參考文獻 |
Amante, C. & Eakins, B. W. (2009). ETOPO 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis (NOAA Technical Memorandum NESDIS NGDC-24). National Geophysical Data Center, Marine Geology and Geophysics Division, National Oceanic and Atmospheric Administration.
Ardhuin, F., Jenkins, A. D. & Belibassakis, K. A. (2008). Comments on “The Three-Dimensional Current and Surface Wave Equations.” Journal of Physical Oceanography, 38(6), 1340–1350. https://doi.org/10.1175/2007jpo3670.1
Azad, A. S. M. A. A., Mita, K. S., Zaman, Md. W., Akter, M., Asik, T. Z., Haque, A., Hussain, M. A. & Rahman, Md. M. (2018). Impact of Tidal Phase on Inundation and Thrust Force due to Storm Surge. Journal of Marine Science and Engineering, 6(4), 110. https://doi.org/10.3390/jmse6040110
Babanin, A. V., Hsu, T.-W., Roland, A., Ou, S.-H., Doong, D.-J. & Kao, C. C. (2011). Spectral Wave Modelling of Typhoon Krosa. Natural Hazards and Earth System Sciences, 11(2), 501–511. https://doi.org/10.5194/nhess-11-501-2011
Battjes, J. A. (1972). Radiation Stress in Short-Crested Waves. Journal of Marine Research, 30(1), 56–64.
Battjes, J. A. & Janssen, J. P. F. M. (1978). Energy Loss and Set-Up due to Breaking of Random Waves. 16th International Conference on Coastal Engineering, 569–587. https://doi.org/10.1061/9780872621909.034
Battjes, J. A. & Stive, M. J. F. (1985). Calibration and Verification of a Dissipation Model for Random Breaking Waves. Journal of Geophysical Research: Oceans, 90(C5), 9159–9167. https://doi.org/10.1029/jc090ic05p09159
Bender, L. C., Guinasso, N. L., Walpert, J. N. & Howden, S. D. (2010). A Comparison of Methods for Determining Significant Wave Heights—Applied to a 3-m Discus Buoy during Hurricane Katrina. Journal of Atmospheric and Oceanic Technology, 27(6), 1012–1028. https://doi.org/10.1175/2010jtecho724.1
Black, P. G., D’Asaro, E. A., Sanford, T. B., Drennan, W. M., Zhang, J. A., French, J. R., Niiler, P. P., Terrill, E. J. & Walsh, E. J. (2007). Air–Sea Exchange in Hurricanes: Synthesis of Observations from the Coupled Boundary Layer Air–Sea Transfer Experiment. Bulletin of the American Meteorological Society, 88(3), 357–374. https://doi.org/10.1175/bams-88-3-357
Bode, L. & Hardy, T. A. (1997). Progress and Recent Developments in Storm Surge Modeling. Journal of Hydraulic Engineering, 123(4), 315–331. https://doi.org/10.1061/(asce)0733-9429(1997)123:4(315)
Booij, N., Ris, R. C. & Holthuijsen, L. H. (1999). A Third‐Generation Wave Model for Coastal Regions: 1. Model Description and Validation. Journal of Geophysical Research: Oceans, 104(C4), 7649–7666. https://doi.org/10.1029/98jc02622
Boussinesq, J. (1872). Théorie des Ondes et des Remous Qui Se Propagent le Long D’un Canal Rectangulaire Horizontal, en Communiquant Au Liquide Contenu dans ce Canal des Vitesses Sensiblement Pareilles de Surface. Journal de Mathématiques Pures et Appliquées, 17, 55–108.
Bouws, E. & Komen, G. J. (1983). On the Balance Between Growth and Dissipation in an Extreme Depth-Limited Wind-Sea in the Southern North Sea. Journal of Physical Oceanography, 13(9), 1653–1658. https://doi.org/10.1175/1520-0485(1983)013<1653:otbbga>2.0.co;2
Briggs, M. J., Synolakis, C. E., Harkins, G. S. & Green, D. R. (1995). Laboratory Experiments of Tsunami Runup on a Circular Island. Pure and Applied Geophysics, 144(3–4), 569–593. https://doi.org/10.1007/bf00874384
Bunya, S., Dietrich, J. C., Westerink, J. J., Ebersole, B. A., Smith, J. M., Atkinson, J. H., Jensen, R., Resio, D. T., Luettich, R. A., Dawson, C., Cardone, V. J., Cox, A. T., Powell, M. D., Westerink, H. J. & Roberts, H. J. (2010). A High-Resolution Coupled Riverine Flow, Tide, Wind, Wind Wave, and Storm Surge Model for Southern Louisiana and Mississippi. Part I: Model Development and Validation. Monthly Weather Review, 138(2), 345–377. https://doi.org/10.1175/2009mwr2906.1
Cavaleri, L. & Rizzoli, P. M. (1981). Wind Wave Prediction in Shallow Water: Theory and Applications. Journal of Geophysical Research: Oceans, 86(C11), 10961–10973. https://doi.org/10.1029/jc086ic11p10961
Chaumillon, E., Bertin, X., Fortunato, A. B., Bajo, M., Schneider, J.-L., Dezileau, L., Walsh, J. P., Michelot, A., Chauveau, E., Créach, A., Hénaff, A., Sauzeau, T., Waeles, B., Gervais, B., Jan, G., Baumann, J., Breilh, J.-F. & Pedreros, R. (2017). Storm-Induced Marine Flooding: Lessons from a Multidisciplinary Approach. Earth-Science Reviews, 165, 151–184. https://doi.org/10.1016/j.earscirev.2016.12.005
Chen, Q., Kirby, J. T., Dalrymple, R. A., Kennedy, A. B. & Chawla, A. (2000). Boussinesq Modeling of Wave Transformation, Breaking, and Runup. II: 2D. Journal of Waterway, Port, Coastal, and Ocean Engineering, 126(1), 48–56. https://doi.org/10.1061/(asce)0733-950x(2000)126:1(48)
Chen, W.-B., Chen, H., Hsiao, S.-C., Chang, C.-H. & Lin, L.-Y. (2019). Wind Forcing Effect on Hindcasting of Typhoon-Driven Extreme Waves. Ocean Engineering, 188, 106260. https://doi.org/10.1016/j.oceaneng.2019.106260
Chen, W.-B., Lin, L.-Y., Jang, J.-H. & Chang, C.-H. (2017). Simulation of Typhoon-Induced Storm Tides and Wind Waves for the Northeastern Coast of Taiwan Using a Tide–Surge–Wave Coupled Model. Water, 9(7), 549. https://doi.org/10.3390/w9070549
Cho, Y.-S. (1995). Numerical Simulations of Tsunami Propagation and Run-up [Ph.D. Dissertation]. Cornell University.
