博碩士論文 108626005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:3.145.61.142
姓名 龎傳慶(Chuan-Ching Pang)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 綠屋頂能量傳遞特性、室內降溫 及節能效益分析與模擬
(Analysis and simulation of the energy transfer characteristics, indoor cooling, and energy-saving benefit of green roof)
相關論文
★ 應用綠屋頂水文模式分析不同雨量與臨前含水量下之減洪效用★ Assessment of future climate change impacts on streamflow and groundwater by hydrological modeling in the Choushui River Alluvial Fan, Taiwan
★ 模擬農村農地與綠屋頂減洪及水田供水效用★ 利用機器學習法預測土壤含水量的變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 都市熱島效應使都市內的日夜溫度居高不下,加上全球暖化,人們對空調的需求愈來愈高,部分研究證實綠屋頂在降溫、節能方面皆具有潛力,能緩解都市內高溫與能耗的問題,本研究目的為評估綠屋頂之室內降溫及節能效益,首先建立綠屋頂實驗進行綠屋頂各層溫度與熱通量的觀測,藉由模式評估綠屋頂的室內降溫與節能效益。本研究建立實驗組及對照組兩個包含空氣層的實驗箱,將空氣層視為建築物室內空間,並於各層設置熱偶線及熱通量計,蒐集實驗組及對照組之能量數據,以數據分析綠屋頂的能量收支、傳遞特性、室內降溫效益等項目,經實際觀測及分析後,發現綠屋頂於秋末至春初時,對室內空氣溫度的降溫效益約為1.4~4.7°C,綠屋頂有著延遲溫度峰值及穩定室內空氣溫度的特性,日夜溫差愈大時,中午時段的室內降溫效益愈顯著。節能效益模擬的部分,使用DesignBuilder建置與實驗箱相同材質的模型,輸入氣象資料後,以EnergyPlus進行模擬,經過冬季資料的檢定及驗證後,再以夏季資料做驗證,冬季及夏季室內空氣溫度的日資料模擬結果R皆大於0.9,NSE值皆大於0.7,確認該模式於不同季節時仍有一定的準確性,考量本研究實驗箱與實際建築物性質有異,參考台灣建築物材質法規後,建立一般建築物的模型,模擬鋪設綠屋頂後的節能效益,模擬期間為一月至九月,模擬結果顯示的綠屋頂約能減少45%的用電量。
摘要(英) The urban heat island effect makes the day and night temperature in the city remain high, and people’s demand for air-conditioning is even increasing under global warming. Some studies have confirmed that green roofs have the potential to cool down temperature and save energy. To alleviate the problems of high temperature and energy consumption in the city, the purpose of this research is to evaluate the indoor cooling and energy-saving benefits of green roofs. First, the study establishes a green roof experiment to observe the temperature and heat flux of each layer of the green roof. Then, the study evaluates the indoor cooling and energy-saving benefits of the green roof through the model.
In this study, two experimental boxes containing an air layer were established as the experimental group and the control group. The air layer was regarded as the indoor space of the building. Thermocouples and heat flux meters were installed in each layer to collect the energy data of the experimental group and the control group, to analyze the energy budget, the transfer characteristics, and the indoor-cooling/energy-saving benefits of the green roof. From observation, it is found that the cooling effect of the green roof on the indoor air temperature is about 1.4~4.7°C from the end of autumn to the beginning of spring. The green roof has the effect of delaying the peak temperature and stabilizing the indoor air temperature. The greater temperature difference between day and night, the more significant the indoor cooling effect.
For the energy-saving simulation part, the study uses DesignBuilder to build a model with the same material as the experimental box. After inputting the weather data, EnergyPlus is used to simulate indoor air temperature and energy saving. After the winter data is calibrate and validate, the summer data is also used for validation. The results of R for daily indoor air temperature in winter and summer simulation are all greater than 0.9, and the NSE values are greater than 0.7. It is confirmed that the model is reliable in different seasons. Considering the nature of the experimental box in this study is different from actual building, the study refers to the Taiwan Building Material Regulations to establish a model of a general building, to simulate the energy-saving benefits after implementing a green roof. The simulation period is from January to September.The simulation results show that a green roof can reduce electricity consumption by about 45%.
關鍵字(中) ★ 綠屋頂
★ 實驗
★ 室內降溫效益
★ 節能效益
★ EnergyPlus
關鍵字(英) ★ Green roof
★ Experiment
★ Indoor cooling benefits
★ Energy saving benefits
★ EnergyPlus
論文目次 摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VII
表目錄 IX
第一章、緒論 1
1.1研究動機 1
1.2研究目的 2
第二章、文獻回顧 4
2.1綠屋頂演進與國內外發展 4
2.2綠屋頂效益與模式 6
2.3綠屋頂成本效益分析 8
第三章、研究方法 10
3.1研究構想及流程 10
3.2綠屋頂實驗設計 11
3.2.1實驗箱設計 11
3.2.2綠屋頂設計 13
3.2.3實驗儀器 14
3.3數據分析方法 18
3.3.1數據整理及分析 18
3.3.2 實驗相關設備測試 19
3.3.3 能量平衡計算 20
3.3.4建築能耗模擬軟體 23
3.3.5節能效益 28
第四章、結果與討論 30
4.1 綠屋頂能量平衡 30
4.2綠屋頂各層至空氣層頂之熱通量傳遞與特性 34
4.2.1 基本氣象資料 34
4.2.2 綠屋頂內部能量傳遞分析 36
4.2.3 綠屋頂與建築物能量傳遞 37
4.3綠屋頂降溫效益分析 39
4.3.1 綠屋頂降溫效益 39
4.3.2 室內溫度與土壤含水量 42
4.4 綠屋頂空氣層溫度與節能效益模擬 44
4.4.1實驗箱空氣層溫度模擬 44
4.4.2 節能效益計算與模擬 47
第五章、結論與建議 50
5.1 結論 50
5.2 建議 51
參考文獻 53
附錄A、實驗相關測試 58
A.1 熱通量計驗證 58
A.2 實驗箱體測試 60
A.3 隔熱板性能測試 61
口試委員問題與回答 62
參考文獻 [1] Aboelata, A. (2021). Assessment of green roof benefits on buildings’ energy-saving by cooling outdoor spaces in different urban densities in arid cities. Energy, 219, 119514.

