參考文獻 |
1. Mitalipov, S. and D. Wolf, Totipotency, pluripotency and nuclear reprogramming. Adv Biochem Eng Biotechnol, 2009. 114: p. 185-99.
2. Sato, N., et al., Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med, 2004. 10(1): p. 55-63.
3. Itskovitz-Eldor, J., et al., Differentiation of human embryonic stem cells into embryoid bodies comprising the three embryonic germ layers. Molecular Medicine, 2000. 6(2): p. 88-95.
4. Kaebisch, C., et al., The role of purinergic receptors in stem cell differentiation. Comput Struct Biotechnol J, 2015. 13: p. 75-84.
5. Odorico, J.S., D.S. Kaufman, and J.A. Thomson, Multilineage differentiation from human embryonic stem cell lines. Stem Cells, 2001. 19(3): p. 193-204.
6. Bar-Nur, O., et al., Epigenetic Memory and Preferential Lineage-Specific Differentiation in Induced Pluripotent Stem Cells Derived from Human Pancreatic Islet Beta Cells. Cell Stem Cell, 2011. 9(1): p. 17-23.
7. Sugawara, T., et al., Investigating cellular identity and manipulating cell fate using induced pluripotent stem cells. Stem Cell Res Ther, 2012. 3(2): p. 8.
8. Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. Science, 1998. 282(5391): p. 1145-7.
9. Mitalipova, M., et al., Human embryonic stem cell lines derived from discarded embryos. Stem Cells, 2003. 21(5): p. 521-6.
10. Stojkovic, M., et al., Derivation of human embryonic stem cells from day-8 blastocysts recovered after three-step in vitro culture. Stem Cells, 2004. 22(5): p. 790-7.
11. Robertson, J.A., Human embryonic stem cell research: ethical and legal issues. Nat Rev Genet, 2001. 2(1): p. 74-8.
12. de Wert, G. and C. Mummery, Human embryonic stem cells: research, ethics and policy. Hum Reprod, 2003. 18(4): p. 672-82.
13. Takahashi, K., et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007. 131(5): p. 861-872.
14. Yu, J.Y., et al., Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007. 318(5858): p. 1917-1920.
15. Nakagawa, M., et al., Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 2008. 26(1): p. 101-106.
16. Beers, J., et al., A cost-effective and efficient reprogramming platform for large-scale production of integration-free human induced pluripotent stem cells in chemically defined culture. Sci Rep, 2015. 5: p. 11319.
17. Bahmad, H., et al., Modeling Human Neurological and Neurodegenerative Diseases: From Induced Pluripotent Stem Cells to Neuronal Differentiation and Its Applications in Neurotrauma. Front Mol Neurosci, 2017. 10: p. 50.
18. Saha, K. and R. Jaenisch, Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell, 2009. 5(6): p. 584-95.
19. Huang, C.Y., et al., Human iPSC banking: barriers and opportunities. J Biomed Sci, 2019. 26(1): p. 87.
20. Rao, M.S. and N. Malik, Assessing iPSC reprogramming methods for their suitability in translational medicine. J Cell Biochem, 2012. 113(10): p. 3061-8.
21. Connolly, J.B., Lentiviruses in gene therapy clinical research. Gene Ther, 2002. 9(24): p. 1730-4.
22. Zheng, C.-X., et al., Lentiviral Vectors and Adeno-Associated Virus Vectors: Useful Tools for Gene Transfer in Pain Research. The Anatomical Record, 2018. 301(5): p. 825-836.
23. Nishimura, K., et al., Development of Defective and Persistent Sendai Virus Vector. Journal of Biological Chemistry, 2011. 286(6): p. 4760-4771.
24. Beers, J., et al., A cost-effective and efficient reprogramming platform for large-scale production of integration-free human induced pluripotent stem cells in chemically defined culture. Scientific Reports, 2015. 5(1): p. 11319.
