參考文獻 |
1. Sepasi, S., Adaptive State of Charge Estimation for Battery Packs. 2014.
2. Han, L.; Lehmann, M. L.; Zhu, J.; Liu, T.; Zhou, Z.; Tang, X.; Heish, C.-T.; Sokolov, A. P.; Cao, P.; Chen, X. C.; Saito, T., Recent Developments and Challenges in Hybrid Solid Electrolytes for Lithium-Ion Batteries. Frontiers in Energy Research 2020, 8.
3. Zhou, W.; Zhang, M.; Kong, X.; Huang, W.; Zhang, Q., Recent Advance in Ionic‐Liquid‐Based Electrolytes for Rechargeable Metal‐Ion Batteries. Advanced Science 2021.
4. El Kharbachi, A.; Zavorotynska, O.; Latroche, M.; Cuevas, F.; Yartys, V.; Fichtner, M., Exploits, advances and challenges benefiting beyond Li-ion battery technologies. Journal of Alloys and Compounds 2020, 817.
5. Wang, J.; Nie, P.; Ding, B.; Dong, S.; Hao, X.; Dou, H.; Zhang, X., Biomass derived carbon for energy storage devices. Journal of Materials Chemistry A 2017, 5 (6), 2411-2428.
6. Zuo, C.; Yang, M.; Wang, Z.; Jiang, K.; Li, S.; Luo, W.; He, D.; Liu, C.; Xie, X.; Xue, Z., Cyclophosphazene-based hybrid polymer electrolytes obtained via epoxy–amine reaction for high-performance all-solid-state lithium-ion batteries. Journal of Materials Chemistry A 2019, 7 (32), 18871-18879.
7. Zhou, H.; Zhu, S.; Hibino, M.; Honma, I.; Ichihara, M., Lithium storage in ordered mesoporous carbon (CMK‐3) with high reversible specific energy capacity and good cycling performance. Adv. Mater. 2003, 15 (24), 2107-2111.
8. Cui, D.; Zheng, Z.; Peng, X.; Li, T.; Sun, T.; Yuan, L., Fluorine-doped SnO2 nanoparticles anchored on reduced graphene oxide as a high-performance lithium ion battery anode. J. Power Sources 2017, 362, 20-26.
9. Wang, M.-S.; Wang, Z.-Q.; Chen, Z.; Yang, Z.-L.; Tang, Z.-L.; Luo, H.-Y.; Huang, Y.; Li, X.; Xu, W., One dimensional and coaxial polyaniline@ tin dioxide@ multi-wall carbon nanotube as advanced conductive additive free anode for lithium ion battery. Chem. Eng. J. 2018, 334, 162-171.
10. Qiu, H.; Wang, Y.; Liu, Y.; Li, D.; Zhu, X.; Ji, Q.; Quan, F.; Xia, Y., Synthesis of Co/Co3O4 nanoparticles embedded in porous carbon nanofibers for high performance lithium-ion battery anodes. J. Porous Mater. 2017, 24 (2), 551-557.
11. Chen, L.; Wang, Y. Z., A review on flame retardant technology in China. Part I: development of flame retardants. Polym. Adv. Technol. 2010, 21 (1), 1-26.
12. Reina, G.; González-Domínguez, J. M.; Criado, A.; Vázquez, E.; Bianco, A.; Prato, M., Promises, facts and challenges for graphene in biomedical applications. Chem. Soc. Rev. 2017, 46 (15), 4400-4416.
13. De las Casas, C.; Li, W., A review of application of carbon nanotubes for lithium ion battery anode material. J. Power Sources 2012, 208, 74-85.
14. Lee, C.-S.; Hyun, Y., Synthesis and Characteristics of Carbon Nanofibers/Silicon Composites and Application to Anode Materials of Li Secondary Batteries. In Nanofiber Research-Reaching New Heights, IntechOpen: 2016.
15. Zhou, X.; Wan, L.-J.; Guo, Y.-G., Facile synthesis of MoS2@ CMK-3 nanocomposite as an improved anode material for lithium-ion batteries. Nanoscale 2012, 4 (19), 5868-5871.
