博碩士論文 108324031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.142.201.243
姓名 汪佳樺(Jia-Hua Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 使用耐綸薄膜以及PLGA薄膜過濾法來分離與建立專一性結腸癌病患單一細胞株
(Establishment of Patient-specific Cancer Cell Lines by Membrane Filtration Method via Nylon Mesh Filter and PLGA-Silk Screen Membranes)
相關論文
★ 於不同彈性係數的生醫材料上體外培植造血幹細胞★ 藉由調整水凝膠之表面電荷及軟硬度並嫁接玻連蛋白用以培養人類多功能幹細胞
★ 可見光對羊水間葉幹細胞成骨分化之影響★ 可見光調控神經細胞之基因表現及突觸生長
★ 膜純化法及免疫抗體磁珠法用於分離及體外增殖血液幹細胞之研究★ 人類表皮成長因子的結構穩定性及生物活性測定
★ 微環境對羊水間葉幹細胞多功能性基因表現及分化之影響★ 奈米片段與細胞外基質之改質膜用於臍帶血中造血幹細胞之純化與培養
★ 小鼠脂肪幹細胞之膜純化法及細胞外間質對人類脂肪幹細胞影響之研究★ 利用具有奈米片段與細胞外間質蛋白質的表面改殖材質進行臍帶血造血幹細胞體外培養
★ 在不同培養條件下針對大腸癌細胞及組織中癌細胞進行純化、剔除及鑑定之研究★ 羊水間葉幹細胞培養於細胞外間質改質表面其分化能力及多能性之研究
★ 人類脂肪幹細胞的膜純化法與分化能力研究★ 具有抗藥性之大腸癌細胞株能提高癌胚抗原的表現,但並非是癌症起始細胞
★ 羊水間葉幹細胞培養於接枝細胞外間質寡肽與環狀肽具有最佳表面硬度的生醫材料,其增殖能力及多能性之研究★ 人類體細胞從組成誘導型多能性幹細胞培養在無飼養層上
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 根據世界衛生組織的數據顯示,癌症是全球前十大死因之一。癌症初始細胞又稱作癌症幹細胞,該細胞群被認為是造成腫瘤的發生、生長和轉移的重要因素,並且只佔腫瘤細胞群的一小部分。此外,癌症幹細胞需對細胞增生負重要責任,他們也比一般癌細胞對傳統化療更具有抵抗力。因此,病患專一性癌症細胞株的分離和建立變得極為重要。然而癌症幹細胞只佔腫瘤細胞群的1%–5%,也很難將癌症幹細胞與原代組織中的其他細胞區分開來。因此我們建立了一種膜過濾方法將這群癌症幹細胞純化,並同時從結腸癌組織中建立原代結腸癌細胞株。
膜過濾法使用了耐綸網膜以及聚乳酸羥基乙酸共聚物絲網膜,以達到分離以及純化這群癌症幹細胞的目的。我們透過數個步驟從結腸腫瘤組織中分離出原代結腸癌細胞,並以癌細胞懸浮液的方式,通過薄膜以進一步提高癌症幹細胞的比例。我們使用菌落形成檢驗法、表面標誌物檢驗法(CD44和CD133)以及癌胚胎抗原來測定癌症幹細胞和結腸癌細胞。市售的結腸癌細胞株也同樣在使用膜過濾法後被分析,以此作為原發性結腸癌組織溶液的模型。
使用膜過濾法來純化癌症幹細胞已分別在兩個結腸癌細胞株 LoVo 和 HT29上成功驗證,但卻顯示出不同的結果。透過流式細胞儀的檢測結果顯示,從膜遷移出來的LoVo細胞具有最高程度的癌症幹細胞標誌物表達。而這個結果再次被菌落形成法所驗證,從膜遷移出來的LoVo細胞對形成菌落具有很高的能力。然而,那些沒通過薄膜所蒐集到的HT29細胞,比其他部份具有更高的癌症幹細胞標誌物表達程度。而這部分的細胞在菌落形成檢驗法中,同樣顯示出很高的菌落形成能力。
我們期望透過膜過濾的方法,以通過具有不同孔徑、親和力和生物相容性的薄膜,來建立高純度的病患專一性癌症細胞株。該方法也被認為是一種具有前途的癌症幹細胞純化方法,並運用在未來發展精準且有效率的癌症治療上。
摘要(英) Cancer is one of the top 10 leading cause of death in the world according to World Health Organization (WHO). Cancer-initiating cells (CICs), or cancer stem cells (CSCs), are primarily responsible for tumor initiation, growth, and metastasis and represent a few percentages of the total tumor cell population. Moreover, CSCs are strongly responsible for cancer proliferation and show stronger resistance than other cancer cells under conventional cancer therapy. Therefore, the isolation and establishment of patient-specific primary cancer cell line is extremely important. However, CSCs typically comprise 1%–5% of the total tumor cell population. It is difficult to distinguish CSCs from other cells in primary tissue. Therefore, a membrane filtration method is developed to target CSCs purification and establish primary colon cancer cell line from primary colon cancer tissue in this study. The membrane filtration method was used to isolate and purify CSCs via porous Nylon mesh filters or poly(lactic-co-glycolic acid)-silk screen membranes. The primary colon cancer cells were isolated from colon tumor tissues by several steps. The cancer cell solution was permeated through these membranes to further enhance CSCs proportion. CSCs and colon cancer cells were