參考文獻 |
1. O. Forostyak, G.D., S. Forostyak, CNS Regenerative Medicine and Stem Cells. Opera Med Physiol, 2016. 2: p. 55-62.
2. Mitalipov, S. and D. Wolf, Totipotency, pluripotency and nuclear reprogramming. Adv Biochem Eng Biotechnol, 2009. 114: p. 185-99.
3. Higuchi, A., et al., Polymeric design of cell culture materials that guide the differentiation of human pluripotent stem cells. Progress in Polymer Science, 2017. 65: p. 83-126.
4. Kimbrel, E.A. and R. Lanza, Current status of pluripotent stem cells: moving the first therapies to the clinic. Nat Rev Drug Discov, 2015. 14(10): p. 681-92.
5. Hoffman, L.M. and M.K. Carpenter, Characterization and culture of human embryonic stem cells. Nat Biotechnol, 2005. 23(6): p. 699-708.
6. Vazin, T. and W.J. Freed, Human embryonic stem cells: derivation, culture, and differentiation: a review. Restor Neurol Neurosci, 2010. 28(4): p. 589-603.
7. Amit, M., et al., Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol, 2000. 227(2): p. 271-8.
8. MJEMH, K., Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981. 292: p. 154-6.
9. J.A. Thomson, e.a., Embryonic Stem Cell Lines Derived from Human Blastocysts. SCIENCE, 1998. 282(1): p. 1145-1147.
10. JHPH, E.H.L., The potential of stem cells in orthopaedic surgery. JOURNAL OF BONE AND JOINT SURGERY-BRITISH VOLUME, 2006. 88B: p. 841-51.
11. Trounson, A. and N.D. DeWitt, Pluripotent stem cells progressing to the clinic. Nat Rev Mol Cell Biol, 2016. 17(3): p. 194-200.
12. Lo, B. and L. Parham, Ethical issues in stem cell research. Endocr Rev, 2009. 30(3): p. 204-13.
13. Abou-Saleh, H., et al., The march of pluripotent stem cells in cardiovascular regenerative medicine. Stem Cell Res Ther, 2018. 9(1): p. 201.
14. Okita, K., et al., A more efficient method to generate integration-free human iPS cells. Nature methods, 2011. 8(5): p. 409.
15. Fusaki, N., et al., Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci, 2009. 85(8): p. 348-62.
16. Stadtfeld, M., et al., Induced pluripotent stem cells generated without viral integration. 2008. 322(5903): p. 945-949.
17. Warren, L., et al., Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell, 2010. 7(5): p. 618-30.
18. Kim, D., et al., Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell, 2009. 4(6): p. 472-6.
19. Takahashi, K., et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007. 131(5): p. 861-72.
20. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-76.
21. Nori, S., et al., Grafted human-induced pluripotent stem-cell-derived neurospheres promote motor functional recovery after spinal cord injury in mice. Proc Natl Acad Sci U S A, 2011. 108(40): p. 16825-30.
22. Yamanaka, S., A fresh look at iPS cells. Cell, 2009. 137(1): p. 13-7.
23. Bahmad, H., et al., Modeling Human Neurological and Neurodegenerative Diseases: From Induced Pluripotent Stem Cells to Neuronal Differentiation and Its Applications in Neurotrauma. Front Mol Neurosci, 2017. 10: p. 50.
24. Hyun, I., The bioethics of stem cell research and therapy. J Clin Invest, 2010. 120(1): p. 71-5.
25. Power, C.a.J.E.R., Will cell reprogramming resolve the embryonic stem cell controversy? A narrative review. Annals of internal medicine, 2011. 155(2): p. 114-121.
26. Gonzalez, F., S. Boue, and J.C. Izpisua Belmonte, Methods for making induced pluripotent stem cells: reprogramming a la carte. Nat Rev Genet, 2011. 12(4): p. 231-42.
27. Yamanaka, S., Induced pluripotent stem cells: past, present, and future. Cell Stem Cell, 2012. 10(6): p. 678-684.
28. Gore, A., et al., Somatic coding mutations in human induced pluripotent stem cells. Nature, 2011. 471(7336): p. 63-7.
29. Hussein, S.M., et al., Copy number variation and selection during reprogramming to pluripotency. Nature, 2011. 471(7336): p. 58-62.
30. Zhao, T., et al., Immunogenicity of induced pluripotent stem cells. Nature, 2011. 474(7350): p. 212-5.
31. Rao, M.S. and N. Malik, Assessing iPSC reprogramming methods for their suitability in translational medicine. J Cell Biochem, 2012. 113(10): p. 3061-8.
