V.; Magerle, R. Phase behavior in thin films of cylinder-forming block copolymers. Phys. Rev. Lett. 2002, 89, 035501.
[10] Walton, D. G.; Kellogg, G. J.; Mayes, A. M.; Lambooy, P.; Russell, T. P. A free energy model for confined diblock copolymers. Macromolecules 1994, 27, 6225.
[11] Huang, E.; Pruzinsky, S.; Russell, T. P.; Mays, J.; Hawker, C. J. Neutrality conditions for block copolymer systems on random copolymer brush surfaces. Macromolecules 1999, 32, 16, 5299–5303.
[12] Huang, E.; Mansky, P.; Russell, T. P.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Hawker, C. J.; Mays, J. Mixed lamellar films: evolution, commensurability effects, and preferential defect formation. Macromolecules 2000, 33, 1, 80–88.
[13] Maher, M. J.; Self, J. L.; Stasiak, P.; Blachut, G.; Ellison, C. J.; Matsen, M. W.; Willson, C. G. Structure, Stability, and Reorganization of 0.5 L0 Topography in Block Copolymer Thin Films. ACS Nano 2016, 10, 10152–10160.
[14] Kim, S.; Bates, C. M.; Thio, A.; Cushen, J. D.; Ellison, C. J.; Willson, C. G.; Bates, F. S. Consequences of Surface Neutralization in Diblock Copolymer Thin Films. ACS Nano 2013, 7, 9905–9919.
[15] Shin, C.; Ahn, H.; Kim, E.; Ryu, D. Y.; Huh, J.; Kim, K. W.; Russell, T. P. Transition behavior of block copolymer thin films on preferential surfaces. Macromolecules 2008, 41(23), 9140–9145.
[16] Stein, G. E.; Cochran, E. W.; Katsov, K.; Fredrickson, G. H.; Kramer, E. J.; Li, X.; Wang, J. Symmetry breaking of in-plane order in confined copolymer mesophases. Phys. Rev. lett. 2007, 98(15), 158302.
[17] Knoll, A.; Tsarkova, L.; Krausch, G. Nanoscaling of microdomain spacings in thin films of cylinder-forming block copolymers. Nano letters 2007, 7(3), 843–846.
[18] Sohn, K. E.; Kojio, K.; Berry, B. C.; Karim, A.; Coffin, R. C.; Bazan, G. C.; Wang, J. Surface effects on the thin film morphology of block copolymers with bulk order− order transitions. Macromolecules 2010, 43, 3406–3414.
[19] Tanaka, H.; Hasegawa, H.; Hashimoto, T. Ordered structure in mixtures of a block copolymer and homopolymers. 1. Solubilization of low molecular weight homopolymers. Macromolecules 1991, 24, 240–251.
[20] Hashimoto, T.; Tanaka, H.; Hasegawa, H. Ordered Structure in Mixtures of a Block Copolymer and Homopolymers. 2. Effects of Molecular Weights of Homopolymers. Macromolecules 1990, 23, 4378–4386.
[21] Choi, C.; Ahn, S.; Kim, J. K. Diverse Morphologies of Block Copolymers by Blending with Homo (and Co) Polymers. Macromolecules 2020, 53, 4577−4580.
[22] Winey, K. I.; Thomas, E. L.; Fetters, L. J. Ordered morphologies in binary blends of diblock copolymer and homopolymer and characterization of their intermaterial dividing surfaces. J. Chem. Phys. 1991, 95, 9367–9375.
[23] Matsen, M. W. Phase behavior of block copolymer/homopolymer blends. Macromolecules 1995, 28, 5765–5773.
[24] Mishra, V.; Hur, S. M.; Cochran, E. W.; Stein, G. E.; Fredrickson, G. H.; Kramer, E. J. Symmetry transition in thin films of diblock copolymer/homopolymer blends. Macromolecules 2010, 43, 4, 1942–1949.
[25] Martínez-Veracoechea, F. J.; Escobedo, F. A. Monte Carlo study of the stabilization of complex bicontinuous phases in diblock copolymer systems. Macromolecules 2007, 40, 20, 7354–7365.
[26] Ji, N.; Tang, P.; Qiu, F.; Shi, A. C. Kinetic pathways of lamellae to gyroid transition in weakly segregated diblock copolymers. Macromolecules 2015, 48, 8681−8693.
[27] Hsu, C.-H.; Yue, K.; Wang, J.; Dong, X.-H.; Xia, Y.; Jiang, Z.; Thomas, E. L.; Cheng, S. Z. D. Thickness-Dependent Order-to-Order Transitions of Bolaform-like Giant Surfactant in Thin Films. Macromolecules 2017, 50, 7282–7290.
[28] Lipic, P. M.; Bates, F. S.; Matsen, M. W. Non‐equilibrium phase behavior of diblock copolymer melts and binary blends in the intermediate segregation regime. J. Polym. Sci. 1999, 37, 2229–2238.
[29] Hajduk, D. A.; Takenouchi, H.; Hillmyer, M. A.; Bates, F. S.; Vigild, M. E.; Almdal, K. Stability of the perforated layer (PL) phase in diblock copolymer melts. Macromolecules, 1997, 30, 3788–3795.
[30] Wang, C. Y.; Lodge, T. P. Kinetics and mechanisms for the cylinder-to-gyroid transition in a block copolymer solution. Macromolecules 2002, 35, 6997–7006.
[31] Wang, C. Y.; Lodge, T. P. Unexpected Intermediate State for the Cylinder‐to‐Gyroid Transition in a Block Copolymer Solution. Macromol. rapid commun. 2002, 23, 49–54.
[32] Matsen, M. W.; Bates, F. S. Origins of complex self-assembly in block copolymers. Macromolecules 1996, 29, 7641–7644.