characterized using colony formation assay, surface marker (CD44 and CD133) assay, and expression of carcinoembryonic antigen using ELISA and flow cytometry assay. Colon cancer cell lines were also analyzed using the membrane filtration method as a model of primary colon cancer tissue solution. The purification method of CSCs using the membrane filtration method has been successfully verified using LoVo and HT29 colon cancer cell line but showed the different results. For LoVo cells, the cells that migrated from the membranes showed higher level expression of CSCs marker (CD133, CD44) analyzed using flow cytometry. This result was again confirmed by colony formation assay where the migrated cells from the membranes could generate high colony forming efficiency. For HT29 cells, the cells in the recovery solution had the highest CSCs marker expression. In addition, those cells in the recovery solution could also generate high colony forming efficiency after permeated through different membranes. It is expected that the high purity patient-specific colon cancer cell line could be established using the membrane filtration method via the membranes having different pore sizes, affinity and biocompatibility. This method is thought to be a promising approach for CSC purification, which can be applied for precision medicine screening in the future.
關鍵字(中) ★ 癌症幹細胞
★ 耐綸薄膜
★ 薄膜過濾法
關鍵字(英)
論文目次 Abstract I
摘要 III
Index of Contents IV
Index of Figure VIII
Index of Table XIII
Chapter 1 Introduction 1
1-1 Stem cells and cancer stem cells 1
1-1-1 Stem cells 1
1-1-2 Cancer stem cells 4
1-2 The effect of microenvironment on cancer stem cells 8
1-2-1 Cancer associated fibroblasts 8
1-2-2 Extracellular Matrix (ECM) 9
1-2-3 Substrate stiffness 10
1-3 Evaluation of cancer stem cells 12
1-3-1 Surface marker expression of cancer stem cells 12
1-3-2 Carcinoembryonic antigen (CEA) 13
1-3-3 Colony farmation asssay (CFA) 15
1-3-4 Immunofluorescence staining (IF) 17
1-4 Isolation process of cancer cells 19
1-4-1 Fluorescence-activated cell sorting (FACS) 19
1-4-2 Magnetic-activated cell sorting (MACS) 21
1-4-3 Membrane filtration method 23
1-5 The goal of this study 25
Chapter 2 Materials and methods 27
2-1 Experimental materials 27
2-1-1 Cell sources 27
2-1-2 Membranes 28
2-1-3 Cell cultivation dishes 28
2-1-4 Digestion and passage process 29
2-1-5 Ammonium-Chloride-Potassium (ACK) lysing buffer 29
2-1-6 Phosphate buffered saline solution (PBS) 29
2-1-7 Cell culture medium 29
2-1-8 Evaluation of cancer stem cells 30
2-2 Cell culture methods 31
2-2-1 Preparation of cell culture medium 31
2-2-2 Preparation of phosphate buffered saline solution (PBS) 31
2-2-3 Preparation of ACK lysis buffer 32
2-2-4 Preparation of collagenase digestion agent 32
2-2-5 Culture and passage of colon cancer cell lines 32
2-2-6 Cell density measurement 33
2-2-7 Extraction of primary colon cancer cells 34