Choi, B. H., Eum, H. M. & Woo, S. B. (2003). A Synchronously Coupled Tide–Wave–Surge Model of the Yellow Sea. Coastal Engineering, 47(4), 381–398. https://doi.org/10.1016/s0378-3839(02)00143-6
CWB. (2017). Data Buoy Observation Data Annual Report 2015. Central Weather Bureau.
Dean, R. G. & Dalrymple, R. A. (1991). Water Wave Mechanics for Engineers and Scientists. https://doi.org/10.1142/1232
Dietrich, J. C., Bunya, S., Westerink, J. J., Ebersole, B. A., Smith, J. M., Atkinson, J. H., Jensen, R., Resio, D. T., Luettich, R. A., Dawson, C., Cardone, V. J., Cox, A. T., Powell, M. D., Westerink, H. J. & Roberts, H. J. (2010). A High-Resolution Coupled Riverine Flow, Tide, Wind, Wind Wave, and Storm Surge Model for Southern Louisiana and Mississippi. Part II: Synoptic Description and Analysis of Hurricanes Katrina and Rita. Monthly Weather Review, 138(2), 378–404. https://doi.org/10.1175/2009mwr2907.1
Dietrich, J. C., Zijlema, M., Westerink, J. J., Holthuijsen, L. H., Dawson, C., Luettich, R. A., Jensen, R. E., Smith, J. M., Stelling, G. S. & Stone, G. W. (2011). Modeling Hurricane Waves and Storm Surge Using Integrally-Coupled, Scalable Computations. Coastal Engineering, 58(1), 45–65. https://doi.org/10.1016/j.coastaleng.2010.08.001
Donelan, M. A., Haus, B. K., Reul, N., Plant, W. J., Stiassnie, M., Graber, H. C., Brown, O. B. & Saltzman, E. S. (2004). On the Limiting Aerodynamic Roughness of the Ocean in Very Strong Winds. Geophysical Research Letters, 31(18). https://doi.org/10.1029/2004gl019460
Donelan, Mark A., Dobson, F. W., Smith, S. D. & Anderson, R. J. (1993). On the Dependence of Sea Surface Roughness on Wave Development. Journal of Physical Oceanography, 23(9), 2143–2149. https://doi.org/10.1175/1520-0485(1993)023<2143:otdoss>2.0.co;2
Egbert, G. D., Bennett, A. F. & Foreman, M. G. G. (1994). TOPEX/POSEIDON Tides Estimated Using a Global Inverse Model. Journal of Geophysical Research: Oceans, 99(C12), 24821–24852. https://doi.org/10.1029/94jc01894
Egbert, G. D. & Erofeeva, S. Y. (2002). Efficient Inverse Modeling of Barotropic Ocean Tides. Journal of Atmospheric and Oceanic Technology, 19(2), 183–204. https://doi.org/10.1175/1520-0426(2002)019<0183:eimobo>2.0.co;2
Eldeberky, Y. (1996). Nonlinear Transformation of Wave Spectra in the Nearshore Zone [Master Thesis]. Technische Universiteit Deflt.
Eldeberky, Y. & Battjes, J. A. (1996). Spectral Modeling of Wave Breaking: Application to Boussinesq Equations. Journal of Geophysical Research: Oceans, 101(C1), 1253–1264. https://doi.org/10.1029/95jc03219
Emanuel, K. (2005). Increasing Destructiveness of Tropical Cyclones over the Past 30 Years. Nature, 436(7051), 686–688. https://doi.org/10.1038/nature03906
Funakoshi, Y., Hagen, S. C. & Bacopoulos, P. (2008). Coupling of Hydrodynamic and Wave Models: Case Study for Hurricane Floyd (1999) Hindcast. Journal of Waterway, Port, Coastal, and Ocean Engineering, 134(6), 321–335. https://doi.org/10.1061/(asce)0733-950x(2008)134:6(321)
Gao, X., Wei, Z., Lv, X., Wang, Y. & Fang, G. (2015). Numerical Study of Tidal Dynamics in the South China Sea with Adjoint Method. Ocean Modelling, 92, 101–114. https://doi.org/10.1016/j.ocemod.2015.05.010
Garratt, J. R. (1977). Review of Drag Coefficients over Oceans and Continents. Monthly Weather Review, 105(7), 915–929. https://doi.org/10.1175/1520-0493(1977)105<0915:rodcoo>2.0.co;2
Goto, C., Ogawa, Y., Shuto, N. & Imamura, F. (1997). Numerical Method of Tsunami Simulation with The Leap-Frog Scheme [Manuals and Guides]. Intergovernmental Oceanographic Commission.
Günther, H., Hasselmann, S. & Janssen, P. A. E. M. (1992). The WAM Model Cycle 4. Deutsches Klimarechenzentrum (DKRZ).
Hasegawa, H., Kohno, N. & Itoh, M. (2015, November 10). Development of Storm Surge Model in Japan Meteorological Agency. 3rd International Workshop on Waves, Storm Surges and Coastal Hazards.
Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., Ewing, J. A., Gienapp, H., Hasselmann, D. E., Kruseman, P., Meerburg, A., Müller, P., Olbers, D. J., Richter, K., Sell, W. & Walden, H. (1973). Measurements of Wind-Wave Growth and Swell Decay during the Joint North Sea Wave Project (JONSWAP). Erganzungsheft Zur Deutschen Hydrographischen Zeitschrift, Reihe A.
