博碩士論文 108324007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.142.119.68
姓名 蘇怡庭(Yi-Ting Su)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 於矽奈米線場效電晶體進行不同化學表面改質並利用核酸適體探針檢測肌鈣蛋白I之研究
(Development of cardiac troponin I detection by aptamer probe on silicon nanowire field effect transistor with different chemical surface modifications)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究
★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究
★ 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量★ 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究
★ 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定★ 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 根據世界衛生組織報告:2030年時,全世界每年將會有兩千三百萬人死於心肌梗塞(常被稱為心臟病)。心臟病發後,心肌會隨即釋放出心血管疾病相關的生物標誌物,眾多的生物標誌物中,心肌肌鈣蛋白I(cardiac troponin I, cTnI)與心肌損傷有著高度相關,而心肌梗塞也會伴隨著心肌損傷,因此在心肌梗塞的診斷中,心肌肌鈣蛋白I也被歐洲心臟學會當做檢測的黃金標準。然而,我們需要時間(約1小時)去檢測到顯著的cTnI濃度變化(troponin盲區間),為了解決上述問題,許多研究團隊致力於發展高靈敏度和高解析度的cTnI檢測方法。而矽奈米線場效應電晶體(silicon nanowire field effect transistor, SiNW FET)具有高靈敏度、免標定檢測以及即時檢測的優勢,被視為極具發展潛力檢測平台。
本實驗室先前發展以3-Aminopropyltriethoxysilane (APTES)固定化於SiNW FET表面,再改質戊二醛(Glutaraldehyde, GA)以及生物探針以進行實驗。本研究初期以延續先前改質方式進行實驗,後期更加入其他兩種不同的改質方法於SiNW FET的效果進行探討,分別是1-(3-Aminopropyl)silatrane(APS)以及〖silane-PEG-NH〗_2:silane-PEG-OH =1:10 (mM/mM)的混合自組裝單層膜(mixed self-assembled monolayers, mixed SAMs)
首先利用原子力顯微鏡(AFM)分析樣品表面粗糙度以及模擬樣品表面形貌;再利用X光光電子能譜儀(XPS)進行樣品表面元素分析,確認每一改質步驟的正確性;最後比較利用各種表面改質在SiNW FET上進行對cTnI專一的核酸適體固定化後,進行人體血清環境下的cTnI檢測之檢測結果。實驗結果顯示,改質APTES可能會有聚合的問題,讓整體表面較為粗糙,也有可能使胺基被遮蔽而降低改質的成效;而改質APS則是可以控制矽烷化的過程,胺基較不容易被遮蔽使得表面改質的成效較好,然而,在FET上檢測結果顯示APS的抗非專一性吸附能力較差;最終選擇mixed SAMs的原因是因為透過不同SAMs的比例可以製造出核酸適體與目標分子接合的空間,使捕獲目標物更有效率。除此之外,PEG更有著抗非專一性吸附的能力,能降低複雜環境下的檢測誤差。FET的實驗結果顯示,改質mixed SAMs的FET在未稀釋的人體血清環境下檢測cTnI,所得到的LOD為0.2pg/mL,且檢測時間約為30分鐘。本裝置之LOD不但比臨床檢測方法的LOD低,而且時間也比臨床檢測方法來得短,這也凸顯我們的裝置對於解決上述臨床醫護人員所遇到的問題是很有潛力的。
摘要(英) According to WHO, it is expected that about 23 million people will die from MI (known as heart attack) annually by 2030. Cardiac biomarkers are released from myocytes immediately after a heart attack. Among of the biomarkers, cardiac troponin I (cTnI) is highly correlated with myocardial damage. Myocardial infarction is also accompanied by myocardial damage; thus, in the diagnosis of MI, cTnI is also regarded as the gold standard for the detection by European Society of Cardiology. However, it takes time (>1hr) to detect a measurable troponin concentration and a significant concentration rise (troponin blind interval). To solve the problem above, there are many researcher teams committed to the develop a detection method with high sensitivity and good resolution. At the same time, silicon nanowire field effect transistor (SiNW FET) has many advantages, such as, high sensitivity, label-free detection and real-time detection; therefore, it is regarded as a detection platform with great development potential.
Our laboratory previously developed 3-aminopropyltriethoxysilane (APTES) immobilized on the surface of SiNW FET, and then modified glutaraldehyde (GA) and bioprobes for experiments. In the early stage of this research, experiments were carried out by continuing the previous surface modification method. Later, we discussed about the effects of two different surface modification methods on SiNW FET, namely, 1-(3-Aminopropyl)silatrane(APS) and 〖silane-PEG-NH〗_2:silane-PEG-OH =1:10 (mM/mM) mixed self-assembled monolayers (mixed SAMs).