25. Hanna, J., et al., Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science, 2007. 318(5858): p. 1920-3.
26. Ebert, A.D., et al., Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature, 2009. 457(7227): p. 277-280.
27. Si-Tayeb, K., et al., Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology, 2010. 51(1): p. 297-305.
28. Mimeault, M., R. Hauke, and S.K. Batra, Stem cells: a revolution in therapeutics-recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin Pharmacol Ther, 2007. 82(3): p. 252-64.
29. Selvaraj, S. and R. Perlingeiro, Induced Pluripotent Stem Cells for Neuromuscular Diseases: Potential for Disease Modeling, Drug Screening, and Regenerative Medicine. 2018.
30. Shi, C., et al., Therapeutic potential of chitosan and its derivatives in regenerative medicine. J Surg Res, 2006. 133(2): p. 185-92.
31. Kimbrel, E.A. and R. Lanza, Current status of pluripotent stem cells: moving the first therapies to the clinic. Nat Rev Drug Discov, 2015. 14(10): p. 681-92.
32. Stagg, J. and J. Galipeau, Mechanisms of immune modulation by mesenchymal stromal cells and clinical translation. Curr Mol Med, 2013. 13(5): p. 856-67.
33. Markey, K.A., K.P. MacDonald, and G.R. Hill, The biology of graft-versus-host disease: experimental systems instructing clinical practice. Blood, 2014. 124(3): p. 354-62.
34. Mahr, B., et al., Transplantation Tolerance through Hematopoietic Chimerism: Progress and Challenges for Clinical Translation. Front Immunol, 2017. 8: p. 1762.
35. Elsner, H.A. and R. Blasczyk, Immunogenetics of HLA null alleles: implications for blood stem cell transplantation. Tissue Antigens, 2004. 64(6): p. 687-695.
36. Socié, G. and B.R. Blazar, Acute graft-versus-host disease: from the bench to the bedside. Blood, 2009. 114(20): p. 4327-4336.
37. Chang, Y.J., X.Y. Zhao, and X.J. Huang, Strategies for Enhancing and Preserving Anti-leukemia Effects Without Aggravating Graft-Versus-Host Disease. Frontiers in Immunology, 2018. 9: p. 17.
38. Schneidawind, D., A. Pierini, and R.S. Negrin, Regulatory T cells and natural killer T cells for modulation of GVHD following allogeneic hematopoietic cell transplantation. Blood, 2013. 122(18): p. 3116-3121.
39. Dominici, M., et al., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006. 8(4): p. 315-317.
40. Ringden, O., et al., Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation, 2006. 81(10): p. 1390-1397.
41. Stolzing, A., et al., Age-related changes in human bone marrow-derived mesenchymal stem cells: Consequences for cell therapies. Mechanisms of Ageing and Development, 2008. 129(3): p. 163-173.
42. Phinney, D.G. and D.J. Prockop, Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair--current views. Stem Cells, 2007. 25(11): p. 2896-902.
43. Bobis, S., D. Jarocha, and M. Majka, Mesenchymal stem cells: characteristics and clinical applications. Folia Histochem Cytobiol, 2006. 44(4): p. 215-30.
44. Zhao, S., et al., Immunomodulatory properties of mesenchymal stromal cells and their therapeutic consequences for immune-mediated disorders. Stem Cells Dev, 2010. 19(5): p. 607-14.
45. Chamberlain, G., et al., Concise Review: Mesenchymal Stem Cells: Their Phenotype, Differentiation Capacity, Immunological Features, and Potential for Homing. Stem Cells, 2007. 25(11): p. 2739-2749.
46. Macrin, D., et al., Eminent Sources of Adult Mesenchymal Stem Cells and Their Therapeutic Imminence. Stem Cell Rev Rep, 2017. 13(6): p. 741-756.
47. Ullah, I., Raghavendra, and Gyu, Human mesenchymal stem cells - current trends and future prospective. Bioscience Reports, 2015. 35(2): p. 1-18.
