參考文獻 |
1. Tuerk, C. and L. Gold, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990. 249(4968): p. 505-10.
2. Ellington, A.D. and J.W. Szostak, In vitro selection of RNA molecules that bind specific ligands. nature, 1990. 346(6287): p. 818-822.
3. Breaker, R.R., Natural and engineered nucleic acids as tools to explore biology. Nature, 2004. 432(7019): p. 838-845.
4. Gopinath, S.C.B., Methods developed for SELEX. Analytical and Bioanalytical Chemistry, 2007. 387(1): p. 171-182.
5. Mendonsa, S.D. and M.T. Bowser, In vitro selection of high-affinity DNA ligands for human IgE using capillary electrophoresis. Analytical Chemistry, 2004. 76(18): p. 5387-5392.
6. Breaker, R.R., Molecular biology - Making catalytic DNAs. Science, 2000. 290(5499): p. 2095-2096.
7. Hicke, B.J., et al., Tenascin-C aptamers are generated using tumor cells and purified protein. Journal of Biological Chemistry, 2001. 276(52): p. 48644-48654.
8. Eaton, B.E. and W.A. Pieken, Ribonucleosides and RNA. Annu Rev Biochem, 1995. 64: p. 837-63.
9. Floege, J., et al., Novel approach to specific growth factor inhibition in vivo: antagonism of platelet-derived growth factor in glomerulonephritis by aptamers. Am J Pathol, 1999. 154(1): p. 169-79.
10. Kopylov, A.M. and V.A. Spiridonova, [Combinatorial chemistry of nucleic acids: SELEX]. Mol Biol (Mosk), 2000. 34(6): p. 1097-113.
11. Kusser, W., Chemically modified nucleic acid aptamers for in vitro selections: evolving evolution. J Biotechnol, 2000. 74(1): p. 27-38.
12. Lee, J.F., G.M. Stovall, and A.D. Ellington, Aptamer therapeutics advance. Curr Opin Chem Biol, 2006. 10(3): p. 282-9.
13. Nelson, J.S., et al., Incorporation of a non-nucleotide bridge into hairpin oligonucleotides capable of high-affinity binding to the Rev protein of HIV-1. Biochemistry, 1996. 35(16): p. 5339-44.
14. Zhang, J., T. Lakshmipriya, and S.C.B. Gopinath, Electroanalysis on an Interdigitated Electrode for High-Affinity Cardiac Troponin I Biomarker Detection by Aptamer-Gold Conjugates. ACS Omega, 2020. 5(40): p. 25899-25905.
15. 林世崇, 呂炎原, and 徐漢仲, 心肌梗塞之重新定義與臨床分類. 內科學誌, 2013. 24(1): p. 1-11.
16. Thygesen, K., et al., Fourth universal definition of myocardial infarction (2018). European heart journal, 2019. 40(3): p. 237-269.
17. Thygesen, Fourth Universal Definition of Myocardial Infarction (2018) (vol 138, pg e618, 2018). Circulation, 2018. 138(20): p. E652-E652.
18. Thygesen, K., et al., Universal definition of myocardial infarction: Kristian Thygesen, Joseph S. Alpert and Harvey D. White on behalf of the Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction. European Heart Journal, 2007. 28(20): p. 2525-2538.
19. Tucker, J.F., et al., Early diagnostic efficiency of cardiac troponin I and troponin T for acute myocardial infarction. Academic Emergency Medicine, 1997. 4(1): p. 13-21.
20. Apple, F.S., et al., Predictive value of cardiac troponin I and T for subsequent death in end-stage renal disease. Circulation, 2002. 106(23): p. 2941-2945.
21. Danese, E. and M. Montagnana, An historical approach to the diagnostic biomarkers of acute coronary syndrome. Annals of Translational Medicine, 2016. 4(10).
22. Mahajan, V.S. and P. Jarolim, How to Interpret Elevated Cardiac Troponin Levels. Circulation, 2011. 124(21): p. 2350-2354.
23. Park, K.C., et al., Cardiac troponins: from myocardial infarction to chronic disease. Cardiovascular Research, 2017. 113(14): p. 1708-1718.
24. Nowak, R.M., et al., Performance of Novel High-Sensitivity Cardiac Troponin I Assays for 0/1-Hour and 0/2-to 3-Hour Evaluations for Acute Myocardial Infarction: Results From the HIGH-US Study. Annals of Emergency Medicine, 2020. 76(1): p. 1-13.