32. Rathod, R., et al., Induced pluripotent stem cells (iPSC)-derived retinal cells in disease modeling and regenerative medicine. J Chem Neuroanat, 2019. 95: p. 81-88.
33. Mao, A.S. and D.J. Mooney, Regenerative medicine: Current therapies and future directions. Proc Natl Acad Sci U S A, 2015. 112(47): p. 14452-9.
34. Mahla, R.S., Stem Cells Applications in Regenerative Medicine and Disease Therapeutics. Int J Cell Biol, 2016. 2016: p. 6940283.
35. Tongers, J., D.W. Losordo, and U. Landmesser, Stem and progenitor cell-based therapy in ischaemic heart disease: promise, uncertainties, and challenges. Eur Heart J, 2011. 32(10): p. 1197-206.
36. Shadrin, I.Y., et al., Cardiopatch platform enables maturation and scale-up of human pluripotent stem cell-derived engineered heart tissues. Nat Commun, 2017. 8(1): p. 1825.
37. Higuchi, A., et al., Stem cell therapies for myocardial infarction in clinical trials: bioengineering and biomaterial aspects. Lab Invest, 2017. 97(10): p. 1167-1179.
38. Singh, R.K. and I.O. Nasonkin, Limitations and Promise of Retinal Tissue From Human Pluripotent Stem Cells for Developing Therapies of Blindness. Front Cell Neurosci, 2020. 14: p. 179.
39. Okamoto, S. and M. Takahashi, Induction of retinal pigment epithelial cells from monkey iPS cells. Invest Ophthalmol Vis Sci, 2011. 52(12): p. 8785-90.
40. Davis, R.J., et al., The Developmental Stage of Adult Human Stem Cell-Derived Retinal Pigment Epithelium Cells Influences Transplant Efficacy for Vision Rescue. Stem Cell Reports, 2017. 9(1): p. 42-49.
41. Kamao, H., et al., Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Reports, 2014. 2(2): p. 205-18.
42. Ratcliffe, E., et al., Current status and perspectives on stem cell-based therapies undergoing clinical trials for regenerative medicine: case studies. Br Med Bull, 2013. 108: p. 73-94.
43. Trounson, A. and C. McDonald, Stem Cell Therapies in Clinical Trials: Progress and Challenges. Cell Stem Cell, 2015. 17(1): p. 11-22.
44. Rong, Z., et al., A scalable approach to prevent teratoma formation of human embryonic stem cells. J Biol Chem, 2012. 287(39): p. 32338-45.
45. aklenec, A., et al., Progress in the tissue engineering and stem cell industry “are we there yet? Tissue Engineering Part B: Reviews, 2012. 18(3): p. 155-166.
46. Abbasalizadeh, S. and H. Baharvand, Technological progress and challenges towards cGMP manufacturing of human pluripotent stem cells based therapeutic products for allogeneic and autologous cell therapies. Biotechnol Adv, 2013. 31(8): p. 1600-23.
47. Villa-Diaz, L.G., et al., Concise review: The evolution of human pluripotent stem cell culture: from feeder cells to synthetic coatings. Stem Cells, 2013. 31(1): p. 1-7.
48. Higuchi, A., et al., Design of polymeric materials for culturing human pluripotent stem cells: Progress toward feeder-free and xeno-free culturing. Progress in Polymer Science, 2014. 39(7): p. 1348-1374.
49. Mallon, B.S., et al., Toward xeno-free culture of human embryonic stem cells. Int J Biochem Cell Biol, 2006. 38(7): p. 1063-75.
50. International Stem Cell Initiative, C., et al., Comparison of defined culture systems for feeder cell free propagation of human embryonic stem cells. In Vitro Cell Dev Biol Anim, 2010. 46(3-4): p. 247-58.
51. Hughes, C.S., L.M. Postovit, and G.A. Lajoie, Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics, 2010. 10(9): p. 1886-90.
52. Kleinman, H.K. and G.R. Martin, Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol, 2005. 15(5): p. 378-86.
53. Chen, Kevin G., et al., Human Pluripotent Stem Cell Culture: Considerations for Maintenance, Expansion, and Therapeutics. Cell Stem Cell, 2014. 14(1): p. 13-26.
54. Higuchi, A., et al., Biomaterials for the feeder-free culture of human embryonic stem cells and induced pluripotent stem cells. Chem Rev, 2011. 111(5): p. 3021-35.
55. Abedin, M. and N. King, Diverse evolutionary paths to cell adhesion. Trends Cell Biol, 2010. 20(12): p. 734-42.
56. Bonnans, C., J. Chou, and Z. Werb, Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol, 2014. 15(12): p. 786-801.
57. Kechagia, J.Z., J. Ivaska, and P. Roca-Cusachs, Integrins as biomechanical sensors of the microenvironment. Nat Rev Mol Cell Biol, 2019. 20(8): p. 457-473.