48. Kobolak, J., et al., Mesenchymal stem cells: Identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche. Methods, 2016. 99: p. 62-68.
49. Cananzi, M., A. Atala, and P. De Coppi, Stem cells derived from amniotic fluid: new potentials in regenerative medicine. Reprod Biomed Online, 2009. 18 Suppl 1: p. 17-27.
50. Shaw, S.W.S., A.L. David, and P. De Coppi, Clinical applications of prenatal and postnatal therapy using stem cells retrieved from amniotic fluid. Current opinion in obstetrics & gynecology, 2011. 23(2): p. 109-116.
51. Di Trapani, M., et al., Immune Regulatory Properties of CD117pos Amniotic Fluid Stem Cells Vary According to Gestational Age. Stem Cells and Development, 2015. 24(1): p. 132-143.
52. Guillot, P.V., et al., Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC. Stem Cells, 2007. 25(3): p. 646-54.
53. Delo, D.M., et al., Amniotic fluid and placental stem cells. Methods Enzymol, 2006. 419: p. 426-38.
54. Shaw, S.W.S., et al., Human amniotic fluid stem cells have better potential in early second trimester of pregnancy and can be reprogramed to iPS. Taiwanese Journal of Obstetrics and Gynecology, 2017. 56(6): p. 770-774.
55. Li, C., et al., Pluripotency can be rapidly and efficiently induced in human amniotic fluid-derived cells. Human Molecular Genetics, 2009. 18(22): p. 4340-4349.
56. Loukogeorgakis, S.P. and P. De Coppi, Concise Review: Amniotic Fluid Stem Cells: The Known, the Unknown, and Potential Regenerative Medicine Applications. Stem Cells, 2017. 35(7): p. 1663-1673.
57. Ramasamy, T.S., et al., Stem Cells Derived from Amniotic Fluid: A Potential Pluripotent-Like Cell Source for Cellular Therapy? Curr Stem Cell Res Ther, 2018. 13(4): p. 252-264.
58. Candido, A.C., et al., Implications of iodine deficiency by gestational trimester: a systematic review. Archives of Endocrinology and Metabolism, 2020.
59. Gholizadeh-Ghaleh Aziz, S., et al., An update clinical application of amniotic fluid-derived stem cells (AFSCs) in cancer cell therapy and tissue engineering. Artif Cells Nanomed Biotechnol, 2017. 45(4): p. 765-774.
60. Moschidou, D., et al., Valproic acid confers functional pluripotency to human amniotic fluid stem cells in a transgene-free approach. Mol Ther, 2012. 20(10): p. 1953-67.
61. Skardal, A., et al., Substrate elasticity controls cell proliferation, surface marker expression and motile phenotype in amniotic fluid-derived stem cells. J Mech Behav Biomed Mater, 2013. 17: p. 307-16.
62. Meredith, J.E., B. Fazeli, and M.A. Schwartz, The extracellular matrix as a cell survival factor. Molecular Biology of the Cell, 1993. 4(9): p. 953-961.
63. Adil, M.M. and D.V. Schaffer, Expansion of human pluripotent stem cells. Current Opinion in Chemical Engineering, 2017. 15: p. 24-35.
64. Higuchi, A., et al., Design of polymeric materials for culturing human pluripotent stem cells: Progress toward feeder-free and xeno-free culturing. Progress in Polymer Science, 2014. 39(7): p. 1348-1374.
65. Higuchi, A., et al., Biomaterials for the feeder-free culture of human embryonic stem cells and induced pluripotent stem cells. Chem Rev, 2011. 111(5): p. 3021-35.
66. Higuchi, A., et al., Polymeric design of cell culture materials that guide the differentiation of human pluripotent stem cells. Progress in Polymer Science, 2017. 65: p. 83-126.