Hasselmann, Klaus. (1974). On the Spectral Dissipation of Ocean Waves due to White Capping. Boundary-Layer Meteorology, 6(1–2), 107–127. https://doi.org/10.1007/bf00232479
Hasselmann, S., Hasselmann, K., Allender, J. H. & Barnett, T. P. (1985). Computations and Parameterizations of the Nonlinear Energy Transfer in a Gravity-Wave Specturm. Part II: Parameterizations of the Nonlinear Energy Transfer for Application in Wave Models. Journal of Physical Oceanography, 15(11), 1378–1391. https://doi.org/10.1175/1520-0485(1985)015<1378:capotn>2.0.co;2
Heaps, N. S. (1973). Three‐Dimensional Numerical Model of the Irish Sea. Geophysical Journal International, 35(1‐3), 99–120. https://doi.org/10.1111/j.1365-246x.1973.tb02417.x
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., … Thépaut, J. (2020). The ERA5 Global Reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803
Higuera, P., Lara, J. L. & Losada, I. J. (2013). Simulating Coastal Engineering Processes with OpenFOAM®. Coastal Engineering, 71, 119–134. https://doi.org/10.1016/j.coastaleng.2012.06.002
Holthuijsen, L. H. (2007). Waves in Oceanic and Coastal Waters. https://doi.org/10.1017/cbo9780511618536
Horsburgh, K. J. & Wilson, C. (2007). Tide‐Surge Interaction and Its Role in the Distribution of Surge Residuals in the North Sea. Journal of Geophysical Research: Oceans (1978–2012), 112(C8). https://doi.org/10.1029/2006jc004033
Hou, T.-H., Chang, J.-Y., Tsai, C.-C. & Hsu, T.-W. (2020). Three-Dimensional Simulations of Wind Effects on Green Island Wake. Water, 12(11), 3039. https://doi.org/10.3390/w12113039
Hsiao, S.-C., Chen, H., Chen, W.-B., Chang, C.-H. & Lin, L.-Y. (2019). Quantifying the Contribution of Nonlinear Interactions to Storm Tide Simulations during a Super Typhoon Event. Ocean Engineering, 194, 106661. https://doi.org/10.1016/j.oceaneng.2019.106661
Hsin, Y., Wu, C. & Shaw, P. (2008). Spatial and Temporal Variations of the Kuroshio East of Taiwan, 1982–2005: A Numerical Study. Journal of Geophysical Research: Oceans (1978–2012), 113(C4). https://doi.org/10.1029/2007jc004485
Hsu, S. A., Meindl, E. A. & Gilhousen, D. B. (1994). Determining the Power-Law Wind-Profile Exponent under Near-Neutral Stability Conditions at Sea. Journal of Applied Meteorology, 33(6), 757–765. https://doi.org/10.1175/1520-0450(1994)033<0757:dtplwp>2.0.co;2
Hsu, T.-W., Liau, J.-M., Lin, J.-G., Zheng, J. & Ou, S.-H. (2011). Sequential Assimilation in the Wind Wave Model for Simulations of Typhoon Events around Taiwan Island. Ocean Engineering, 38(2–3), 456–467. https://doi.org/10.1016/j.oceaneng.2010.11.023
Idier, D., Dumas, F. & Muller, H. (2012). Tide-Surge Interaction in the English Channel. Natural Hazards and Earth System Sciences, 12(12), 3709–3718. https://doi.org/10.5194/nhess-12-3709-2012
Jan, S., Chern, C., Wang, J. & Chao, S. (2004). The Anomalous Amplification of M2 Tide in the Taiwan Strait. Geophysical Research Letters, 31(7), n/a-n/a. https://doi.org/10.1029/2003gl019373
Janssen, P. A. E. M. (1989). Wave-Induced Stress and the Drag of Air Flow over Sea Waves. Journal of Physical Oceanography, 19(6), 745–754. https://doi.org/10.1175/1520-0485(1989)019<0745:wisatd>2.0.co;2
Janssen, P. A. E. M. (1991). Quasi-linear Theory of Wind-Wave Generation Applied to Wave Forecasting. Journal of Physical Oceanography, 21(11), 1631–1642. https://doi.org/10.1175/1520-0485(1991)021<1631:qltoww>2.0.co;2
Jelesnianski, C. P. (1965). A Numerical Calculation of Storm Tides Induced by a Tropical Storm Impinging on a Continental Shelf. Monthly Weather Review, 93(6), 343–358. https://doi.org/10.1175/1520-0493(1993)093<0343:ancos>2.3.co;2
Jelesnianski, C. P., Chen, J. & Shaffer, W. A. (1992). SLOSH: Sea, Lake, and Overland Surges form Hurricanes [Technical Report]. National Weather Service, National Oceanic and Atmospheric Administration, United States Department of Commerce.