58. Higuchi, A., et al., Biomimetic cell culture proteins as extracellular matrices for stem cell differentiation. Chem Rev, 2012. 112(8): p. 4507-40.
59. Rodin, S., et al., Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat Biotechnol, 2010. 28(6): p. 611-5.
60. Rowland, T.J., et al., Roles of integrins in human induced pluripotent stem cell growth on Matrigel and vitronectin. Stem Cells Dev, 2010. 19(8): p. 1231-40.
61. Melkoumian, Z., et al., Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat Biotechnol, 2010. 28(6): p. 606-10.
62. Villa-Diaz, L.G., et al., Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nat Biotechnol, 2010. 28(6): p. 581-3.
63. Brafman, D.A., et al., Long-term human pluripotent stem cell self-renewal on synthetic polymer surfaces. Biomaterials, 2010. 31(34): p. 9135-44.
64. Kharitonov, A.E., Surdina, A.V., Lebedeva, O.S., Bogomazova, A.N., and Lagarkova, M.A., Possibilities for Using Pluripotent Stem Cells for Restoring Damaged Eye Retinal Pigment Epithelium. Acta Nat., 2018. 10(3): p. 30-39.
65. Wong, W.L., et al., Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. The Lancet Global Health, 2014. 2(2): p. e106-e116.
66. Flaxman, S.R., et al., Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. The Lancet Global Health, 2017. 5(12): p. e1221-e1234.
67. Mitchell, P., et al., Age-related macular degeneration. The Lancet, 2018. 392(10153): p. 1147-1159.
68. Al-Khersan, H., et al., Innovative therapies for neovascular age-related macular degeneration. Expert Opin Pharmacother, 2019. 20(15): p. 1879-1891.
69. Plaza Reyes, A., et al., Xeno-Free and Defined Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells Functionally Integrate in a Large-Eyed Preclinical Model. Stem Cell Reports, 2016. 6(1): p. 9-17.
70. MacLaren, R.E., J. Bennett, and S.D. Schwartz, Gene Therapy and Stem Cell Transplantation in Retinal Disease: The New Frontier. Ophthalmology, 2016. 123(10S): p. S98-S106.
71. Nazari, H., et al., Stem cell based therapies for age-related macular degeneration: The promises and the challenges. Prog Retin Eye Res, 2015. 48: p. 1-39.
72. Morizur, L., et al., Human pluripotent stem cells: A toolbox to understand and treat retinal degeneration. Mol Cell Neurosci, 2020. 107: p. 103523.
73. Leach, L.L. and D.O. Clegg, Concise Review: Making Stem Cells Retinal: Methods for Deriving Retinal Pigment Epithelium and Implications for Patients With Ocular Disease. Stem Cells, 2015. 33(8): p. 2363-73.
74. Zhao, C., Q. Wang, and S. Temple, Stem cell therapies for retinal diseases: recapitulating development to replace degenerated cells. Development, 2017. 144(8): p. 1368-1381.
75. Reichman, S., et al., Generation of Storable Retinal Organoids and Retinal Pigmented Epithelium from Adherent Human iPS Cells in Xeno-Free and Feeder-Free Conditions. Stem Cells, 2017. 35(5): p. 1176-1188.
76. Reichman, S., et al., From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium. Proc Natl Acad Sci U S A, 2014. 111(23): p. 8518-23.
77. Ben M′Barek, K., et al., Human ESC-derived retinal epithelial cell sheets potentiate rescue of photoreceptor cell loss in rats with retinal degeneration. Science Translational Medicine, 2017. 9(421): p. 12.
78. Slembrouck-Brec, A., et al., Defined Xeno-free and Feeder-free Culture Conditions for the Generation of Human iPSC-derived Retinal Cell Models. J Vis Exp, 2018(139).
79. Maruotti, J., et al., A simple and scalable process for the differentiation of retinal pigment epithelium from human pluripotent stem cells. Stem Cells Transl Med, 2013. 2(5): p. 341-54.
80. Klimanskaya I, H.J., Rezai KA, West M, Atala A and Lanza R, Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells, 2004. 6: p. 217-45
81. Buchholz, D.E., et al., Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells, 2009. 27(10): p. 2427-34.
82. Cho, M.S., et al., Generation of retinal pigment epithelial cells from human embryonic stem cell-derived spherical neural masses. Stem Cell Res, 2012. 9(2): p. 101-9.
83. Ferguson LR, B.S., Mynampati BK, Sambhav K and Chalam KV, Deprivation of bFGF Promotes Spontaneous Differentiation of Human Embryonic Stem Cells into Retinal Pigment Epithelial Cells. J Stem Cells, 2015. 10: p. 159-70.