[2] Abu-Hamdeh, N. H. (2003). Thermal properties of soils as affected by density and water content. Biosystems engineering, 86(1), 97-102.

[3] Ávila-Hernández, A., Simá, E., Xamán, J., Hernández-Pérez, I., Téllez-Velázquez, E., & Chagolla-Aranda, M. A. (2020). Test box experiment and simulations of a green-roof: Thermal and energy performance of a residential building standard for Mexico. Energy and Buildings, 209, 109709.

[4] Ayata, T., Tabares-Velasco, P. C., & Srebric, J. (2011). An investigation of sensible heat fluxes at a green roof in a laboratory setup. Building and environment, 46(9), 1851-1861.

[5] Baker, P. (2011). U‐values and traditional buildings. Glasgow Caledonian University, U.K.

[6] Berardi, U., GhaffarianHoseini, A., & GhaffarianHoseini, A. (2014). State-of-the-art analysis of the environmental benefits of green roofs. Applied energy, 115, 411-428.

[7] Bianchini, F., & Hewage, K. (2012). How “green” are the green roofs? Lifecycle analysis of green roof materials. Building and environment, 48, 57-65.

[8] Cascone, S., Catania, F., Gagliano, A., & Sciuto, G. (2018). A comprehensive study on green roof performance for retrofitting existing buildings. Building and Environment, 136, 227-239.


[9] Chenani, S. B., Lehvävirta, S., & Häkkinen, T. (2015). Life cycle assessment of layers of green roofs. Journal of Cleaner Production, 90, 153-162.

[10] Clark, C., Adriaens, P., & Talbot, F. B. (2008). Green roof valuation: a probabilistic economic analysis of environmental benefits. Environmental science & technology, 42(6), 2155-2161.