16. Lyu, L.; Seong, K.-d.; Ko, D.; Choi, J.; Lee, C.; Hwang, T.; Cho, Y.; Jin, X.; Zhang, W.; Pang, H.; Piao, Y., Recent development of biomass-derived carbons and composites as electrode materials for supercapacitors. Materials Chemistry Frontiers 2019, 3 (12), 2543-2570.
17. Zhu, Z.; Xu, Z., The rational design of biomass-derived carbon materials towards next-generation energy storage: A review. Renewable and Sustainable Energy Reviews 2020, 134.
18. Gao, Y.-P.; Zhai, Z.-B.; Huang, K.-J.; Zhang, Y.-Y., Energy storage applications of biomass-derived carbon materials: batteries and supercapacitors. New Journal of Chemistry 2017, 41 (20), 11456-11470.
19. Wang, X.; Shi, G., An introduction to the chemistry of graphene. Phys Chem Chem Phys 2015, 17 (43), 28484-504.
20. Zhao, Y.; Bai, Y.; Bai, Y.; An, M.; Chen, G.; Li, W.; Li, C.; Zhou, Y., A rational design of solid polymer electrolyte with high salt concentration for lithium battery. Journal of Power Sources 2018, 407, 23-30.
21. Liu, M.; Jin, B.; Zhang, Q.; Zhan, X.; Chen, F., High-performance solid polymer electrolytes for lithium ion batteries based on sulfobetaine zwitterion and poly (ethylene oxide) modified polysiloxane. Journal of Alloys and Compounds 2018, 742, 619-628.
22. Saikia, D.; Chang, Y.-J.; Fang, J.; Kao, H.-M., Highly conducting blend hybrid electrolytes based on amine ended block copolymers and organosilane with in-situ formed silica particles for lithium-ion batteries. Journal of Power Sources 2018, 390, 1-12.
23. Fenton, D., Complexes of alkali metal ions with poly (ethylene oxide). polymer 1973, 14, 589.
24. Wright, P. V., Electrical conductivity in ionic complexes of poly (ethylene oxide). British polymer journal 1975, 7 (5), 319-327.
25. Armand, M.; Chabagno, J.; Duclot, M., Second international meeting on solid electrolytes. St Andrews, Scotland 1978, 20-22.
26. Berthier, C.; Gorecki, W.; Minier, M.; Armand, M.; Chabagno, J.; Rigaud, P., Microscopic investigation of ionic conductivity in alkali metal salts-poly (ethylene oxide) adducts. Solid State Ionics 1983, 11 (1), 91-95.
27. Walker, C. W.; Salomon, M., Improvement of ionic conductivity in plasticized PEO‐based solid polymer electrolytes. J. Electrochem. Soc. 1993, 140 (12), 3409-3412.
28. Wang, H.-L.; Kao, H.-M.; Digar, M.; Wen, T.-C., FTIR and solid state 13C NMR studies on the interaction of lithium cations with polyether poly (urethane urea). Macromolecules 2001, 34 (3), 529-537.
29. Young, N. P.; Devaux, D.; Khurana, R.; Coates, G. W.; Balsara, N. P., Investigating polypropylene-poly (ethylene oxide)-polypropylene triblock copolymers as solid polymer electrolytes for lithium batteries. Solid State Ionics 2014, 263, 87-94.
30. Çelik, S. Ü.; Bozkurt, A., Polymer electrolytes based on the doped comb-branched copolymers for Li-ion batteries. Solid State Ionics 2010, 181 (21-22), 987-993.
31. Zhang, Z.; Sherlock, D.; West, R.; West, R.; Amine, K.; Lyons, L. J., Cross-linked network polymer electrolytes based on a polysiloxane backbone with oligo (oxyethylene) side chains: synthesis and conductivity. Macromolecules 2003, 36 (24), 9176-9180.
32. Lu, Q.; He, Y. B.; Yu, Q.; Li, B.; Kaneti, Y. V.; Yao, Y.; Kang, F.; Yang, Q. H., Dendrite‐Free, High‐Rate, Long‐Life Lithium Metal Batteries with a 3D Cross‐Linked Network Polymer Electrolyte. Adv. Mater. 2017, 29 (13), 1604460.
33. Weston, J.; Steele, B., Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly (ethylene oxide) polymer electrolytes. Solid State Ionics 1982, 7 (1), 75-79.