2-2-8 Preparation of PLGA-silk screen membranes 36
2-3 Cell sorting methods 38
2-3-1 Membrane filtration method 38
2-3-2 Magnetic-activated cell sorting (MACS) method 40
2-4 Identification of cancer stem cells 42
2-4-1 Surface marker analysis of cancer stem cells 42
2-4-2 Evaluation of carcinoembryonic antigen concentration 42
2-4-3 In vitro tumorigenicity assay 44
2-5 Characterization of membranes 48
2-5-1 Scanning Electron Microscope (SEM) measurements 48
2-5-2 Primos Lite measurements 48
2-5-3 Zeta potential measurements 48
Chapter 3 Results and discussion 49
3-1 Characterization of membranes 49
3-1-1 Scanning Electron Microscope (SEM) measurements of the membranes 49
3-1-2 Primos Lite measurements 56
3-1-3 Zeta potential measurements 60
3-2 Characterization of colon cancer cell lines 65
3-2-1 Isolation of cancer stem cells from LoVo cell line by membrane filtration method 65
3-2-2 Isolation of cancer stem cells from HT29 cell line by membrane filtration method 68
3-2-3 Surface marker analysis of cancer stem cells by flow cytometry 72
3-2-4 Carcinoembryonic antigen concentration 89
3-2-5 Colony formation assay of colon cancer cells from each fraction 94
3-3 Characterization of primary cells 100
3-3-1 Extraction of cancer cells from colon cancer tissue 100
3-3-2 Carcinoembryonic antigen concentration of primary colon cancer cells 101
3-3-3 Colony formation assay (CFA) of primary colon cancer cells 102
3-3-4 Surface marker analysis of primary colon cancer cells using flow cytometry 103
3-3-5 Isolation and purification of primary colon cancer cells by membrane filtration method 104
3-3-6 Isolation and purification of primary colon cancer cells using MACS 108
Chapter 4 Conclusion 111
Reference 113
Appendix 125
參考文獻 1. Konstantinov, I.E., In search of Alexander A. Maximow: the man behind the unitarian theory of hematopoiesis. Perspect Biol Med, 2000. 43(2): p. 269-76.
2. Siminovitch, L., E.A. McCulloch, and J.E. Till, THE DISTRIBUTION OF COLONY-FORMING CELLS AMONG SPLEEN COLONIES. J Cell Comp Physiol, 1963. 62: p. 327-36.
3. Szabolcs, P., et al., Bone marrow transplantation for primary immunodeficiency diseases. Pediatr Clin North Am, 2010. 57(1): p. 207-37.
4. Evans, M.J. and M.H. Kaufman, Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981. 292(5819): p. 154-6.
5. Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. Science, 1998. 282(5391): p. 1145-7.
6. Martin, G.R., Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A, 1981. 78(12): p. 7634-8.
7. Kumar, R., et al., Stem cells: An overview with respect to cardiovascular and renal disease. J Nat Sci Biol Med, 2010. 1(1): p. 43-52.
8. Cibelli, J.B., et al., The first human cloned embryo. Sci Am, 2002. 286(1): p. 44-51.
9. Resnik, D.B., A.E. Shamoo, and S. Krimsky, Fraudulent human embryonic stem cell research in South Korea: lessons learned. Account Res, 2006. 13(1): p. 101-9.
10. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-76.