[33] Role of Microscopy. Clinical Gate. Retrieved April 30, 2021, from https://clinicalgate.com/role-of-microscopy/。
[34] 原子力顯微鏡基本技術介紹,科學Online。2021年4月30日,取自https://highscope.ch.ntu.edu.tw/wordpress/?p=17916。
[35] 原子力顯微鏡基本技術介紹,汎銓科技。2021年4月30日,取自https://www.msscorps.com/products/?mode=data&id=105&top=0。
[36] 電子顯微鏡基本技術原理和誕生背景,知乎。2021年6月8日,取自https://zhuanlan.zhihu.com/p/45219605。
[37] Anwar Ul-Hamid. A Beginners’ Guide to Scanning Electron Microscopy. Springer 2018.
[38] 掃瞄式電子顯微鏡實作訓練手冊。2021年6月8日,取自http://www.wunan.com.tw/www2/download/preview/5E57.PDF。
[39] 孫亞賢、劉峻佑、簡士偉,低掠角小角度 X 光散射原理及在高分子薄膜結構之應用,科儀新知,第三十四卷第四期,2013。
[40] TLS Beamline 23A1 Small/Wide Angle X-ray Scattering,國家同步輻射研究中心。
[41] TPS Beamline 25A Coherent X-ray Scattering,國家同步輻射研究中心。
[42] Lee, B.; Park, I.; Yoon, J.; Park, S.; Kim, J.; Kim, K. W.; Chang, T.; Ree, M. Structural Analysis of Block Copolymer Thin Films with Grazing Incidence Small-Angle X-ray Scattering. Macromolecules 2005, 38, 4311–4323.
[43] Zhu, L.; Huang, P.; Chen, W. Y.; Weng, X.; Cheng, S. Z.; Ge, Q.; Quirk, R. P.; Senador, T.; Shaw, M. T.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Yeh, F.; Liu, L. “Plastic Deformation” Mechanism and Phase Transformation in a Shear-Induced Metastable Hexagonally Perforated Layer Phase of a Polystyrene-b-poly (ethylene oxide) Diblock Copolymer. Macromolecules 2003, 36(9), 3180–3188.
[44] Heo, K.; Yoon, J.; Jin, S.; Kim, J.; Kim, K.-W.; Shin, T. J.; Chung, B.; Chang, T.; Ree, M. Polystyrene-b-polyisoprene thin films with hexagonally perforated layer structure: quantitative grazing-incidence X-ray scattering analysis. J. Appl. Cryst. 2008, 41(2), 281–291.
[45] Ahn, J. H.; Zin, W. C. Structure of shear-induced perforated layer phase in styrene− isoprene diblock copolymer melts. Macromolecules 2000, 33, 2, 641–644.
[46] Ahn, H.; Shin, C.; Lee, B.; Ryu, D. Y. Phase Transitions of Block Copolymer Film on Homopolymer-Grafted Substrate. Macromolecules 2010, 43(4), 1958–1963.
[47] Park, I.; Lee, B.; Ryu, J.; Im, K.; Yoon, J.; Ree, M.; Chang, T. Epitaxial phase transition of polystyrene-b-polyisoprene from hexagonally perforated layer to gyroid phase in thin film. Macromolecules 2005, 38(25), 10532–10536.
[48] Farrell, R. A.; Petkov, N.; Shaw, M. T.; Djara, V.; Holmes, J. D.; Morris, M. A. Monitoring PMMA Elimination by Reactive Ion Etching from a Lamellar PS-b-PMMA Thin Film by ex Situ TEM Methods. Macromolecules 2010, 43, 20, 8651–8655.
[49] Morkved, T. L.; Jaeger, H. M. Thickness-Induced Morphology Changes in Lamellar Diblock Copolymer Ultrathin Films. Europhys. Lett. 1997, 40, 643–648.
[50] Mansky, P.; Russell, T. P.; Hawker, C. J.; Mays, J.; Cook, D. C.; Satija, S. K. Interfacial Segregation in Disordered Block Copolymers: Effect of Tunable Surface Potentials. Phys. Rev. Lett. 1997, 79, 237–240.
[51] Zhao, Z.; Sivaniah, E.; Hashimoto, T. SAXS Analysis of Order-Disorder Transition and the Interaction Parameter of Polystyrene-block-poly(methyl methacrylate). Macromolecules 2008, 41, 9948–9951.
[52] Park, S.; Koo, K.; Kim, K.; Ahn, H.; Lee, B.; Park, C.; Ryu, D. Y. Transition behavior of asymmetric polystyrene-b-poly (2-vinylpyridine) films: A stable hexagonally modulated layer structure. Polymer 2015, 60, 32–39.
[53] Jung, J.; Park, H. W.; Lee, S.; Lee, H.; Chang, T.; Matsunaga, K.; Jinnai, H. Effect of film thickness on the phase behaviors of diblock copolymer thin film. ACS Nano 2010, 4, 3109–3116.
[54] 陳宜芳,聚(苯乙烯-b-甲基丙烯酸甲酯)混摻聚苯乙烯均聚物於紫外光改質薄膜之熱退火形態轉變探討,國立中央大學,化學工程與材料工程學系碩士論文,2019。
[55] Matsen, M. W. Epitaxial Transitions in Complex Polymeric Liquids. Phys. Rev. Lett. 1998, 80, 4470–4473.
[56] 張鈞泓,對稱型聚(苯乙烯-b-甲基丙烯酸甲酯)與聚苯乙烯雙成分混摻之熱退火薄膜形態轉變探討,國立中央大學,化學工程與材料工程學系碩士論文,2020。
指導教授 孫亞賢(Ya-Sen Sun) 審核日期 2021-8-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明