參考文獻 |
1. Konstantinov, I.E., In search of Alexander A. Maximow: the man behind the unitarian theory of hematopoiesis. Perspect Biol Med, 2000. 43(2): p. 269-76.
2. Siminovitch, L., E.A. McCulloch, and J.E. Till, THE DISTRIBUTION OF COLONY-FORMING CELLS AMONG SPLEEN COLONIES. J Cell Comp Physiol, 1963. 62: p. 327-36.
3. Szabolcs, P., et al., Bone marrow transplantation for primary immunodeficiency diseases. Pediatr Clin North Am, 2010. 57(1): p. 207-37.
4. Evans, M.J. and M.H. Kaufman, Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981. 292(5819): p. 154-6.
5. Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. Science, 1998. 282(5391): p. 1145-7.
6. Martin, G.R., Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A, 1981. 78(12): p. 7634-8.
7. Kumar, R., et al., Stem cells: An overview with respect to cardiovascular and renal disease. J Nat Sci Biol Med, 2010. 1(1): p. 43-52.
8. Cibelli, J.B., et al., The first human cloned embryo. Sci Am, 2002. 286(1): p. 44-51.
9. Resnik, D.B., A.E. Shamoo, and S. Krimsky, Fraudulent human embryonic stem cell research in South Korea: lessons learned. Account Res, 2006. 13(1): p. 101-9.
10. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-76.
11. Xu, Y., et al., Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules. Proc Natl Acad Sci U S A, 2010. 107(18): p. 8129-34.
12. Polak, J.M. and A.E. Bishop, Stem cells and tissue engineering: past, present, and future. Ann N Y Acad Sci, 2006. 1068: p. 352-66.
13. Sekhar, L. and N. Bisht, Stem Cell Therapy. Apollo Medicine, 2006. 3(3): p. 271-276.
14. Asal, M. and S. Güven, 7 - Stem cells: sources, properties, and cell types, in Biomaterials for Organ and Tissue Regeneration, N.E. Vrana, H. Knopf-Marques, and J. Barthes, Editors. 2020, Woodhead Publishing. p. 177-196.
15. He, S., D. Nakada, and S.J. Morrison, Mechanisms of stem cell self-renewal. Annu Rev Cell Dev Biol, 2009. 25: p. 377-406.
16. Mitalipov, S. and D. Wolf, Totipotency, pluripotency and nuclear reprogramming. Adv Biochem Eng Biotechnol, 2009. 114: p. 185-99.
17. Jiang, Y., et al., Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002. 418(6893): p. 41-9.
18. Bryder, D., D.J. Rossi, and I.L. Weissman, Hematopoietic Stem Cells: The Paradigmatic Tissue-Specific Stem Cell. The American Journal of Pathology, 2006. 169(2): p. 338-346.
19. Tallone, T., et al., Adult human adipose tissue contains several types of multipotent cells. J Cardiovasc Transl Res, 2011. 4(2): p. 200-10.
20. Humanbiotechnology as Social Challenge: an Interdisciplinary Introduction to Bioethics, by Nikolaus Knoepffler, Dagmar Schipanski and Stefan Lorenz Sorgner. Human Reproduction & Genetic Ethics, 2008. 14(1): p. 40-40.
21. Hayes, M., et al., Clinical review: Stem cell therapies for acute lung injury/acute respiratory distress syndrome - hope or hype? Crit Care, 2012. 16(2): p. 205.
22. Cooper, M., Regenerative Pathologies: Stem Cells, Teratomas and Theories of Cancer. Medicine Studies, 2008. 1(1): p. 55.
23. Visvader, J.E. and G.J. Lindeman, Cancer Stem Cells: Current Status and Evolving Complexities. Cell Stem Cell, 2012. 10(6): p. 717-728.
24. Nowell, P.C., The clonal evolution of tumor cell populations. Science, 1976. 194(4260): p. 23-8.
25. Gisselsson, D., Intratumor diversity and clonal evolution in cancer--a skeptical standpoint. Adv Cancer Res, 2011. 112: p. 1-9.
26. Pietras, A., Cancer stem cells in tumor heterogeneity. Adv Cancer Res, 2011. 112: p. 255-81.
27. Marusyk, A. and K. Polyak, Tumor heterogeneity: causes and consequences. Biochim Biophys Acta, 2010. 1805(1): p. 105-17.