11. Xu, Y., et al., Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules. Proc Natl Acad Sci U S A, 2010. 107(18): p. 8129-34.
12. Polak, J.M. and A.E. Bishop, Stem cells and tissue engineering: past, present, and future. Ann N Y Acad Sci, 2006. 1068: p. 352-66.
13. Sekhar, L. and N. Bisht, Stem Cell Therapy. Apollo Medicine, 2006. 3(3): p. 271-276.
14. Asal, M. and S. Güven, 7 - Stem cells: sources, properties, and cell types, in Biomaterials for Organ and Tissue Regeneration, N.E. Vrana, H. Knopf-Marques, and J. Barthes, Editors. 2020, Woodhead Publishing. p. 177-196.
15. He, S., D. Nakada, and S.J. Morrison, Mechanisms of stem cell self-renewal. Annu Rev Cell Dev Biol, 2009. 25: p. 377-406.
16. Mitalipov, S. and D. Wolf, Totipotency, pluripotency and nuclear reprogramming. Adv Biochem Eng Biotechnol, 2009. 114: p. 185-99.
17. Jiang, Y., et al., Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002. 418(6893): p. 41-9.
18. Bryder, D., D.J. Rossi, and I.L. Weissman, Hematopoietic Stem Cells: The Paradigmatic Tissue-Specific Stem Cell. The American Journal of Pathology, 2006. 169(2): p. 338-346.
19. Tallone, T., et al., Adult human adipose tissue contains several types of multipotent cells. J Cardiovasc Transl Res, 2011. 4(2): p. 200-10.
20. Humanbiotechnology as Social Challenge: an Interdisciplinary Introduction to Bioethics, by Nikolaus Knoepffler, Dagmar Schipanski and Stefan Lorenz Sorgner. Human Reproduction & Genetic Ethics, 2008. 14(1): p. 40-40.
21. Hayes, M., et al., Clinical review: Stem cell therapies for acute lung injury/acute respiratory distress syndrome - hope or hype? Crit Care, 2012. 16(2): p. 205.
22. Cooper, M., Regenerative Pathologies: Stem Cells, Teratomas and Theories of Cancer. Medicine Studies, 2008. 1(1): p. 55.
23. Visvader, J.E. and G.J. Lindeman, Cancer Stem Cells: Current Status and Evolving Complexities. Cell Stem Cell, 2012. 10(6): p. 717-728.
24. Nowell, P.C., The clonal evolution of tumor cell populations. Science, 1976. 194(4260): p. 23-8.
25. Gisselsson, D., Intratumor diversity and clonal evolution in cancer--a skeptical standpoint. Adv Cancer Res, 2011. 112: p. 1-9.
26. Pietras, A., Cancer stem cells in tumor heterogeneity. Adv Cancer Res, 2011. 112: p. 255-81.
27. Marusyk, A. and K. Polyak, Tumor heterogeneity: causes and consequences. Biochim Biophys Acta, 2010. 1805(1): p. 105-17.
28. Calderwood, S.K., Tumor heterogeneity, clonal evolution, and therapy resistance: an opportunity for multitargeting therapy. Discov Med, 2013. 15(82): p. 188-94.
29. Sell, S., Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol, 2004. 51(1): p. 1-28.
30. D′Andrea, V., et al., Cancer stem cells in surgery. G Chir, 2014. 35(11-12): p. 257-9.
31. Sasson, I.E. and H.S. Taylor, Stem cells and the pathogenesis of endometriosis. Ann N Y Acad Sci, 2008. 1127: p. 106-15.
32. Ratajczak, M.Z., et al., Cancer from the perspective of stem cells and misappropriated tissue regeneration mechanisms. Leukemia, 2018. 32(12): p. 2519-2526.
33. Kim, C.F., et al., Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell, 2005. 121(6): p. 823-35.
34. Desai, A., Y. Yan, and S.L. Gerson, Concise Reviews: Cancer Stem Cell Targeted Therapies: Toward Clinical Success. Stem Cells Transl Med, 2019. 8(1): p. 75-81.