34. Liu, S.; Wang, H.; Imanishi, N.; Zhang, T.; Hirano, A.; Takeda, Y.; Yamamoto, O.; Yang, J., Effect of co-doping nano-silica filler and N-methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl) imide into polymer electrolyte on Li dendrite formation in Li/poly (ethylene oxide)-Li (CF3SO2)2N/Li. J. Power Sources 2011, 196 (18), 7681-7686.
35. Marcinek, M.; Bac, A.; Lipka, P.; Zalewska, A.; Żukowska, G.; Borkowska, R.; Wieczorek, W., Effect of filler surface group on ionic interactions in PEG− LiClO4− Al2O3 composite polyether electrolytes. The Journal of Physical Chemistry B 2000, 104 (47), 11088-11093.
36. Vignarooban, K.; Dissanayake, M.; Albinsson, I.; Mellander, B.-E., Effect of TiO2 nano-filler and EC plasticizer on electrical and thermal properties of poly (ethylene oxide)(PEO) based solid polymer electrolytes. Solid State Ionics 2014, 266, 25-28.
37. Do, N. S. T.; Schaetzl, D. M.; Dey, B.; Seabaugh, A. C.; Fullerton-Shirey, S. K., Influence of Fe2O3 nanofiller shape on the conductivity and thermal properties of solid polymer electrolytes: Nanorods versus nanospheres. The Journal of Physical Chemistry C 2012, 116 (40), 21216-21223.
38. Xi, J.; Miao, S.; Tang, X., Selective transporting of lithium ion by shape selective molecular sieves ZSM-5 in PEO-based composite polymer electrolyte. Macromolecules 2004, 37 (23), 8592-8598.
39. Xi, J.; Qiu, X.; Ma, X.; Cui, M.; Yang, J.; Tang, X.; Zhu, W.; Chen, L., Composite polymer electrolyte doped with mesoporous silica SBA-15 for lithium polymer battery. Solid State Ionics 2005, 176 (13-14), 1249-1260.
40. Abraham, K.; Alamgir, M., Room temperature polymer electrolytes and batteries based on them. Solid State Ionics 1994, 70, 20-26.
41. Feuillade, G.; Perche, P., Ion-conductive macromolecular gels and membranes for solid lithium cells. J. Appl. Electrochem. 1975, 5 (1), 63-69.
42. Song, J.; Wang, Y.; Wan, C. C., Review of gel-type polymer electrolytes for lithium-ion batteries. J. Power Sources 1999, 77 (2), 183-197.
43. Kelly, I.; Owen, J.; Steele, B., Poly (ethylene oxide) electrolytes for operation at near room temperature. J. Power Sources 1985, 14 (1-3), 13-21.
44. Chintapalli, S.; Frech, R., Effect of plasticizers on high molecular weight PEO-LiCF3SO3 complexes. Solid State Ionics 1996, 86, 341-346.
45. Watanabe, M.; Kanba, M.; Nagaoka, K.; Shinohara, I., Ionic conductivity of hybrid films based on polyacrylonitrile and their battery application. J. Appl. Polym. Sci. 1982, 27 (11), 4191-4198.
46. Quartarone, E.; Tomasi, C.; Mustarelli, P.; Appetecchi, G.; Croce, F., Long-term structural stability of PMMA-based gel polymer electrolytes. Electrochim. Acta 1998, 43 (10-11), 1435-1439.
47. Alamgir, M.; Abraham, K., Li ion conductive electrolytes based on poly (vinyl chloride). J. Electrochem. Soc. 1993, 140 (6), L96-L97.
48. Tsuchida, E.; Ohno, H.; Tsunemi, K., Conduction of lithium ions in polyvinylidene fluoride and its derivatives—I. Electrochim. Acta 1983, 28 (5), 591-595.
49. Boudin, F.; Andrieu, X.; Jehoulet, C.; Olsen, I., Microporous PVdF gel for lithium-ion batteries. J. Power Sources 1999, 81, 804-807.
50. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104 (10), 4303-4418.