28. Calderwood, S.K., Tumor heterogeneity, clonal evolution, and therapy resistance: an opportunity for multitargeting therapy. Discov Med, 2013. 15(82): p. 188-94.
29. Sell, S., Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol, 2004. 51(1): p. 1-28.
30. D′Andrea, V., et al., Cancer stem cells in surgery. G Chir, 2014. 35(11-12): p. 257-9.
31. Sasson, I.E. and H.S. Taylor, Stem cells and the pathogenesis of endometriosis. Ann N Y Acad Sci, 2008. 1127: p. 106-15.
32. Ratajczak, M.Z., et al., Cancer from the perspective of stem cells and misappropriated tissue regeneration mechanisms. Leukemia, 2018. 32(12): p. 2519-2526.
33. Kim, C.F., et al., Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell, 2005. 121(6): p. 823-35.
34. Desai, A., Y. Yan, and S.L. Gerson, Concise Reviews: Cancer Stem Cell Targeted Therapies: Toward Clinical Success. Stem Cells Transl Med, 2019. 8(1): p. 75-81.
35. Southam, C.M., et al., Effect of leukocytes on transplantability of human cancer. Cancer, 1966. 19(11): p. 1743-53.
36. Lapidot, T., et al., A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 1994. 367(6464): p. 645-8.
37. Al-Hajj, M. and M.F. Clarke, Self-renewal and solid tumor stem cells. Oncogene, 2004. 23(43): p. 7274-7282.
38. Eramo, A., et al., Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ, 2008. 15(3): p. 504-14.
39. Hermann, P.C., et al., Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 2007. 1(3): p. 313-23.
40. Marjanovic, N.D., R.A. Weinberg, and C.L. Chaffer, Cell plasticity and heterogeneity in cancer. Clin Chem, 2013. 59(1): p. 168-79.
41. Prasetyanti, P.R. and J.P. Medema, Intra-tumor heterogeneity from a cancer stem cell perspective. Mol Cancer, 2017. 16(1): p. 41.
42. Kaur, G. and J.M. Dufour, Cell lines: Valuable tools or useless artifacts. Spermatogenesis, 2012. 2(1): p. 1-5.
43. Gómez-Lechón, M.J., et al., Human hepatocytes as a tool for studying toxicity and drug metabolism. Curr Drug Metab, 2003. 4(4): p. 292-312.
44. Fan, F., et al., The requirement for freshly isolated human colorectal cancer (CRC) cells in isolating CRC stem cells. Br J Cancer, 2015. 112(3): p. 539-46.
45. Liu, T., et al., Cancer-associated fibroblasts: an emerging target of anti-cancer immunotherapy. J Hematol Oncol, 2019. 12(1): p. 86.
46. Barbazán, J. and D. Matic Vignjevic, Cancer associated fibroblasts: is the force the path to the dark side? Curr Opin Cell Biol, 2019. 56: p. 71-79.
47. Zhao, H., et al., Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. Elife, 2016. 5: p. e10250.
48. Alexander, J. and E. Cukierman, Stromal dynamic reciprocity in cancer: intricacies of fibroblastic-ECM interactions. Curr Opin Cell Biol, 2016. 42: p. 80-93.
49. Zhuang, X., H. Zhang, and G. Hu, Cancer and Microenvironment Plasticity: Double-Edged Swords in Metastasis. Trends Pharmacol Sci, 2019. 40(6): p. 419-429.
50. Brauchle, E., et al., Biomechanical and biomolecular characterization of extracellular matrix structures in human colon carcinomas. Matrix Biol, 2018. 68-69: p. 180-193.
51. Winkler, J., et al., Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nature Communications, 2020. 11(1): p. 5120.
52. Zhang, M., et al., Soft fibrin matrix downregulates DAB2IP to promote Nanog-dependent growth of colon tumor-repopulating cells. Cell Death & Disease, 2019. 10(3): p. 151.
53. Discher, D.E., P. Janmey, and Y.L. Wang, Tissue cells feel and respond to the stiffness of their substrate. Science, 2005. 310(5751): p. 1139-43.