35. Southam, C.M., et al., Effect of leukocytes on transplantability of human cancer. Cancer, 1966. 19(11): p. 1743-53.
36. Lapidot, T., et al., A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 1994. 367(6464): p. 645-8.
37. Al-Hajj, M. and M.F. Clarke, Self-renewal and solid tumor stem cells. Oncogene, 2004. 23(43): p. 7274-7282.
38. Eramo, A., et al., Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ, 2008. 15(3): p. 504-14.
39. Hermann, P.C., et al., Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 2007. 1(3): p. 313-23.
40. Marjanovic, N.D., R.A. Weinberg, and C.L. Chaffer, Cell plasticity and heterogeneity in cancer. Clin Chem, 2013. 59(1): p. 168-79.
41. Prasetyanti, P.R. and J.P. Medema, Intra-tumor heterogeneity from a cancer stem cell perspective. Mol Cancer, 2017. 16(1): p. 41.
42. Kaur, G. and J.M. Dufour, Cell lines: Valuable tools or useless artifacts. Spermatogenesis, 2012. 2(1): p. 1-5.
43. Gómez-Lechón, M.J., et al., Human hepatocytes as a tool for studying toxicity and drug metabolism. Curr Drug Metab, 2003. 4(4): p. 292-312.
44. Fan, F., et al., The requirement for freshly isolated human colorectal cancer (CRC) cells in isolating CRC stem cells. Br J Cancer, 2015. 112(3): p. 539-46.
45. Liu, T., et al., Cancer-associated fibroblasts: an emerging target of anti-cancer immunotherapy. J Hematol Oncol, 2019. 12(1): p. 86.
46. Barbazán, J. and D. Matic Vignjevic, Cancer associated fibroblasts: is the force the path to the dark side? Curr Opin Cell Biol, 2019. 56: p. 71-79.
47. Zhao, H., et al., Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. Elife, 2016. 5: p. e10250.
48. Alexander, J. and E. Cukierman, Stromal dynamic reciprocity in cancer: intricacies of fibroblastic-ECM interactions. Curr Opin Cell Biol, 2016. 42: p. 80-93.
49. Zhuang, X., H. Zhang, and G. Hu, Cancer and Microenvironment Plasticity: Double-Edged Swords in Metastasis. Trends Pharmacol Sci, 2019. 40(6): p. 419-429.
50. Brauchle, E., et al., Biomechanical and biomolecular characterization of extracellular matrix structures in human colon carcinomas. Matrix Biol, 2018. 68-69: p. 180-193.
51. Winkler, J., et al., Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nature Communications, 2020. 11(1): p. 5120.
52. Zhang, M., et al., Soft fibrin matrix downregulates DAB2IP to promote Nanog-dependent growth of colon tumor-repopulating cells. Cell Death & Disease, 2019. 10(3): p. 151.
53. Discher, D.E., P. Janmey, and Y.L. Wang, Tissue cells feel and respond to the stiffness of their substrate. Science, 2005. 310(5751): p. 1139-43.
54. Étienne, J., et al., Cells as liquid motors: mechanosensitivity emerges from collective dynamics of actomyosin cortex. Proc Natl Acad Sci U S A, 2015. 112(9): p. 2740-5.
55. Abidine, Y., et al., Mechanosensitivity of Cancer Cells in Contact with Soft Substrates Using AFM. Biophys J, 2018. 114(5): p. 1165-1175.
56. Kim, W.T. and C.J. Ryu, Cancer stem cell surface markers on normal stem cells. BMB Rep, 2017. 50(6): p. 285-298.
57. Gopalan, V., F. Islam, and A.K. Lam, Surface Markers for the Identification of Cancer Stem Cells. Methods Mol Biol, 2018. 1692: p. 17-29.
58. Chan, J.K., C.S. Ng, and P.K. Hui, A simple guide to the terminology and application of leucocyte monoclonal antibodies. Histopathology, 1988. 12(5): p. 461-80.