51. Pearson, R. G., Hard and soft acids and bases. J. Am. Chem. Soc. 1963, 85 (22), 3533-3539.
52. Aurbach, D.; Zaban, A.; Schechter, A.; Ein‐Eli, Y.; Zinigrad, E.; Markovsky, B., The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries I. Li metal anodes. J. Electrochem. Soc. 1995, 142 (9), 2873-2882.
53. Newman, G.; Francis, R.; Gaines, L.; Rao, B., Hazard investigations of LiClO4/dioxolane electrolyte. J. Electrochem. Soc. 1980, 127 (9), 2025-2027.
54. Ue, M.; Mori, S., Mobility and ionic association of lithium salts in a propylene carbonate‐ethyl methyl carbonate mixed solvent. J. Electrochem. Soc. 1995, 142 (8), 2577-2581.
55. Naoi, K.; Mori, M.; Naruoka, Y.; Lamanna, W. M.; Atanasoski, R., The surface film formed on a lithium metal electrode in a new imide electrolyte, lithium bis (perfluoroethylsulfonylimide)[LiN (C2F5SO2)2]. J. Electrochem. Soc. 1999, 146 (2), 462-469.
56. Webber, A., Conductivity and Viscosity of Solutions of LiCF3SO3, Li (CF3SO2)2N, and Their Mixtures. J. Electrochem. Soc. 1991, 138 (9), 2586-2590.
57. Yang, H.; Kwon, K.; Devine, T. M.; Evans, J. W., Aluminum corrosion in lithium batteries an investigation using the electrochemical quartz crystal microbalance. J. Electrochem. Soc. 2000, 147 (12), 4399-4407.
58. Kawamura, T.; Kimura, A.; Egashira, M.; Okada, S.; Yamaki, J.-I., Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells. J. Power Sources 2002, 104 (2), 260-264.
59. Sloop, S.; Pugh, J.; Wang, S.; Kerr, J.; Kinoshita, K., Chemical Reactivity of PF5 and LiPF6 in Ethylene Carbonate/Dimethyl Carbonate Solutions. Electrochem. Solid-State Lett. 2001, 4 (4), A42-A44.
60. Blonsky, P. M.; Shriver, D.; Austin, P.; Allcock, H. R., Polyphosphazene solid electrolytes. J. Am. Chem. Soc. 1984, 106 (22), 6854-6855.
61. Groce, F.; Gerace, F.; Dautzemberg, G.; Passerini, S.; Appetecchi, G.; Scrosati, B., Synthesis and characterization of highly conducting gel electrolytes. Electrochim. Acta 1994, 39 (14), 2187-2194.
62. Barrett, E. P.; Joyner, L. G.; Halenda, P. P., The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 73 (1), 373-380.
63. Kesavan, T.; Sasidharan, M., Palm Spathe Derived N-Doped Carbon Nanosheets as a High Performance Electrode for Li-Ion Batteries and Supercapacitors. ACS Sustainable Chemistry & Engineering 2019.
64. Li, R.; Huang, J.; Li, J.; Cao, L.; Zhong, X.; Yu, A.; Lu, G., Nitrogen-doped porous hard carbons derived from shaddock peel for high-capacity lithium-ion battery anodes. Journal of Electroanalytical Chemistry 2020, 862.
65. Zhang, C.; Cai, X.; Chen, W.; Yang, S.; Xu, D.; Fang, Y.; Yu, X., 3D Porous Silicon/N-Doped Carbon Composite Derived from Bamboo Charcoal as High-Performance Anode Material for Lithium-Ion Batteries. ACS Sustainable Chemistry & Engineering 2018, 6 (8), 9930-9939.
66. Qu, Y.; Guo, M.; Wang, X.; Yuan, C., Novel nitrogen-doped ordered mesoporous carbon as high-performance anode material for sodium-ion batteries. Journal of Alloys and Compounds 2019, 791, 874-882.
67. Han, Q.; Shi, M.; Han, Z.; Li, Y.; Zhang, W.; Zhang, X., Bio-mesopores structure functional composites by mushroom-derived carbon/NiO for lithium-ion batteries. Journal of Alloys and Compounds 2020, 848.