67. Higuchi, A., et al., Biomimetic Cell Culture Proteins as Extracellular Matrices for Stem Cell Differentiation. Chemical Reviews, 2012. 112(8): p. 4507-4540.
68. Giancotti, F.G., Integrin Signaling. Science, 1999. 285(5430): p. 1028-1033.
69. Higuchi, A., et al., Polymeric design of cell culture materials that guide the differentiation of human pluripotent stem cells. Progress in Polymer Science, 2017. 65: p. 83-126.
70. Xu, C.H., et al., Feeder-free growth of undifferentiated human embryonic stem cells. Nature Biotechnology, 2001. 19(10): p. 971-974.
71. Ruoslahti, E., RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol, 1996. 12: p. 697-715.
72. Kapp, T.G., et al., A Comprehensive Evaluation of the Activity and Selectivity Profile of Ligands for RGD-binding Integrins. Scientific Reports, 2017. 7(1): p. 39805.
73. Kleiveland, C.R., Peripheral Blood Mononuclear Cells. 2015, Springer International Publishing. p. 161-167.
74. Saumet, A., et al., Comparison of three methods for peripheral blood mononuclear cells separation. Therapeutic Drug Monitoring, 2011. 33(4): p. 554-554.
75. Thomas, G.D., et al., Human Blood Monocyte Subsets: A New Gating Strategy Defined Using Cell Surface Markers Identified by Mass Cytometry. Arterioscler Thromb Vasc Biol, 2017. 37(8): p. 1548-1558.
76. Boardman, D.A., et al., Expression of a Chimeric Antigen Receptor Specific for Donor HLA Class I Enhances the Potency of Human Regulatory T Cells in Preventing Human Skin Transplant Rejection. Am J Transplant, 2017. 17(4): p. 931-943.
77. Fujii, S., et al., Graft-Versus-Host Disease Amelioration by Human Bone Marrow Mesenchymal Stromal/Stem Cell-Derived Extracellular Vesicles Is Associated with Peripheral Preservation of Naive T Cell Populations. Stem Cells, 2018. 36(3): p. 434-445.
78. Acosta Davila, J.A. and A. Hernandez De Los Rios, An Overview of Peripheral Blood Mononuclear Cells as a Model for Immunological Research of Toxoplasma gondii and Other Apicomplexan Parasites. Frontiers in Cellular and Infection Microbiology, 2019. 9(24).
79. Malim, M.R. and F.A. Halim, IMMUNOLOGY AND ARTIFICIAL IMMUNE SYSTEMS. International Journal on Artificial Intelligence Tools, 2012. 21(6): p. 27.
80. Dranoff, G., Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer, 2004. 4(1): p. 11-22.
81. Round, J.L. and S.K. Mazmanian, The gut microbiota shapes intestinal immune responses during health and disease. Nature Reviews Immunology, 2009. 9(5): p. 313-323.
82. Ilan, Y., Oral immune therapy: targeting the systemic immune system via the gut immune system for the treatment of inflammatory bowel disease. Clinical & Translational Immunology, 2016. 5: p. 11.
83. Usharauli, D., Chronic infection and the origin of adaptive immune system. Medical Hypotheses, 2010. 75(2): p. 241-243.
84. Janeway, C.A., Jr. and R. Medzhitov, Innate immune recognition. Annu Rev Immunol, 2002. 20: p. 197-216.
85. Jones, J.D.G. and J.L. Dangl, The plant immune system. Nature, 2006. 444(7117): p. 323-329.
86. Turvey, S.E. and D.H. Broide, Innate immunity. Journal of Allergy and Clinical Immunology, 2010. 125(2): p. S24-S32.
87. Flajnik, M.F. and M. Kasahara, Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nature Reviews Genetics, 2010. 11(1): p. 47-59.
88. Luo, W.J., et al., An adaptive self-tolerant algorithm for hardware immune system, in Evolvable Systems: From Biology to Hardware, J.M. Moreno, J. Madrenas, and J. Cosp, Editors. 2005, Springer-Verlag Berlin: Berlin. p. 1-11.