54. Étienne, J., et al., Cells as liquid motors: mechanosensitivity emerges from collective dynamics of actomyosin cortex. Proc Natl Acad Sci U S A, 2015. 112(9): p. 2740-5.
55. Abidine, Y., et al., Mechanosensitivity of Cancer Cells in Contact with Soft Substrates Using AFM. Biophys J, 2018. 114(5): p. 1165-1175.
56. Kim, W.T. and C.J. Ryu, Cancer stem cell surface markers on normal stem cells. BMB Rep, 2017. 50(6): p. 285-298.
57. Gopalan, V., F. Islam, and A.K. Lam, Surface Markers for the Identification of Cancer Stem Cells. Methods Mol Biol, 2018. 1692: p. 17-29.
58. Chan, J.K., C.S. Ng, and P.K. Hui, A simple guide to the terminology and application of leucocyte monoclonal antibodies. Histopathology, 1988. 12(5): p. 461-80.
59. Fiebig, H., et al., [Characterization of a series of monoclonal antibodies against human T cells]. Allerg Immunol (Leipz), 1984. 30(4): p. 242-50.
60. Islam, F., et al., Translational potential of cancer stem cells: A review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment. Exp Cell Res, 2015. 335(1): p. 135-47.
61. Ferrero, E. and F. Malavasi, The metamorphosis of a molecule: from soluble enzyme to the leukocyte receptor CD38. J Leukoc Biol, 1999. 65(2): p. 151-61.
62. Andrews, R.G., J.W. Singer, and I.D. Bernstein, Precursors of colony-forming cells in humans can be distinguished from colony-forming cells by expression of the CD33 and CD34 antigens and light scatter properties. J Exp Med, 1989. 169(5): p. 1721-31.
63. Snyder, E.L., et al., Identification of CD44v6(+)/CD24- breast carcinoma cells in primary human tumors by quantum dot-conjugated antibodies. Lab Invest, 2009. 89(8): p. 857-66.64. Vassilopoulos, A., et al., A critical role of CD29 and CD49f in mediating metastasis for cancer-initiating cells isolated from a Brca1-associated mouse model of breast cancer. Oncogene, 2014. 33(47): p. 5477-82.
65. Lv, X., et al., Association between ALDH1+/CD133+ stem-like cells and tumor angiogenesis in invasive ductal breast carcinoma. Oncol Lett, 2016. 11(3): p. 1750-1756.
66. Jing, F., et al., Colon cancer stem cell markers CD44 and CD133 in patients with colorectal cancer and synchronous hepatic metastases. Int J Oncol, 2015. 46(4): p. 1582-8.
67. Vaiopoulos, A.G., et al., Colorectal cancer stem cells. Stem Cells, 2012. 30(3): p. 363-71.
68. Grunt, T.W., et al., Prominin-1 (CD133, AC133) and dipeptidyl-peptidase IV (CD26) are indicators of infinitive growth in colon cancer cells. Am J Cancer Res, 2015. 5(2): p. 560-74.
69. He, J., et al., CD90 is identified as a candidate marker for cancer stem cells in primary high-grade gliomas using tissue microarrays. Mol Cell Proteomics, 2012. 11(6): p. M111.010744.
70. Singh, S.K., et al., Identification of human brain tumour initiating cells. Nature, 2004. 432(7015): p. 396-401.
71. Dahlrot, R.H., et al., What is the clinical value of cancer stem cell markers in gliomas? Int J Clin Exp Pathol, 2013. 6(3): p. 334-48.
72. Murillo-Sauca, O., et al., CD271 is a functional and targetable marker of tumor-initiating cells in head and neck squamous cell carcinoma. Oncotarget, 2014. 5(16): p. 6854-66.
73. Prince, M.E., et al., Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A, 2007. 104(3): p. 973-8.
74. Fang, D., et al., A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res, 2005. 65(20): p. 9328-37.
75. Sun, J.H., et al., Liver cancer stem cell markers: Progression and therapeutic implications. World J Gastroenterol, 2016. 22(13): p. 3547-57.