68. Kesavan, T.; Partheeban, T.; Vivekanantha, M.; Prabu, N.; Kundu, M.; Selvarajan, P.; Umapathy, S.; Vinu, A.; Sasidharan, M., Design of P-Doped Mesoporous Carbon Nitrides as High-Performance Anode Materials for Li-Ion Battery. ACS Appl Mater Interfaces 2020, 12 (21), 24007-24018.
69. Liu, Y.; Shi, M.; Han, M.; Yang, J.; Yu, J.; Narayanasamy, M.; Dai, K.; Angaiah, S.; Yan, C., Spontaneous exfoliation and tailoring derived oxygen-riched porous carbon nanosheets for superior Li+ storage performance. Chemical Engineering Journal 2020, 387.
70. Yuan, M.; Cao, B.; Meng, C.; Zuo, H.; Li, A.; Ma, Z.; Chen, X.; Song, H., Preparation of pitch-based carbon microbeads by a simultaneous spheroidization and stabilization process for lithium-ion batteries. Chemical Engineering Journal 2020, 400.
71. Hernandez-Rentero, C.; Marangon, V.; Olivares-Marin, M.; Gomez-Serrano, V.; Caballero, A.; Morales, J.; Hassoun, J., Alternative lithium-ion battery using biomass-derived carbons as environmentally sustainable anode. J Colloid Interface Sci 2020, 573, 396-408.
72. Yu, H.-Y.; Liang, H.-J.; Gu, Z.-Y.; Meng, Y.-F.; Yang, M.; Yu, M.-X.; Zhao, C.-D.; Wu, X.-L., Waste-to-wealth: low-cost hard carbon anode derived from unburned charcoal with high capacity and long cycle life for sodium-ion/lithium-ion batteries. Electrochimica Acta 2020, 361.
73. Murali, G.; Harish, S.; Ponnusamy, S.; Ragupathi, J.; Therese, H. A.; Navaneethan, M.; Muthamizhchelvan, C., Hierarchically porous structured carbon derived from peanut shell as an enhanced high rate anode for lithium ion batteries. Applied Surface Science 2019, 492, 464-472.
74. Zhang, L.; Zhao, W.; Jiang, F.; Tian, M.; Yang, Y.; Ge, P.; Sun, W.; Ji, X., Carbon nanosheets from biomass waste: insights into the role of a controlled pore structure for energy storage. Sustainable Energy & Fuels 2020, 4 (7), 3552-3565.
75. Tsai, S.-Y.; Muruganantham, R.; Tai, S.-H.; Chang, B. K.; Wu, S.-C.; Chueh, Y.-L.; Liu, W.-R., Coffee grounds-derived carbon as high performance anode materials for energy storage applications. Journal of the Taiwan Institute of Chemical Engineers 2019, 97, 178-188.
76. Wu, P.; Shao, G.; Guo, C.; Lu, Y.; Dong, X.; Zhong, Y.; Liu, A., Long cycle life, low self-discharge carbon anode for Li-ion batteries with pores and dual-doping. Journal of Alloys and Compounds 2019, 802, 620-627.
77. Zhang, X.; Huang, Q.; Zhang, M.; Li, M.; Hu, J.; Yuan, G., Pine wood-derived hollow carbon fibers@NiO@rGO hybrids as sustainable anodes for lithium-ion batteries. Journal of Alloys and Compounds 2020, 822.
78. Li, R.; Huang, J.; Ren, J.; Cao, L.; Li, J.; Li, W.; Lu, G.; Yu, A., A sandwich-like porous hard carbon/graphene hybrid derived from rapeseed shuck for high-performance lithium-ion batteries. Journal of Alloys and Compounds 2020, 818.
79. Nie, W.; Liu, X.; Xiao, Q.; Li, L.; Chen, G.; Li, D.; Zeng, M.; Zhong, S., Hierarchical Porous Carbon Anode Materials Derived from Rice Husks with High Capacity and Long Cycling Stability for Sodium‐Ion Batteries. ChemElectroChem 2020, 7 (3), 631-641.
80. Ma, B.; Huang, Y.; Nie, Z.; Qiu, X.; Su, D.; Wang, G.; Yuan, J.; Xie, X.; Wu, Z., Facile synthesis of Camellia oleifera shell-derived hard carbon as an anode material for lithium-ion batteries. RSC Advances 2019, 9 (35), 20424-20431. |