Johns, B., Sinha, P. C., Dube, S. K., Mohanty, U. C. & Rao, A. D. (1983). On the Effect of Bathymetry in Numerical Storm Surge Simulation Experiments. Computers & Fluids, 11(3), 161–174. https://doi.org/10.1016/0045-7930(83)90028-2
Johnson, H. K., Højstrup, J., Vested, H. J. & Larsen, S. E. (1998). On the Dependence of Sea Surface Roughness on Wind Waves. Journal of Physical Oceanography, 28(9), 1702–1716. https://doi.org/10.1175/1520-0485(1998)028<1702:otdoss>2.0.co;2
Kennedy, A. B., Gravois, U., Zachry, B. C., Westerink, J. J., Hope, M. E., Dietrich, J. C., Powell, M. D., Cox, A. T., Luettich, R. A. & Dean, R. G. (2011). Origin of the Hurricane Ike forerunner surge. Geophysical Research Letters, 38(8), n/a-n/a. https://doi.org/10.1029/2011gl047090
Kerr, P. C., Donahue, A. S., Westerink, J. J., Luettich, R. A., Zheng, L. Y., Weisberg, R. H., Huang, Y., Wang, H. V., Teng, Y., Forrest, D. R., Roland, A., Haase, A. T., Kramer, A. W., Taylor, A. A., Rhome, J. R., Feyen, J. C., Signell, R. P., Hanson, J. L., Hope, M. E., … Cox, A. T. (2013). U.S. IOOS Coastal and Ocean Modeling Testbed: Inter‐Model Evaluation of Tides, Waves, and Hurricane Surge in the Gulf of Mexico. Journal of Geophysical Research: Oceans, 118(10), 5129–5172. https://doi.org/10.1002/jgrc.20376
Kim, S., Mori, N., Mase, H. & Yasuda, T. (2015). The Role of Sea Surface Drag in a Coupled Surge and Wave Model for Typhoon Haiyan 2013. Ocean Modelling, 96, 65--84. https://doi.org/10.1016/j.ocemod.2015.06.004
Kim, S. Y., Yasuda, T. & Mase, H. (2008). Numerical Analysis of Effects of Tidal Variations on Storm Surges and Waves. Applied Ocean Research, 30(4), 311--322. https://doi.org/10.1016/j.apor.2009.02.003
Kim, S. Y., Yasuda, T. & Mase, H. (2010). Wave Set-Up in the Storm Surge along Open Coasts during Typhoon Anita. Coastal Engineering, 57(7), 631--642. https://doi.org/10.1016/j.coastaleng.2010.02.004
Komen, G. J., Hasselmann, S. & Hasselmann, K. (1984). On the Existence of a Fully Developed Wind-Sea Spectrum. Journal of Physical Oceanography, 14(8), 1271–1285. https://doi.org/10.1175/1520-0485(1984)014<1271:oteoaf>2.0.co;2
Kowalik, Z. & Murty, T. S. (1993). Chapter III Two-Dimensional Numerical Models. In Numerical Modeling of Ocean Dynamics (pp. 105–215). World Scientific Publishing Co. Pte. Ltd. https://doi.org/10.1142/9789812795991_0003
Kueh, M.-T., Chen, W.-M., Sheng, Y.-F., Lin, S. C., Wu, T.-R., Yen, E., Tsai, Y.-L. & Lin, C.-Y. (2019). Effects of Horizontal Resolution and Air–Sea Flux Parameterization on the Intensity and Structure of Simulated Typhoon Haiyan (2013). Natural Hazards and Earth System Sciences, 19(7), 1509–1539. https://doi.org/10.5194/nhess-19-1509-2019
Kuik, A. J., Vledder, G. P. van & Holthuijsen, L. H. (1988). A Method for the Routine Analysis of Pitch-and-Roll Buoy Wave Data. Journal of Physical Oceanography, 18(7), 1020–1034. https://doi.org/10.1175/1520-0485(1988)018<1020:amftra>2.0.co;2
Large, W. G. & Pond, S. (1981). Open Ocean Momentum Flux Measurements in Moderate to Strong Winds. Journal of Physical Oceanography, 11(3), 324–336. https://doi.org/10.1175/1520-0485(1981)011<0324:oomfmi>2.0.co;2
Lee, H. S., Yamashita, T., Hsu, J. R.-C. & Ding, F. (2013). Integrated Modeling of the Dynamic Meteorological and Sea Surface Conditions during the Passage of Typhoon Morakot. Dynamics of Atmospheres and Oceans, 59, 1–23. https://doi.org/10.1016/j.dynatmoce.2012.09.002
Lee, J.-J., Skjelbreia, J. E. & Raichlen, F. (1982). Measurement of Velocities in Solitary Waves. Journal of the Waterway, Port, Coastal and Ocean Division, 108(2), 200–218. https://doi.org/10.1061/jwpcdx.0000293
Li, L., Yang, J., Lin, C.-Y., Chua, C. T., Wang, Y., Zhao, K., Wu, Y.-T., Liu, P. L.-F., Switzer, A. D., Mok, K. M., Wang, P. & Peng, D. (2018). Field Survey of Typhoon Hato (2017) and a Comparison with Storm Surge Modeling in Macau. Natural Hazards and Earth System Sciences, 18(12), 3167–3178. https://doi.org/10.5194/nhess-18-3167-2018
Li, N., Roeber, V., Yamazaki, Y., Heitmann, T. W., Bai, Y. & Cheung, K. F. (2014). Integration of Coastal Inundation Modeling from Storm Tides to Individual Waves. Ocean Modelling, 83, 26–42. https://doi.org/10.1016/j.ocemod.2014.08.005
Liang, A. (Ting‐Yu), Oey, L., Huang, S. & Chou, S. (2017). Long‐Term Trends of Typhoon‐Induced Rainfall over Taiwan: In Situ Evidence of Poleward Shift of Typhoons in Western North Pacific in Recent Decades. Journal of Geophysical Research: Atmospheres, 122(5), 2750–2765. https://doi.org/10.1002/2017jd026446
Liau, J.-M. & Chen, S.-H. (2015). Effect of the Wave Set-Up on the Estimation of Storm Surge in the Coastal Waters. Taiwan Water Conservancy, 63(1).
Lin, I.-I. & Chan, J. C. L. (2015). Recent Decrease in Typhoon Destructive Potential and Global Warming Implications. Nature Communications, 6(1), 7182. https://doi.org/10.1038/ncomms8182
Lin, L.-C., Kuo, C.-Y. & Hsu, T.-W. (2016). The Study of Calibrating the Wave Buoy Inclination and Extreme Wave Height (波浪浮標傾角校正與極值波高之研究, in Chinese). Conference on Weather Analysis and Forecasting.
Lin, M.-Y., Chiou, M.-D., Liu, W.-C., Chen, C.-Y. & Chen, H.-Y. (2016). Uncertainty in Storm Surge Forecasting. Taiwan Water Conservancy, 64(3), 23–42.
Lin, P.-Y. (2015). Report on Typhoon 1521 (Dujuan) of 2015. Weather Forecast Center, Central Weather Bureau, R.O.C. (Taiwan).
Lin, S. C., Wu, T.-R., Yen, E., Chen, H.-Y., Hsu, J., Tsai, Y.-L., Lee, C.-J. & Liu, P., L. F. (2015). Development of a Tsunami Early Warning System for the South China Sea. Ocean Engineering, 100, 1–18. https://doi.org/10.1016/j.oceaneng.2015.02.003
Liu, P. L.-F., Cho, Y.-S., Briggs, M. J., Kanoglu, U. & Synolakis, C. E. (1995). Runup of Solitary Waves on a Circular Island. Journal of Fluid Mechanics, 302, 259–285. https://doi.org/10.1017/s0022112095004095
Liu, P. L.-F., Woo, S.-B. & Cho, Y.-S. (1998). Computer Programs for Tsunami Propagation and Inundation. Cornell University.