59. Fiebig, H., et al., [Characterization of a series of monoclonal antibodies against human T cells]. Allerg Immunol (Leipz), 1984. 30(4): p. 242-50.
60. Islam, F., et al., Translational potential of cancer stem cells: A review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment. Exp Cell Res, 2015. 335(1): p. 135-47.
61. Ferrero, E. and F. Malavasi, The metamorphosis of a molecule: from soluble enzyme to the leukocyte receptor CD38. J Leukoc Biol, 1999. 65(2): p. 151-61.
62. Andrews, R.G., J.W. Singer, and I.D. Bernstein, Precursors of colony-forming cells in humans can be distinguished from colony-forming cells by expression of the CD33 and CD34 antigens and light scatter properties. J Exp Med, 1989. 169(5): p. 1721-31.
63. Snyder, E.L., et al., Identification of CD44v6(+)/CD24- breast carcinoma cells in primary human tumors by quantum dot-conjugated antibodies. Lab Invest, 2009. 89(8): p. 857-66.64. Vassilopoulos, A., et al., A critical role of CD29 and CD49f in mediating metastasis for cancer-initiating cells isolated from a Brca1-associated mouse model of breast cancer. Oncogene, 2014. 33(47): p. 5477-82.
65. Lv, X., et al., Association between ALDH1+/CD133+ stem-like cells and tumor angiogenesis in invasive ductal breast carcinoma. Oncol Lett, 2016. 11(3): p. 1750-1756.
66. Jing, F., et al., Colon cancer stem cell markers CD44 and CD133 in patients with colorectal cancer and synchronous hepatic metastases. Int J Oncol, 2015. 46(4): p. 1582-8.
67. Vaiopoulos, A.G., et al., Colorectal cancer stem cells. Stem Cells, 2012. 30(3): p. 363-71.
68. Grunt, T.W., et al., Prominin-1 (CD133, AC133) and dipeptidyl-peptidase IV (CD26) are indicators of infinitive growth in colon cancer cells. Am J Cancer Res, 2015. 5(2): p. 560-74.
69. He, J., et al., CD90 is identified as a candidate marker for cancer stem cells in primary high-grade gliomas using tissue microarrays. Mol Cell Proteomics, 2012. 11(6): p. M111.010744.
70. Singh, S.K., et al., Identification of human brain tumour initiating cells. Nature, 2004. 432(7015): p. 396-401.
71. Dahlrot, R.H., et al., What is the clinical value of cancer stem cell markers in gliomas? Int J Clin Exp Pathol, 2013. 6(3): p. 334-48.
72. Murillo-Sauca, O., et al., CD271 is a functional and targetable marker of tumor-initiating cells in head and neck squamous cell carcinoma. Oncotarget, 2014. 5(16): p. 6854-66.
73. Prince, M.E., et al., Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A, 2007. 104(3): p. 973-8.
74. Fang, D., et al., A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res, 2005. 65(20): p. 9328-37.
75. Sun, J.H., et al., Liver cancer stem cell markers: Progression and therapeutic implications. World J Gastroenterol, 2016. 22(13): p. 3547-57.
76. Miyata, T., et al., Cancer stem cell markers in lung cancer. Personalized Medicine Universe, 2015. 4: p. 40-45.
77. Zhu, Y.Y. and Z. Yuan, Pancreatic cancer stem cells. Am J Cancer Res, 2015. 5(3): p. 894-906.
78. Moltzahn, F. and G.N. Thalmann, Cancer stem cells in prostate cancer. Transl Androl Urol, 2013. 2(3): p. 242-53.
79. Qian, X., et al., Esophageal cancer stem cells and implications for future therapeutics. Onco Targets Ther, 2016. 9: p. 2247-54.
80. Yao, T., et al., Cervical cancer stem cells. Cell Prolif, 2015. 48(6): p. 611-25.
81. Brungs, D., et al., Gastric cancer stem cells: evidence, potential markers, and clinical implications. J Gastroenterol, 2016. 51(4): p. 313-26.