25. Boeddinghaus, J., et al., Early Diagnosis of Myocardial Infarction With Point-of-Care High-Sensitivity Cardiac Troponin I. Journal of the American College of Cardiology, 2020. 75(10): p. 1111-1124.
26. Jo, H., et al., Electrochemical Aptasensor of Cardiac Troponin I for the Early Diagnosis of Acute Myocardial Infarction. Analytical Chemistry, 2015. 87(19): p. 9869-9875.
27. Wong, K.-W., et al., Direct immunomagnetic detection of low abundance cardiac biomarker by aptamer DNA nanocomplex. Sensors and Actuators B: Chemical, 2019. 291: p. 200-206.
28. Wang, C., et al., Nanodiamonds and hydrogen-substituted graphdiyne heteronanostructure for the sensitive impedimetric aptasensing of myocardial infarction and cardiac troponin I. Analytica Chimica Acta, 2021. 1141: p. 110-119.
29. Sarangadharan, I., et al., High sensitivity cardiac troponin I detection in physiological environment using AlGaN/GaN High Electron Mobility Transistor (HEMT) Biosensors. Biosensors & Bioelectronics, 2018. 100: p. 282-289.
30. Rodrigues, T., et al., On the detection of cTnI-a comparison of surface-plasmon optical-electrochemical-, and electronic sensing concepts. Annals of Clinical and Medical Case Reports, 2021. 6(2): p. 1-16.
31. Caulum, M.M., et al., Detection of cardiac biomarkers using micellar electrokinetic chromatography and a cleavable tag immunoassay. Analytical chemistry, 2007. 79(14): p. 5249-5256.
32. Yang, X., et al., Electrogenerated chemiluminescence biosensor array for the detection of multiple AMI biomarkers. Sensors and Actuators B: Chemical, 2018. 257: p. 60-67.
33. Kitte, S.A., et al., Plasmon-enhanced quantum dots electrochemiluminescence aptasensor for selective and sensitive detection of cardiac troponin I. Talanta, 2021. 221: p. 121674.
34. Apple, F.S. and P.O. Collinson, Analytical Characteristics of High-Sensitivity Cardiac Troponin Assays (vol 58, pg 54, 2012). Clinical Chemistry, 2012. 58(4): p. 796-796.
35. Bhatia Prerana, M. and B. Daniels Lori, Highly Sensitive Cardiac Troponins: The Evidence Behind Sex‐Specific Cutoffs. Journal of the American Heart Association, 2020. 9(10): p. e015272.
36. Twerenbold, R., et al., Prospective validation of the 0/1-h algorithm for early diagnosis of myocardial infarction. Journal of the American College of Cardiology, 2018. 72(6): p. 620-632.
37. Grabowska, I., et al., Electrochemical Aptamer-Based Biosensors for the Detection of Cardiac Biomarkers. ACS Omega, 2018. 3(9): p. 12010-12018.
38. Cimen, D., et al., Detection of cardiac troponin-I by optic biosensors with immobilized anti-cardiac troponin-I monoclonal antibody. Talanta, 2020. 219: p. 121259.
39. Mi, X., et al., Dual-Modular Aptasensor for Detection of Cardiac Troponin I Based on Mesoporous Silica Films by Electrochemiluminescence/Electrochemical Impedance Spectroscopy. Anal Chem, 2020. 92(21): p. 14640-14647.
40. Ye, J., et al., Dual-Wavelength Ratiometric Electrochemiluminescence Immunosensor for Cardiac Troponin I Detection. Anal Chem, 2019. 91(2): p. 1524-1531.
41. Yan, M., et al., Ultrasensitive Immunosensor for Cardiac Troponin I Detection Based on the Electrochemiluminescence of 2D Ru-MOF Nanosheets. Anal Chem, 2019. 91(15): p. 10156-10163.
42. Pham, X.T., et al., Facile fabrication of a silicon nanowire sensor by two size reduction steps for detection of alpha-fetoprotein biomarker of liver cancer. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2015. 6(4): p. 045001.
43. Lu, N., et al., Ultra-sensitive nucleic acids detection with electrical nanosensors based on CMOS-compatible silicon nanowire field-effect transistors. Methods, 2013. 63(3): p. 212-218.