Liu, W. T., Katsaros, K. B. & Businger, J. A. (1979). Bulk Parameterization of Air-Sea Exchanges of Heat and Water Vapor Including the Molecular Constraints at the Interface. Journal of the Atmospheric Sciences, 36(9), 1722–1735. https://doi.org/10.1175/1520-0469(1979)036<1722:bpoase>2.0.co;2
Liu, W.-C. & Huang, W.-C. (2019). Influences of Sea Level Rise on Tides and Storm Surges around the Taiwan Coast. Continental Shelf Research, 173, 56–72. https://doi.org/10.1016/j.csr.2018.12.009
Liu, W.-C. & Huang, W.-C. (2020). Investigating Typhoon-induced Storm Surge and Waves in the Coast of Taiwan using an Integrally-coupled tide-surge-wave Model. Ocean Engineering, 212. https://doi.org/10.1016/j.oceaneng.2020.107571
Liu, W.-C., Huang, W.-C. & Chen, W.-B. (2016). Modeling the Interaction between Tides and Storm Surges for the Taiwan Coast. Environmental Fluid Mechanics, 16(4), 721–745. https://doi.org/10.1007/s10652-015-9441-0
Liu, Y. & Irish, J. L. (2019). Characterization and Prediction of Tropical Cyclone Forerunner Surge. Coastal Engineering, 147, 34–42. https://doi.org/10.1016/j.coastaleng.2019.01.005
Lo, Y.-Y. (2015). Report on Typhoon 1513 (Soudelor) of 2015. Weather Forecast Center, Central Weather Bureau, R.O.C. (Taiwan).
Longuet-Higgins, M. S. & Stewart, R. W. (1960). Changes in the Form of Short Gravity Waves on Long Waves and Tidal Currents. Journal of Fluid Mechanics, 8(4), 565–583. https://doi.org/10.1017/s0022112060000803
Longuet-Higgins, M. S. & Stewart, R. W. (1962). Radiation Stress and Mass Transport in Gravity Waves, with Application to “Surf Beats.” Journal of Fluid Mechanics, 13(4), 481–504. https://doi.org/10.1017/s0022112062000877
Longuet-Higgins, M. S. & Stewart, R. W. (1963). A Note on Wave Set-Up. Journal of Marine Research, 21(1), 4–10.
Longuet-Higgins, M. S. & Stewart, R. W. (1964). Radiation Stresses in Water Waves; a Physical Discussion, with Applications. Deep Sea Research and Oceanographic Abstracts, 11(4), 529–562. https://doi.org/10.1016/0011-7471(64)90001-4
Lynett, P. J., Wu, T.-R. & Liu, P. L.-F. (2002). Modeling Wave Runup with Depth-Integrated Equations. Coastal Engineering, 46(2), 89–107. https://doi.org/10.1016/s0378-3839(02)00043-1
Maat, N., Kraan, C. & Oost, W. A. (1991). The Roughness of Wind Waves. Boundary-Layer Meteorology, 54(1–2), 89–103. https://doi.org/10.1007/bf00119414
Massel, S. R. (1996). On the Largest Wave Height in Water of Constant Depth. Ocean Engineering, 23(7), 553–573. https://doi.org/10.1016/0029-8018(95)00049-6
Mastenbroek, C., Burgers, G. & Janssen, P. A. E. M. (1993). The Dynamical Coupling of a Wave Model and a Storm Surge Model through the Atmospheric Boundary Layer. Journal of Physical Oceanography, 23(8), 1856–1866. https://doi.org/10.1175/1520-0485(1993)023<1856:tdcoaw>2.0.co;2
Mellor, G. (2003). The Three-Dimensional Current and Surface Wave Equations. Journal of Physical Oceanography, 33(9), 1978–1989. https://doi.org/10.1175/1520-0485(2003)033<1978:ttcasw>2.0.co;2
Mellor, G. L. (2008). The Depth-Dependent Current and Wave Interaction Equations: A Revision. Journal of Physical Oceanography, 38(11), 2587–2596. https://doi.org/10.1175/2008jpo3971.1
Moon, I.-J. (2005). Impact of a Coupled Ocean Wave–Tide–Circulation System on Coastal Modeling. Ocean Modelling, 8(3), 203–236. https://doi.org/10.1016/j.ocemod.2004.02.001
Mori, N., Kato, M., Kim, S., Mase, H., Shibutani, Y., Takemi, T., Tsuboki, K. & Yasuda, T. (2014). Local Amplification of Storm Surge by Super Typhoon Haiyan in Leyte Gulf. Geophysical Research Letters, 41(14), 5106–5113. https://doi.org/10.1002/2014gl060689
MOST. (2019). Ocean Data Bank (ODB) Sponsored by the Ministry of Science and Technology, Taiwan. https://www.odb.ntu.edu.tw/bathy/
NCDR. (2020). Characteristic of Storm Surges and Inundation along Taiwan Coast and Offshore Island (Technical Report NCDR 108-T23). National Science and Technology Center for Disaster Reduction, R.O.C. (Taiwan).
NDRRMC. (2013). Final Report re Effects of Typhoon Yolanda Haiyan. National Disaster Risk Reduction and Management Council, Philippines.