84. Reichman, S. and O. Goureau, Production of Retinal Cells from Confluent Human iPS Cells. Methods Mol Biol, 2016. 1357: p. 339-51.
85. Hirami, Y., et al., Generation of retinal cells from mouse and human induced pluripotent stem cells. Neurosci Lett, 2009. 458(3): p. 126-31.
86. Osakada, F., et al., Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat Biotechnol, 2008. 26(2): p. 215-24.
87. Osakada, F., et al., In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J Cell Sci, 2009. 122(Pt 17): p. 3169-79.
88. Idelson, M., et al., Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell, 2009. 5(4): p. 396-408.
89. Maruotti, J., et al., Small-molecule-directed, efficient generation of retinal pigment epithelium from human pluripotent stem cells. Proc Natl Acad Sci U S A, 2015. 112(35): p. 10950-5.
90. Smith, E.N., et al., Human iPSC-Derived Retinal Pigment Epithelium: A Model System for Prioritizing and Functionally Characterizing Causal Variants at AMD Risk Loci. Stem Cell Reports, 2019. 12(6): p. 1342-1353.
91. Zhu, Y., et al., Three-dimensional neuroepithelial culture from human embryonic stem cells and its use for quantitative conversion to retinal pigment epithelium. PLoS One, 2013. 8(1): p. e54552.
92. Michelet, F., et al., Rapid generation of purified human RPE from pluripotent stem cells using 2D cultures and lipoprotein uptake-based sorting. Stem Cell Res Ther, 2020. 11(1): p. 47.
93. Kokkinaki, M., N. Sahibzada, and N. Golestaneh, Human induced pluripotent stem-derived retinal pigment epithelium (RPE) cells exhibit ion transport, membrane potential, polarized vascular endothelial growth factor secretion, and gene expression pattern similar to native RPE. Stem Cells, 2011. 29(5): p. 825-35.
94. Westenskow, P., et al., Efficient derivation of retinal pigment epithelium cells from stem cells. J Vis Exp, 2015(97).
95. Osakada, F., et al., Stepwise differentiation of pluripotent stem cells into retinal cells. Nat Protoc, 2009. 4(6): p. 811-24.
96. Hongisto, H., et al., Xeno- and feeder-free differentiation of human pluripotent stem cells to two distinct ocular epithelial cell types using simple modifications of one method. Stem Cell Res Ther, 2017. 8(1): p. 291.
97. Choudhary, P., et al., Directing Differentiation of Pluripotent Stem Cells Toward Retinal Pigment Epithelium Lineage. Stem Cells Transl Med, 2017. 6(2): p. 490-501.
98. Ye, K., et al., Reproducible production and image-based quality evaluation of retinal pigment epithelium sheets from human induced pluripotent stem cells. Sci Rep, 2020. 10(1): p. 14387.
99. Buchholz, D.E., et al., Rapid and efficient directed differentiation of human pluripotent stem cells into retinal pigmented epithelium. Stem Cells Transl Med, 2013. 2(5): p. 384-93.
100. Foltz, L.P. and D.O. Clegg, Rapid, Directed Differentiation of Retinal Pigment Epithelial Cells from Human Embryonic or Induced Pluripotent Stem Cells. J Vis Exp, 2017(128).
101. Pennington, B.O., et al., Defined culture of human embryonic stem cells and xeno-free derivation of retinal pigmented epithelial cells on a novel, synthetic substrate. Stem Cells Transl Med, 2015. 4(2): p. 165-77.
102. Matsumoto, E., et al., Fabricating retinal pigment epithelial cell sheets derived from human induced pluripotent stem cells in an automated closed culture system for regenerative medicine. PLoS One, 2019. 14(3): p. e0212369.
103. Depince-Berger, A.E., et al., New tools in cytometry. Morphologie, 2016. 100(331): p. 199-209.
104. Liao, J.L., et al., Molecular signature of primary retinal pigment epithelium and stem-cell-derived RPE cells. Hum Mol Genet, 2010. 19(21): p. 4229-38.
105. Marquardt, T.M., T); Ashery-Padan, R (Ashery-Padan, R); Andrejewski, N (Andrejewski, N); Scardigli, R (Scardigli, R); Guillemot, F (Guillemot, F); Gruss, P (Gruss, P), Pax6 Is Required for the Multipotent state of retinal progenitor cells. CELL, 2001. 105(1): p. 43-55.
106. Vugler, A., et al., Elucidating the phenomenon of HESC-derived RPE: anatomy of cell genesis, expansion and retinal transplantation. Exp Neurol, 2008. 214(2): p. 347-61. |