76. Miyata, T., et al., Cancer stem cell markers in lung cancer. Personalized Medicine Universe, 2015. 4: p. 40-45.
77. Zhu, Y.Y. and Z. Yuan, Pancreatic cancer stem cells. Am J Cancer Res, 2015. 5(3): p. 894-906.
78. Moltzahn, F. and G.N. Thalmann, Cancer stem cells in prostate cancer. Transl Androl Urol, 2013. 2(3): p. 242-53.
79. Qian, X., et al., Esophageal cancer stem cells and implications for future therapeutics. Onco Targets Ther, 2016. 9: p. 2247-54.
80. Yao, T., et al., Cervical cancer stem cells. Cell Prolif, 2015. 48(6): p. 611-25.
81. Brungs, D., et al., Gastric cancer stem cells: evidence, potential markers, and clinical implications. J Gastroenterol, 2016. 51(4): p. 313-26.
82. Krupey, J., et al., The preparation of purified carcinoembryonic antigen of the human digestive system from large quantities of tumor tissue. Immunochemistry, 1972. 9(6): p. 617-22.
83. Younesi, M., et al., A Prospective Study of Serum Carcinoembryonic Antigen in Patients with Newly Diagnosed Colorectal Cancer and Healthy Individuals. Annals of Clinical and Laboratory Research, 2016. 4.
84. Gold, P. and S.O. Freedman, DEMONSTRATION OF TUMOR-SPECIFIC ANTIGENS IN HUMAN COLONIC CARCINOMATA BY IMMUNOLOGICAL TOLERANCE AND ABSORPTION TECHNIQUES. J Exp Med, 1965. 121(3): p. 439-62.
85. Hammarström, S., The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol, 1999. 9(2): p. 67-81.
86. Zhao, L., et al., An enzyme-linked immunosorbent assay for human carcinoembryonic antigen-related cell adhesion molecule 8, a biological marker of granulocyte activities in vivo. J Immunol Methods, 2004. 293(1-2): p. 207-14.
87. Chester, S.J., et al., A new radioimmunoassay detecting early stages of colon cancer: a comparison with CEA, AFP, and Ca 19-9. Dis Markers, 1991. 9(5): p. 265-71.
88. Puck, T.T. and P.I. Marcus, Action of x-rays on mammalian cells. J Exp Med, 1956. 103(5): p. 653-66.
89. Franken, N.A., et al., Clonogenic assay of cells in vitro. Nat Protoc, 2006. 1(5): p. 2315-9.
90. Horibata, S., et al., Utilization of the Soft Agar Colony Formation Assay to Identify Inhibitors of Tumorigenicity in Breast Cancer Cells. J Vis Exp, 2015(99): p. e52727.
91. Gao, C.F., et al., Proliferation and invasion: plasticity in tumor cells. Proc Natl Acad Sci U S A, 2005. 102(30): p. 10528-33.
92. Joshi, S. and D. Yu, Chapter 8 - Immunofluorescence, in Basic Science Methods for Clinical Researchers, M. Jalali, F.Y.L. Saldanha, and M. Jalali, Editors. 2017, Academic Press: Boston. p. 135-150.
93. Xie, Y., R. Kang, and D. Tang, Chapter Ten - Assessment of Posttranslational Modifications of ATG proteins, in Methods in Enzymology, L. Galluzzi, J.M. Bravo-San Pedro, and G. Kroemer, Editors. 2017, Academic Press. p. 171-188.
94. Goding, J.W., 12 - Immunofluorescence, in Monoclonal Antibodies (Third Edition), J.W. Goding, Editor. 1996, Academic Press: London. p. 352-399.
95. Liao, X., M. Makris, and X.M. Luo, Fluorescence-activated Cell Sorting for Purification of Plasmacytoid Dendritic Cells from the Mouse Bone Marrow. J Vis Exp, 2016(117).
96. Bonner, W.A., et al., Fluorescence activated cell sorting. Rev Sci Instrum, 1972. 43(3): p. 404-9.
97. Parks, D.R. and L.A. Herzenberg, [19] Fluorescence-activated cell sorting: Theory, experimental optimization, and applications in lymphoid cell biology, in Methods in Enzymology, G. Di Sabato, J.J. Langone, and H. Van Vunakis, Editors. 1984, Academic Press. p. 197-241.
98. Brown, M. and C. Wittwer, Flow cytometry: principles and clinical applications in hematology. Clin Chem, 2000. 46(8 Pt 2): p. 1221-9.