44. 周韋成, 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性, in 化學工程與材料工程學系. 2018, 國立中央大學: 桃園縣. p. 118.
45. 潘品憲, 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究, in 化學工程與材料工程學系. 2020, 國立中央大學: 桃園縣. p. 112.
46. 陳欣漢, 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定, in 化學工程與材料工程學系. 2020, 國立中央大學: 桃園縣. p. 129.
47. 賴欣瑩, 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究, in 化學工程與材料工程學系. 2020, 國立中央大學: 桃園縣. p. 105.
48. Kind, M. and C. Woll, Organic surfaces exposed by self-assembled organothiol monolayers: Preparation, characterization, and application. Progress in Surface Science, 2009. 84(7-8): p. 230-278.
49. Olah, G., Organized Monolayers by Adsorption, I. Formation and Structure of Oleophobic Mixed Monolayers on Solid Surfaces.
50. Capecchi, G., et al., Adsorption of CH3COOH on TiO2: IR and theoretical investigations. Research on Chemical Intermediates, 2007. 33(3-5): p. 269-284.
51. Wang, G.M., W.C. Sandberg, and S.D. Kenny, Density functional study of a typical thiol tethered on a gold surface: ruptures under normal or parallel stretch. Nanotechnology, 2006. 17(19): p. 4819-4824.
52. Rusmini, F., Z.Y. Zhong, and J. Feijen, Protein immobilization strategies for protein biochips. Biomacromolecules, 2007. 8(6): p. 1775-1789.
53. Chou, W.C., et al., Neutralized chimeric DNA probe for the improvement of GC-rich RNA detection specificity on the nanowire field-effect transistor. Scientific Reports, 2019. 9.
54. Zhu, M.J., M.Z. Lerum, and W. Chen, How To Prepare Reproducible, Homogeneous, and Hydrolytically Stable Aminosilane-Derived Layers on Silica. Langmuir, 2012. 28(1): p. 416-423.
55. Nikonov, A., et al., Surface Preparation as a Step in the Fabrication of Biosensors Based on Silicon Nanowire Field-Effect Transistors. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2020. 14: p. 337-346.
56. Vandenberg, E.T., et al., Structure of 3-Aminopropyl Triethoxy Silane on Silicon-Oxide. Journal of Colloid and Interface Science, 1991. 147(1): p. 103-118.
57. Lee, T.J., L.K. Chau, and C.J. Huang, Controlled Silanization: High Molecular Regularity of Functional Thiol Groups on Siloxane Coatings. Langmuir, 2020. 36(21): p. 5935-5943.
58. Shlyakhtenko, L.S., et al., Silatrane-based surface chemistry for immobilization of DNA, protein-DNA complexes and other biological materials. Ultramicroscopy, 2003. 97(1-4): p. 279-287.
59. Shlyakhtenko, L.S., A.A. Gall, and Y.L. Lyubchenko, Mica functionalization for imaging of DNA and protein-DNA complexes with atomic force microscopy, in Cell Imaging Techniques. 2012, Springer. p. 295-312.
60. Gunda, N.S.K., et al., Optimization and characterization of biomolecule immobilization on silicon substrates using (3-aminopropyl) triethoxysilane (APTES) and glutaraldehyde linker. Applied Surface Science, 2014. 305: p. 522-530.
61. Dieckmann, T., et al., Mutant ATP-binding RNA aptamers reveal the structural basis for ligand binding. J Mol Biol, 1997. 273(2): p. 467-78.
62. Dieckmann, T., et al., Solution structure of an ATP-binding RNA aptamer reveals a novel fold. RNA, 1996. 2(7): p. 628-40.
63. Sassanfar, M. and J.W. Szostak, An Rna Motif That Binds Atp. Nature, 1993. 364(6437): p. 550-553.
64. Lin, P.H., et al., Molecular dynamics simulation of the induced-fit binding process of DNA aptamer and L-argininamide. Biotechnol J, 2012. 7(11): p. 1367-75.
65. Nakatsuka, N., et al., Aptamer-field-effect transistors overcome Debye length limitations for small-molecule sensing. Science, 2018. 362(6412): p. 319-324.
66. Gao, N., et al., General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors. Nano letters, 2015. 15(3): p. 2143-2148. |