Needham, H. F., Keim, B. D. & Sathiaraj, D. (2015). A Review of Tropical Cyclone‐Generated Storm Surges: Global Data Sources, Observations, and Impacts. Reviews of Geophysics, 53(2), 545–591. https://doi.org/10.1002/2014rg000477
Nelson, R. C. (1994). Depth Limited Design Wave Heights in Very Flat Regions. Coastal Engineering, 23(1–2), 43–59. https://doi.org/10.1016/0378-3839(94)90014-0
Ou, S.-H., Liau, J.-M., Hsu, T.-W. & Tzang, S.-Y. (2002). Simulating Typhoon Waves by SWAN Wave Model in Coastal Waters of Taiwan. Ocean Engineering, 29(8), 947–971. https://doi.org/10.1016/s0029-8018(01)00049-x
Peng, S. & Li, Y. (2015). A Parabolic Model of Drag Coefficient for Storm Surge Simulation in the South China Sea. Scientific Reports, 5(1), 15496. https://doi.org/10.1038/srep15496
Pierson, W. J. & Moskowitz, L. (1964). A Proposed Spectral form for Fully Developed Wind Seas Based on the Similarity Theory of S. A. Kitaigorodskii. Journal of Geophysical Research, 69(24), 5181–5190. https://doi.org/10.1029/jz069i024p05181
Powell, M. D., Vickery, P. J. & Reinhold, T. A. (2003). Reduced Drag Coefficient for High Wind Speeds in Tropical Cyclones. Nature, 422(6929), 279–283. https://doi.org/10.1038/nature01481
Prandle, D. & Wolf, J. (1978). The Interaction of Surge and Tide in the North Sea and River Thames. Geophysical Journal of the Royal Astronomical Society, 55(1), 203–216. https://doi.org/10.1111/j.1365-246x.1978.tb04758.x
Qi, J., Chen, C., Beardsley, R. C., Perrie, W., Cowles, G. W. & Lai, Z. (2009). An Unstructured-Grid Finite-Volume Surface Wave Model (FVCOM-SWAVE): Implementation, Validations and Applications. Ocean Modelling, 28(1–3), 153–166. https://doi.org/10.1016/j.ocemod.2009.01.007
Rego, J. L. & Li, C. (2009). On the Importance of the Forward Speed of Hurricanes in Storm Surge Forecasting: A Numerical Study. Geophysical Research Letters, 36(7), n/a-n/a. https://doi.org/10.1029/2008gl036953
Ris, R. C., Holthuijsen, L. H. & Booij, N. (1999). A Third‐Generation Wave Model for Coastal Regions: 2. Verification. Journal of Geophysical Research: Oceans, 104(C4), 7667–7681. https://doi.org/10.1029/1998jc900123
Rogers, W. E., Hwang, P. A. & Wang, D. W. (2003). Investigation of Wave Growth and Decay in the SWAN Model: Three Regional-Scale Applications*. Journal of Physical Oceanography, 33(2), 366–389. https://doi.org/10.1175/1520-0485(2003)033<0366:iowgad>2.0.co;2
Roland, A., Zhang, Y. J., Wang, H. V., Meng, Y., Teng, Y., Maderich, V., Brovchenko, I., Dutour‐Sikiric, M. & Zanke, U. (2012). A Fully Coupled 3D Wave‐Current Interaction Model on Unstructured Grids. Journal of Geophysical Research: Oceans (1978–2012), 117(C11), n/a-n/a. https://doi.org/10.1029/2012jc007952
Schiermeier, Q. (2013). Did Cimate Change Cause Typhoon Haiyan? Nature. https://doi.org/10.1038/nature.2013.14139
Sheng, Y. P., Alymov, V. & Paramygin, V. A. (2010). Simulation of Storm Surge, Wave, Currents, and Inundation in the Outer Banks and Chesapeake Bay during Hurricane Isabel in 2003: The Importance of Waves. Journal of Geophysical Research: Oceans (1978–2012), 115(C4). https://doi.org/10.1029/2009jc005402
Sheng, Y. P. & Liu, T. (2011). Three‐Dimensional Simulation of Wave‐Induced Circulation: Comparison of Three Radiation Stress Formulations. Journal of Geophysical Research: Oceans (1978–2012), 116(C5). https://doi.org/10.1029/2010jc006765
Sheng, Y. P., Paramygin, V. A., Terng, C.-T. & Chu, C.-H. (2016). Simulating Storm Surge and Inundation Along the Taiwan Coast During Typhoons Fanapi in 2010 and Soulik in 2013. Terrestrial, Atmospheric and Oceanic Sciences, 27(6), 965–979. https://doi.org/10.3319/tao.2016.06.13.01(oc)
Sheng, Y. P., Zhang, Y. & Paramygin, V. A. (2010). Simulation of Storm Surge, Wave, and Coastal Inundation in the Northeastern Gulf of Mexico Region during Hurricane Ivan in 2004. Ocean Modelling, 35(4), 314–331. https://doi.org/10.1016/j.ocemod.2010.09.004
Soria, J. L. A., Switzer, A. D., Villanoy, C. L., Fritz, H. M., Bilgera, P. H. T., Cabrera, O. C., Siringan, F. P., Maria, Y. Y.-Sta., Ramos, R. D. & Fernandez, I. Q. (2016). Repeat Storm Surge Disasters of Typhoon Haiyan and Its 1897 Predecessor in the Philippines. Bulletin of the American Meteorological Society, 97(1), 31–48. https://doi.org/10.1175/bams-d-14-00245.1
Stammer, D., Ray, R. D., Andersen, O. B., Arbic, B. K., Bosch, W., Carrère, L., Cheng, Y., Chinn, D. S., Dushaw, B. D., Egbert, G. D., Erofeeva, S. Y., Fok, H. S., Green, J. A. M., Griffiths, S., King, M. A., Lapin, V., Lemoine, F. G., Luthcke, S. B., Lyard, F., … Yi, Y. (2014). Accuracy Assessment of Global Barotropic Ocean Tide Models. Reviews of Geophysics, 52(3), 243–282. https://doi.org/10.1002/2014rg000450
Suh, S.-W. & Lee, H.-Y. (2018). Forerunner Storm Surge under Macro-Tidal Environmental Conditions in Shallow Coastal Zones of the Yellow Sea. Continental Shelf Research, 169, 1–16. https://doi.org/10.1016/j.csr.2018.09.007
Sun, J., Oey, L., Xu, F.-H. & Lin, Y.-C. (2017). Sea Level Rise, Surface Warming, and the Weakened Buffering Ability of South China Sea to Strong Typhoons in Recent Decades. Scientific Reports, 7(1), 7418. https://doi.org/10.1038/s41598-017-07572-3
Sun, Y., Chen, C., Beardsley, R. C., Xu, Q., Qi, J. & Lin, H. (2013). Impact of Current‐Wave Interaction on Storm Surge Simulation: A Case Study for Hurricane Bob. Journal of Geophysical Research: Oceans, 118(5), 2685–2701. https://doi.org/10.1002/jgrc.20207
SWAN. (2019). SWAN Scientific and Technical Documentation for SWAN Cycle III Version 41.31. Environmental Fluid Mechanics Section, Faculty of Civil Engineering and Geosciences, Delft University of Technology.