82. Krupey, J., et al., The preparation of purified carcinoembryonic antigen of the human digestive system from large quantities of tumor tissue. Immunochemistry, 1972. 9(6): p. 617-22.
83. Younesi, M., et al., A Prospective Study of Serum Carcinoembryonic Antigen in Patients with Newly Diagnosed Colorectal Cancer and Healthy Individuals. Annals of Clinical and Laboratory Research, 2016. 4.
84. Gold, P. and S.O. Freedman, DEMONSTRATION OF TUMOR-SPECIFIC ANTIGENS IN HUMAN COLONIC CARCINOMATA BY IMMUNOLOGICAL TOLERANCE AND ABSORPTION TECHNIQUES. J Exp Med, 1965. 121(3): p. 439-62.
85. Hammarström, S., The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol, 1999. 9(2): p. 67-81.
86. Zhao, L., et al., An enzyme-linked immunosorbent assay for human carcinoembryonic antigen-related cell adhesion molecule 8, a biological marker of granulocyte activities in vivo. J Immunol Methods, 2004. 293(1-2): p. 207-14.
87. Chester, S.J., et al., A new radioimmunoassay detecting early stages of colon cancer: a comparison with CEA, AFP, and Ca 19-9. Dis Markers, 1991. 9(5): p. 265-71.
88. Puck, T.T. and P.I. Marcus, Action of x-rays on mammalian cells. J Exp Med, 1956. 103(5): p. 653-66.
89. Franken, N.A., et al., Clonogenic assay of cells in vitro. Nat Protoc, 2006. 1(5): p. 2315-9.
90. Horibata, S., et al., Utilization of the Soft Agar Colony Formation Assay to Identify Inhibitors of Tumorigenicity in Breast Cancer Cells. J Vis Exp, 2015(99): p. e52727.
91. Gao, C.F., et al., Proliferation and invasion: plasticity in tumor cells. Proc Natl Acad Sci U S A, 2005. 102(30): p. 10528-33.
92. Joshi, S. and D. Yu, Chapter 8 - Immunofluorescence, in Basic Science Methods for Clinical Researchers, M. Jalali, F.Y.L. Saldanha, and M. Jalali, Editors. 2017, Academic Press: Boston. p. 135-150.
93. Xie, Y., R. Kang, and D. Tang, Chapter Ten - Assessment of Posttranslational Modifications of ATG proteins, in Methods in Enzymology, L. Galluzzi, J.M. Bravo-San Pedro, and G. Kroemer, Editors. 2017, Academic Press. p. 171-188.
94. Goding, J.W., 12 - Immunofluorescence, in Monoclonal Antibodies (Third Edition), J.W. Goding, Editor. 1996, Academic Press: London. p. 352-399.
95. Liao, X., M. Makris, and X.M. Luo, Fluorescence-activated Cell Sorting for Purification of Plasmacytoid Dendritic Cells from the Mouse Bone Marrow. J Vis Exp, 2016(117).
96. Bonner, W.A., et al., Fluorescence activated cell sorting. Rev Sci Instrum, 1972. 43(3): p. 404-9.
97. Parks, D.R. and L.A. Herzenberg, [19] Fluorescence-activated cell sorting: Theory, experimental optimization, and applications in lymphoid cell biology, in Methods in Enzymology, G. Di Sabato, J.J. Langone, and H. Van Vunakis, Editors. 1984, Academic Press. p. 197-241.
98. Brown, M. and C. Wittwer, Flow cytometry: principles and clinical applications in hematology. Clin Chem, 2000. 46(8 Pt 2): p. 1221-9.
99. Pereira, H., et al., Fluorescence activated cell-sorting principles and applications in microalgal biotechnology. Algal Research, 2018. 30: p. 113-120.
100. Herzenberg, L., et al., The History and Future of the Fluorescence Activated Cell Sorter and Flow Cytometry: A View from Stanford. Clinical chemistry, 2002. 48: p. 1819-27.