[11] Cosenza, P., Guerin, R., & Tabbagh, A. (2003). Relationship between thermal conductivity and water content of soils using numerical modelling. European Journal of Soil Science, 54(3), 581-588.

[12] Coma, J., de Gracia, A., Chafer, M., Perez, G., & Cabeza, L. F. (2017). Thermal characterization of different substrates under dried conditions for extensive green roofs. Energy and Buildings, 144, 175-180.

[13] Crawley, D. B., Lawrie, L. K., Winkelmann, F. C., Buhl, W. F., Huang, Y. J., Pedersen, C. O., ... & Glazer, J. (2001). EnergyPlus: creating a new-generation building energy simulation program. Energy and buildings, 33(4), 319-331.

[14] Cristiano, E., Deidda, R., & Viola, F. (2020). The role of green roofs in urban Water-Energy-Food-Ecosystem nexus: A review. Science of the Total Environment, 143876.

[15] Dahanayake, K. C., & Chow, C. L. (2018, June). Comparing reduction of building cooling load through green roofs and green walls by EnergyPlus simulations. In Building Simulation (Vol. 11, No. 3, pp. 421-434). Springer Berlin Heidelberg.

[16] Djedjig, R., Bozonnet, E., & Belarbi, R. (2016). Modeling green wall interactions with street canyons for building energy simulation in urban context. Urban Climate, 16, 75-85.

[17] Dunnett, N., Nagase, A., Booth, R., & Grime, P. (2008). Influence of vegetation composition on runoff in two simulated green roof experiments. Urban Ecosystems, 11(4), 385-398.

[18] Feitosa, R. C., & Wilkinson, S. J. (2018). Attenuating heat stress through green roof and green wall retrofit. Building and Environment, 140, 11-22.

[19] Gargari, C., Bibbiani, C., Fantozzi, F., & Campiotti, C. A. (2016). Environmental impact of Green roofing: the contribute of a green roof to the sustainable use of natural resources in a life cycle approach. Agriculture and Agricultural Science Procedia, 8, 646-656

[20] Goussous, J., Siam, H., & Alzoubi, H. (2015). Prospects of green roof technology for energy and thermal benefits in buildings: Case of Jordan. Sustainable cities and Society, 14, 425-440..

[21] He, Y., Yu, H., Ozaki, A., Dong, N., & Zheng, S. (2017). Influence of plant and soil layer on energy balance and thermal performance of green roof system. Energy, 141, 1285-1299.

[22] Huang, K. T., Huang, W. P., Lin, T. P., & Hwang, R. L. (2015). Implementation of green building specification credits for better thermal conditions in naturally ventilated school buildings. Building and Environment, 86, 141-150.

[23] Jaffal, I., Ouldboukhitine, S. E., & Belarbi, R. (2012). A comprehensive study of the impact of green roofs on building energy performance. Renewable energy, 43, 157-164.

[24] Jim, C. Y., & Peng, L. L. (2012). Weather effect on thermal and energy performance of an extensive tropical green roof. Urban Forestry & Urban Greening, 11(1), 73-85.

[25] La Roche, P., Yeom, D. J., & Ponce, A. (2020). Passive cooling with a hybrid green roof for extreme climates. Energy and Buildings, 224, 110243.

[26] Niachou, A., Papakonstantinou, K., Santamouris, M., Tsangrassoulis, A., & Mihalakakou, G. (2001). Analysis of the green roof thermal properties and investigation of its energy performance. Energy and buildings, 33(7), 719-729.

[27] Palyvos, J. A. (2008). A survey of wind convection coefficient correlations for building envelope energy systems’ modeling. Applied thermal engineering, 28(8-9), 801-808.

[28] Peng, L. L., & Jim, C. Y. (2013). Green-roof effects on neighborhood microclimate and human thermal sensation. Energies, 6(2), 598-618.

[29] Pérez, G., Coma, J., Sol, S., & Cabeza, L. F. (2017). Green facade for energy savings in buildings: The influence of leaf area index and facade orientation on the shadow effect. Applied energy, 187, 424-437.