Takagi, H. & Wu, W. (2016). Maximum Wind Radius Estimated by the 50 kt Radius: Improvement of Storm Surge Forecasting over the Western North Pacific. Natural Hazards and Earth System Sciences, 16(3), 705–717. https://doi.org/10.5194/nhess-16-705-2016
Tang, Y. M., Sanderson, B., Holland, G. & Grimshaw, R. (1996). A Numerical Study of Storm Surges and Tides, with Application to the North Queensland Coast. Journal of Physical Oceanography, 26(12), 2700–2711. https://doi.org/10.1175/1520-0485(1996)026<2700:ansoss>2.0.co;2
Titov, V. V. & Synolakis, C. E. (1998). Numerical Modeling of Tidal Wave Runup. Journal of Waterway, Port, Coastal, and Ocean Engineering, 124(4), 157–171. https://doi.org/10.1061/(asce)0733-950x(1998)124:4(157)
Tolman, H. L. (1992). Effects of Numerics on the Physics in a Third-Generation Wind-Wave Model. Journal of Physical Oceanography, 22(10), 1095–1111. https://doi.org/10.1175/1520-0485(1992)022<1095:eonotp>2.0.co;2
Torres, M. J., Hashemi, M. R., Hayward, S., Spaulding, M., Ginis, I. & Grilli, S. T. (2019). Role of Hurricane Wind Models in Accurate Simulation of Storm Surge and Waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, 145(1), 04018039. https://doi.org/10.1061/(asce)ww.1943-5460.0000496
Tsai, C.-H. & Doong, D.-J. (2011). Re-Analysis of Buoy-Observed Data during Typhoons. Central Weather Bureau.
Tsai, Y.-L. (2014). The Development of Storm SurgeFast Calculation System and the Reconstruction of 1845 Yunlin Kouhu Event [Master Thesis]. National Central University, R.O.C. (Taiwan).
Tsai, Y.-L., Wu, T.-R., Lin, C.-Y., Lin, S. C., Yen, E. & Lin, C.-W. (2020). Discrepancies on Storm Surge Predictions by Parametric Wind Model and Numerical Weather Prediction Model in a Semi-Enclosed Bay: Case Study of Typhoon Haiyan. Water, 12(12), 3326. https://doi.org/10.3390/w12123326
Walton, T. L. & Dean, R. G. (2009). Influence of Florida Bathymetry on Wind Stress Component of Storm Surge. Coastal Engineering Journal, 51(4), 297–308. https://doi.org/10.1142/s0578563409002041
WAMDI. (1988). The WAM Model—A Third Generation Ocean Wave Prediction Model. Journal of Physical Oceanography, 18(12), 1775–1810. https://doi.org/10.1175/1520-0485(1988)018<1775:twmtgo>2.0.co;2
Wang, X. & Liu, P. L.-F. (2006). An Analysis of 2004 Sumatra Earthquake Fault Plane Mechanisms and Indian Ocean Tsunami. Journal of Hydraulic Research, 44(2), 147–154. https://doi.org/10.1080/00221686.2006.9521671
Wang, X. & Liu, P. L.-F. (2007). Numerical Simulations of the 2004 Indian Ocean Tsunamis — Coastal Effects. Journal of Earthquake and Tsunami, 01(03), 273–297. https://doi.org/10.1142/s179343110700016x
Wang, X. & Power, W. (2011). COMCOT: a Tsunami Generation, Propagation and Run-Up Model.
Warner, J. C., Sherwood, C. R., Signell, R. P., Harris, C. K. & Arango, H. G. (2008). Development of a Three-Dimensional, Regional, Coupled Wave, Current, and Sediment-Transport Model. Computers & Geosciences, 34(10), 1284–1306. https://doi.org/10.1016/j.cageo.2008.02.012
Weaver, R. J. & Slinn, D. N. (2010). Influence of Bathymetric Fluctuations on Coastal Storm Surge. Coastal Engineering, 57(1), 62–70. https://doi.org/10.1016/j.coastaleng.2009.09.012
Wei, Y., Mao, X.-Z. & Cheung, K. F. (2006). Well-Balanced Finite-Volume Model for Long-Wave Runup. Journal of Waterway, Port, Coastal, and Ocean Engineering, 132(2), 114–124. https://doi.org/10.1061/(asce)0733-950x(2006)132:2(114)
Wei, Z. & Jia, Y. (2014). Simulation of Nearshore Wave Processes by a Depth-Integrated Non-Hydrostatic Finite Element Model. Coastal Engineering, 83, 93–107. https://doi.org/10.1016/j.coastaleng.2013.10.002
Wolf, J. (2009). Coastal Flooding: Impacts of Coupled Wave–Surge–Tide Models. Natural Hazards, 49(2), 241–260. https://doi.org/10.1007/s11069-008-9316-5
Wu, C.-C. & Kuo, Y.-H. (1999). Typhoons Affecting Taiwan: Current Understanding and Future Challenges. Bulletin of the American Meteorological Society, 80(1), 67–80. https://doi.org/10.1175/1520-0477(1999)080<0067:tatcua>2.0.co;2
Wu, G., Shi, F., Kirby, J. T., Liang, B. & Shi, J. (2018). Modeling Wave Effects on Storm Surge and Coastal Inundation. Coastal Engineering, 140, 371–382. https://doi.org/10.1016/j.coastaleng.2018.08.011
Wu, J. (1980). Wind-Stress Coefficients over Sea Surface near Neutral Conditions—A Revisit. Journal of Physical Oceanography, 10(5), 727–740. https://doi.org/10.1175/1520-0485(1980)010<0727:wscoss>2.0.co;2
Wu, J. (1982). Wind‐Stress Coefficients over Sea Surface from Breeze to Hurricane. Journal of Geophysical Research: Oceans, 87(C12), 9704–9706. https://doi.org/10.1029/jc087ic12p09704
Wu, T.-R., Chen, P.-F., Tsai, W.-T. & Chen, G.-Y. (2008). Numerical Study on Tsunamis Excited by 2006 Pingtung Earthquake Doublet. Terrestrial, Atmospheric and Oceanic Sciences, 19(6), 705. https://doi.org/10.3319/tao.2008.19.6.705(pt)
Wurtele, M. G., Paegle, J. & Sielecki, A. (1971). The Use of Open Boundary Conditions with The Storm-Surge Equations. Monthly Weather Review, 99(6), 537–544. https://doi.org/10.1175/1520-0493(1971)099<0537:tuoobc>2.3.co;2
Xia, H., Xia, Z. & Zhu, L. (2004). Vertical Variation in Radiation Stress and Wave-Induced Current. Coastal Engineering, 51(4), 309–321. https://doi.org/10.1016/j.coastaleng.2004.03.003
Xie, L., Liu, H. & Peng, M. (2008). The Effect of Wave–Current Interactions on the Storm Surge and Inundation in Charleston Harbor during Hurricane Hugo 1989. Ocean Modelling, 20(3), 252–269. https://doi.org/10.1016/j.ocemod.2007.10.001
Xie, L., Wu, K., Pietrafesa, L. & Zhang, C. (2001). A Numerical Study of Wave‐Current Interaction through Surface and Bottom Stresses: Wind‐Driven Circulation in the South Atlantic Bight under Uniform Winds. Journal of Geophysical Research: Oceans, 106(C8), 16841–16855. https://doi.org/10.1029/2000jc000292
Yamazaki, Y. (2010). Depth-Integrated, Non-Hydrostatic Model With Grid Nesting for Tsunami Generation, Propagation, and Runup.