101. Basu, S., et al., Purification of specific cell population by fluorescence activated cell sorting (FACS). Journal of visualized experiments : JoVE, 2010(41): p. 1546.
102. Mattanovich, D. and N. Borth, Application of cell sorting in biotechnology. Microbial cell factories, 2006. 5: p. 12.
103. Taha, R.Y., et al., Characterization of circulating myeloma tumor cells by next generation flowcytometry in scleromyxedema patient: a case report. Medicine (Baltimore), 2020. 99(27): p. e20726.
104. Miltenyi, S., et al., High gradient magnetic cell separation with MACS. Cytometry, 1990. 11(2): p. 231-8.
105. Zhu, B. and S.K. Murthy, Stem Cell Separation Technologies. Curr Opin Chem Eng, 2013. 2(1): p. 3-7.
106. Zeb, Q., et al., Chapter 6 - An Overview of Single-Cell Isolation Techniques, in Single-Cell Omics, D. Barh and V. Azevedo, Editors. 2019, Academic Press. p. 101-135.
107. Schmitz, B., et al., Magnetic activated cell sorting (MACS)--a new immunomagnetic method for megakaryocytic cell isolation: comparison of different separation techniques. Eur J Haematol, 1994. 52(5): p. 267-75.
108. Pandey, S., N. Mehendale, and D. Paul, Single-Cell Separation. 2018. p. 1-28.
109. Dainiak, M.B., et al., Methods in cell separations. Adv Biochem Eng Biotechnol, 2007. 106: p. 1-18.
110. Grützkau, A. and A. Radbruch, Small but mighty: how the MACS-technology based on nanosized superparamagnetic particles has helped to analyze the immune system within the last 20 years. Cytometry A, 2010. 77(7): p. 643-7.
111. Fong, C.Y., et al., Separation of SSEA-4 and TRA-1-60 labelled undifferentiated human embryonic stem cells from a heterogeneous cell population using magnetic-activated cell sorting (MACS) and fluorescence-activated cell sorting (FACS). Stem Cell Rev Rep, 2009. 5(1): p. 72-80.
112. Kolff, W.J., et al., The artificial kidney: a dialyser with a great area. 1944. J Am Soc Nephrol, 1997. 8(12): p. 1959-65.
113. Howe, K.J., et al., Effect of Coagulation on the Size of MF and UF Membrane Foulants. Environmental Science & Technology, 2006. 40(24): p. 7908-7913.
114. Lee, S.-Y., et al., Membrane filtration method for enumeration and isolation of Alicyclobacillus spp. from apple juice. Letters in applied microbiology, 2007. 45: p. 540-6.
115. Higuchi, A., et al., Separation of hematopoietic stem cells from human peripheral blood through modified polyurethane foaming membranes. J Biomed Mater Res A, 2008. 85(4): p. 853-61.
116. Chen, D.-C., et al., Purification of human adipose-derived stem cells from fat tissues using PLGA/silk screen hybrid membranes. Biomaterials, 2014. 35(14): p. 4278-4287.
117. Higuchi, A., et al., A hybrid-membrane migration method to isolate high-purity adipose-derived stem cells from fat tissues. Scientific Reports, 2015. 5(1): p. 10217.
118. Lin, H.R., et al., Purification and differentiation of human adipose-derived stem cells by membrane filtration and membrane migration methods. Scientific Reports, 2017. 7(1): p. 40069.
119. Pan, J., et al., Culture and differentiation of purified human adipose-derived stem cells by membrane filtration via nylon mesh filters. Journal of Materials Chemistry B, 2020. 8.
120. Wu, C.H., et al., The isolation and differentiation of human adipose-derived stem cells using membrane filtration. Biomaterials, 2012. 33(33): p. 8228-39.
121. Barbedo, J., Automatic Object Counting In Neubauer Chambers. 2013.
指導教授 樋口亞紺(Akon Higuchi) 審核日期 2021-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明