[30] Procaccini, G., & Monticelli, C. (2021). A Green Roof Case Study in the Urban Context of Milan: Integrating the Residential and Cultivation Functions for Sustainable Development. Water, 13(2), 137.

[31] Ran, J., & Tang, M. (2018). Passive cooling of the green roofs combined with night-time ventilation and walls insulation in hot and humid regions. Sustainable cities and society, 38, 466-475.

[32] Rayner, J. P., Farrell, C., Raynor, K. J., Murphy, S. M., & Williams, N. S. (2016). Plant establishment on a green roof under extreme hot and dry conditions: the importance of leaf succulence in plant selection. Urban forestry & urban greening, 15, 6-14.

[33] Refahi, A. H., & Talkhabi, H. (2015). Investigating the effective factors on the reduction of energy consumption in residential buildings with green roofs. Renewable Energy, 80, 595-603.

[34] Sailor, D. J. (2008). A green roof model for building energy simulation programs. Energy and buildings, 40(8), 1466-1478.

[35] Susca, T., Gaffin, S. R., & Dell’Osso, G. R. (2011). Positive effects of vegetation: Urban heat island and green roofs. Environmental pollution, 159(8-9), 2119-2126.

[36] Takebayashi, H., & Moriyama, M. (2007). Surface heat budget on green roof and high reflection roof for mitigation of urban heat island. Building and environment, 42(8), 2971-2979.

[37] Tang, X., & Qu, M. (2016). Phase change and thermal performance analysis for green roofs in cold climates. Energy and Buildings, 121, 165-175.

[38] Tian, Y., Bai, X., Qi, B., & Sun, L. (2017). Study on heat fluxes of green roofs based on an improved heat and mass transfer model. Energy and Buildings, 152, 175-184.

[39] Wong, N. H., Tay, S. F., Wong, R., Ong, C. L., & Sia, A. (2003). Life cycle cost analysis of rooftop gardens in Singapore. Building and environment, 38(3), 499-509.

[40] Yaghoobian, N., & Srebric, J. (2015). Influence of plant coverage on the total green roof energy balance and building energy consumption. Energy and Buildings, 103, 1-13.

[41] Zhao, M., & Srebric, J. (2012). Assessment of green roof performance for sustainable buildings under winter weather conditions. Journal of Central South University, 19(3), 639-644.

[42] Zhu, J., Cao, Y., Zhai, J., Zhao, X., Zhao, Y., & Kang, S. (2019). Analysis on synergies and trade-offs in green building development: From the perspective of SDG 11. Chinese Journal of Population Resources and Environment, 17(4), 341-351.

[43] 台北市綠建築自治條例 (2014年,11月10日)

[44] 台灣建築構造法 (2011年,1月19日)

[45] 高雄市政府工務局一百零九年度推動建築物立體綠化及綠屋頂補助計畫 (2020年,4月16號)

[46] 室內冷氣溫度限值現場檢查程序作業要點 (2017年,3月9日)

[47] 陳秋銓,2015,「都會區綠屋頂保溫、降溫效益」,建築學報,16:135-150

[48] 方智芳,「薄層綠化屋頂介質及植栽之熱效益」,科學農業,59:118-136,2011

[49] 黃國倉,「綠建築的屋頂綠化」,科學發展,460:48-53,2011

[50] 鄭維祐,「綠屋頂生命週期與節能效益評估」,國立交通大學環境工程研究所碩士論文,2012。

[51] 洪祥峰,「應用綠屋頂水文模式分析不同雨量與臨前含水量下之減洪效用」,國立中央大學水文與海洋科學研究所碩士論文,2021

[52] 陳沛芫、鍾孟儒、洪祥峰、龎傳慶、周冠霖,「綠屋頂水平衡與能量平衡之觀測、模擬與分析研究」,科技部計畫成果報告,2021
指導教授 陳沛芫(Pei-Yuan Chen) 審核日期 2021-10-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明