Yamazaki, Y., Kowalik, Z. & Cheung, K. F. (2009). Depth‐Integrated, Non‐Hydrostatic Model for Wave Breaking and Run‐Up. International Journal for Numerical Methods in Fluids, 61(5), 473–497. https://doi.org/10.1002/fld.1952
Yang, J., Li, L., Zhao, K., Wang, P., Wang, D., Sou, I. M., Yang, Z., Hu, J., Tang, X., Mok, K. M. & Liu, P. L. (2019). A Comparative Study of Typhoon Hato (2017) and Typhoon Mangkhut (2018)—Their Impacts on Coastal Inundation in Macau. Journal of Geophysical Research: Oceans, 124(12), 9590–9619. https://doi.org/10.1029/2019jc015249
Yang, J., Lin, C., Liu, H., Li, L., Wu, T., Wang, P., Li, B. & Liu, P. L.-F. (2021). Effects of Island Topography on Storm Surge in Taiwan Strait during Typhoon Maria. Journal of Waterway, Port, Coastal, and Ocean Engineering, 147(2), 04020057. https://doi.org/10.1061/(asce)ww.1943-5460.0000619
Ye, F., Zhang, Y. J., Yu, H., Sun, W., Moghimi, S., Myers, E., Nunez, K., Zhang, R., Wang, H. V., Roland, A., Martins, K., Bertin, X., Du, J. & Liu, Z. (2020). Simulating Storm Surge and Compound Flooding Events with a Creek-to-ocean Model: Importance of Baroclinic Effects. Ocean Modelling, 145, 101526. https://doi.org/10.1016/j.ocemod.2019.101526
Yeh, H., Imamura, F., Synolakis, C., Tsuji, Y., Liu, P. & Shi, S. (1993). The Flores Island Tsunamis. Eos, Transactions American Geophysical Union, 74(33), 369–373. https://doi.org/10.1029/93eo00381
Yeh, H., Liu, P., Briggs, M. & Synolakis, C. (1994). Propagation and Amplification of Tsunamis at Coastal Boundaries. Nature, 372(6504), 353–355. https://doi.org/10.1038/372353a0
Yu, H.-C., Zhang, Y. J., Yu, J. C. S., Terng, C., Sun, W., Ye, F., Wang, H. V., Wang, Z. & Huang, H. (2017). Simulating Multi-Scale Oceanic Processes around Taiwan on Unstructured Grids. Ocean Modelling, 119, 72–93. https://doi.org/10.1016/j.ocemod.2017.09.007
Zhang, M. Y. & LI, Y. S. (1997). The Dynamic Coupling of a Third-Generation Wave Model and a 3D Hydrodynamic Model through Boundary Layers. Continental Shelf Research, 17(10), 1141–1170. https://doi.org/10.1016/s0278-4343(97)00010-1
Zhang, W., Shi, F., Hong, H., Shang, S. & Kirby, J. T. (2010). Tide‐Surge Interaction Intensified by the Taiwan Strait. Journal of Geophysical Research: Oceans (1978–2012), 115(C6). https://doi.org/10.1029/2009jc005762
Zhang, W.-Z., Hong, H.-S., Shang, S.-P., Chen, D.-W. & Chai, F. (2007). A Two-Way Nested Coupled Tide-Surge Model for the Taiwan Strait. Continental Shelf Research, 27(10–11), 1548–1567. https://doi.org/10.1016/j.csr.2007.01.018
Zhang, Y. J., Ye, F., Stanev, E. V. & Grashorn, S. (2016). Seamless Cross-Scale Modeling with SCHISM. Ocean Modelling, 102, 64–81. https://doi.org/10.1016/j.ocemod.2016.05.002
Zheng, P., Li, M., Wang, C., Wolf, J., Chen, X., Dominicis, M. D., Yao, P. & Hu, Z. (2020). Tide-Surge Interaction in the Pearl River Estuary: A Case Study of Typhoon Hato. Frontiers in Marine Science, 7, 236. https://doi.org/10.3389/fmars.2020.00236
Zhong, L., Li, M. & Zhang, D.-L. (2010). How do Uncertainties in Hurricane Model Forecasts Affect Storm Surge Predictions in a Semi-Enclosed Bay? Estuarine, Coastal and Shelf Science, 90(2), 61–72. https://doi.org/10.1016/j.ecss.2010.07.001
Zijlema, M., Vledder, G. Ph. van & Holthuijsen, L. H. (2012). Bottom Friction and Wind Drag for Wave Models. Coastal Engineering, 65, 19–26. https://doi.org/10.1016/j.coastaleng.2012.03.002
Zu, T., Gan, J. & Erofeeva, S. Y. (2008). Numerical Study of the Tide and Tidal Dynamics in the South China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 55(2), 137–154. https://doi.org/10.1016/j.dsr.2007.10.007 |