89. Ricklin, D., et al., Complement: a key system for immune surveillance and homeostasis. Nature Immunology, 2010. 11(9): p. 785-797.
90. Cox, R.J. and K.A. Brokstad, Not just antibodies: B cells and T cells mediate immunity to COVID-19. Nature Reviews Immunology, 2020. 20(10): p. 581-582.
91. Trounson, A. and N.D. DeWitt, Pluripotent stem cells progressing to the clinic. Nat Rev Mol Cell Biol, 2016. 17(3): p. 194-200.
92. Wattanapanitch, M., Recent Updates on Induced Pluripotent Stem Cells in Hematological Disorders. Stem Cells International, 2019. 2019: p. 5171032.
93. Mattapally, S., et al., Human Leukocyte Antigen Class I and II Knockout Human Induced Pluripotent Stem Cell-Derived Cells: Universal Donor for Cell Therapy. J Am Heart Assoc, 2018. 7(23): p. e010239.
94. Han, X., et al., Generation of hypoimmunogenic human pluripotent stem cells. Proceedings of the National Academy of Sciences, 2019. 116(21): p. 10441-10446.
95. Wang, D., et al., Targeted Disruption of the β2-Microglobulin Gene Minimizes the Immunogenicity of Human Embryonic Stem Cells. Stem Cells Transl Med, 2015. 4(10): p. 1234-45.
96. Malik, N.N., et al., Engineering strategies for generating hypoimmunogenic cells with high clinical and commercial value. Regenerative Medicine, 2019. 14(11): p. 983-989.
97. Norbnop, P., et al., Generation and characterization of HLA-universal platelets derived from induced pluripotent stem cells. Scientific Reports, 2020. 10.
98. Ye, Q., et al., Generation of universal and hypoimmunogenic human pluripotent stem cells. Cell Prolif, 2020. 53(12): p. e12946.
99. Xu, H., et al., Targeted Disruption of HLA Genes via CRISPR-Cas9 Generates iPSCs with Enhanced Immune Compatibility. Cell Stem Cell, 2019. 24(4): p. 566-578.e7.
100. Sung, T.C., et al., Effect of cell culture biomaterials for completely xeno-free generation of human induced pluripotent stem cells. Biomaterials, 2020. 230: p. 119638.
101. Li, E., et al., Generation of Mesenchymal Stem Cells from Human Embryonic Stem Cells in a Complete Serum-free Condition. Int J Biol Sci, 2018. 14(13): p. 1901-1909.
102. Shevde, N.K. and A.A. Mael, Techniques in embryoid body formation from human pluripotent stem cells, in Basic Cell Culture Protocols. 2013, Springer. p. 535-546.
103. Kurosawa, H., Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. Journal of bioscience and bioengineering, 2007. 103(5): p. 389-398.
104. Sung, T.C., et al., Transient characteristics of universal cells on human-induced pluripotent stem cells and their differentiated cells derived from foetal stem cells with mixed donor sources. Cell Prolif, 2021. 54(3): p. e12995.
105. Davydova, D., et al., Cell phenotypes in human amniotic fluid. Acta Naturae (англоязычная версия), 2009. 1(2 (2)).
106. Roubelakis, M.G., O. Trohatou, and N.P. Anagnou, Amniotic fluid and amniotic membrane stem cells: marker discovery. Stem cells international, 2012. 2012.
107. Li, L., et al., Characteristics of human amniotic fluid mesenchymal stem cells and their tropism to human ovarian cancer. PloS one, 2015. 10(4).
108. Rebmann, V., et al., Detection of soluble HLA-G molecules in plasma and amniotic fluid. Tissue Antigens, 1999. 53(1): p. 14-22.
109. Rong, Z., et al., An effective approach to prevent immune rejection of human ESC-derived allografts. Cell Stem Cell, 2014. 14(1): p. 121-30. |