99. Pereira, H., et al., Fluorescence activated cell-sorting principles and applications in microalgal biotechnology. Algal Research, 2018. 30: p. 113-120.
100. Herzenberg, L., et al., The History and Future of the Fluorescence Activated Cell Sorter and Flow Cytometry: A View from Stanford. Clinical chemistry, 2002. 48: p. 1819-27.
101. Basu, S., et al., Purification of specific cell population by fluorescence activated cell sorting (FACS). Journal of visualized experiments : JoVE, 2010(41): p. 1546.
102. Mattanovich, D. and N. Borth, Application of cell sorting in biotechnology. Microbial cell factories, 2006. 5: p. 12.
103. Taha, R.Y., et al., Characterization of circulating myeloma tumor cells by next generation flowcytometry in scleromyxedema patient: a case report. Medicine (Baltimore), 2020. 99(27): p. e20726.
104. Miltenyi, S., et al., High gradient magnetic cell separation with MACS. Cytometry, 1990. 11(2): p. 231-8.
105. Zhu, B. and S.K. Murthy, Stem Cell Separation Technologies. Curr Opin Chem Eng, 2013. 2(1): p. 3-7.
106. Zeb, Q., et al., Chapter 6 - An Overview of Single-Cell Isolation Techniques, in Single-Cell Omics, D. Barh and V. Azevedo, Editors. 2019, Academic Press. p. 101-135.
107. Schmitz, B., et al., Magnetic activated cell sorting (MACS)--a new immunomagnetic method for megakaryocytic cell isolation: comparison of different separation techniques. Eur J Haematol, 1994. 52(5): p. 267-75.
108. Pandey, S., N. Mehendale, and D. Paul, Single-Cell Separation. 2018. p. 1-28.
109. Dainiak, M.B., et al., Methods in cell separations. Adv Biochem Eng Biotechnol, 2007. 106: p. 1-18.
110. Grützkau, A. and A. Radbruch, Small but mighty: how the MACS-technology based on nanosized superparamagnetic particles has helped to analyze the immune system within the last 20 years. Cytometry A, 2010. 77(7): p. 643-7.
111. Fong, C.Y., et al., Separation of SSEA-4 and TRA-1-60 labelled undifferentiated human embryonic stem cells from a heterogeneous cell population using magnetic-activated cell sorting (MACS) and fluorescence-activated cell sorting (FACS). Stem Cell Rev Rep, 2009. 5(1): p. 72-80.
112. Kolff, W.J., et al., The artificial kidney: a dialyser with a great area. 1944. J Am Soc Nephrol, 1997. 8(12): p. 1959-65.
113. Howe, K.J., et al., Effect of Coagulation on the Size of MF and UF Membrane Foulants. Environmental Science & Technology, 2006. 40(24): p. 7908-7913.
114. Lee, S.-Y., et al., Membrane filtration method for enumeration and isolation of Alicyclobacillus spp. from apple juice. Letters in applied microbiology, 2007. 45: p. 540-6.
115. Higuchi, A., et al., Separation of hematopoietic stem cells from human peripheral blood through modified polyurethane foaming membranes. J Biomed Mater Res A, 2008. 85(4): p. 853-61.
116. Chen, D.-C., et al., Purification of human adipose-derived stem cells from fat tissues using PLGA/silk screen hybrid membranes. Biomaterials, 2014. 35(14): p. 4278-4287.
117. Higuchi, A., et al., A hybrid-membrane migration method to isolate high-purity adipose-derived stem cells from fat tissues. Scientific Reports, 2015. 5(1): p. 10217.
118. Lin, H.R., et al., Purification and differentiation of human adipose-derived stem cells by membrane filtration and membrane migration methods. Scientific Reports, 2017. 7(1): p. 40069.
119. Pan, J., et al., Culture and differentiation of purified human adipose-derived stem cells by membrane filtration via nylon mesh filters. Journal of Materials Chemistry B, 2020. 8.
120. Wu, C.H., et al., The isolation and differentiation of human adipose-derived stem cells using membrane filtration. Biomaterials, 2012. 33(33): p. 8228-39.
121. Barbedo, J., Automatic Object Counting In Neubauer Chambers. 2013. |