In the thesis, firstly, we use atomic force microscope (AFM) to analyze the surface roughness and morphology of samples. Furthermore, we analyze the surface elements by X-ray photoelectron spectroscopy (XPS). By doing these two experiments, we could claim that the surface modification is successful. Finally, we compare the results of cTnI detection in human serum after immobilizing anti-cTnI aptamers on SiNW FET by using different surface modification methods.
Results reveal that modifying APTES on the surface probably causes the problem of aggregation; it may make the surface rougher and it may also mask the amine group; consequently, reducing the effectiveness of modification. Modified APS could control the silylation process; the amine groups are less likely to be masked; thus, it makes the effect of surface modification better. However, the results of the detection on FET show that APS has worse anti-non-specific adsorption ability. Our final choose is mixed SAM, the reason why is it could provide an enough space for the binding between aptamer and target molecule to make the target capturing more efficiency by regulating the ratio of mixed SAM. What is more, PEG has the ability of anti-fouling, decreasing the detection errors in complex environments. Results of detection on FET shows that LOD obtained is 0.2 pg/mL under the condition that the FET is modified by mixed SAM and cTnI is spiked in undiluted human serum. Besides, the detection time is about 30 minutes.
In brief, our device has a great potential to solve the above problem (troponin blind interval), since not only LOD of our device is lower than clinical use, but the detection time of our device is shorter than clinical detection.
關鍵字(中) ★ 矽奈米現場效應電晶體
★ 心肌鈣蛋白I
★ 化學表面改質
★ 核適體
關鍵字(英) ★ silicon nanowire field effect transistor
★ cardiac troponin I
★ chemical surface modification
★ aptamer
論文目次 摘要 I
ABSTRACT III
致謝 V
目錄 VIII
圖目錄 XII
表目錄 XVI
第一章 緒論 1
第二章 文獻回顧 3
2.1 核酸適體(APTAMER) 3
2.1.1 Systematic Evolution of Ligands by Exponential 4
2.1.2核酸適體(Aptamer)與抗體(Antibody)的比較 6
2.2 心肌肌鈣蛋白I 9
2.2.1 急性心肌梗塞(acute myocardial infarction, AMI) 9
2.2.2心肌肌鈣蛋白I(cardiac troponin I) 11
2.2.3急性心肌梗塞(AMI)的診斷 14
2.2.4心肌肌鈣蛋白I(cardiac troponin I)的檢測 17
2.2.5 cTnI的檢測比較(市售v.s.實驗室) 21
2.3 矽奈米線場效應電晶體 24
2.4 晶片表面改質 28
2.4.1 自組裝單層膜 29
2.4.2 表面分子固定化 32
第三章 實驗藥品、儀器設備及方法 34
3.1 實驗藥品 34
3.1.1 FET 晶片表面改質與檢測 34
3.1.2 蛋白質貼附 35
3.2 儀器設備 36
3.3 晶片表面改質 37
3.3.1 晶片表面清洗及氧電漿處理 37
3.3.2 修飾mixed SAMs/APTES以及APS 37
3.3.3 修飾GA 38
3.3.4 探針固定化 38
3.4 FET 電性測量 40
3.5 光電子能譜儀(XPS)表面元素分析 41
3.5.1 矽空片表面清洗及氧電漿處理 41
3.5.2 修飾mixed SAMs/APTES以及APS 41
3.5.3 修飾GA 42
3.5.4 探針固定化 42
3.6 原子力顯微鏡(AFM)表面粗糙度分析 44
3.6.1 矽空片表面清洗及氧電漿處理 44
3.6.2 修飾mixed SAMs/APTES以及APS 44
3.6.3 修飾GA 45
3.6.4 探針固定化 45
3.7 表面改質抗汙能力鑑定—蛋白質貼附 47
3.7.1矽空片表面改質 47
3.7.1.1 矽空片表面清洗及氧電漿處理 47
3.7.1.2 修飾mixed SAMs/APTES以及APS 47
3.7.1.3 修飾GA 48
3.7.1.4 探針固定化 48
3.7.2 蛋白質貼附實驗 49
第四章 結果與討論 51
4.1光電子能譜儀(XPS)表面元素分析 51
4.2 原子力顯微鏡(AFM)表面粗糙度分析 54
4.3 不同改質方式之抗汙能力分析 67
4.4 不同改質方式對於FET檢測之影響 69
4.4.1 FET之元件誤差 69
4.4.2 不同改質方式在FET檢測下的抗汙能力 69
4.4.3 不同改質方式在FET上的檢測能力探討 72
第五章 結論與未來展望 79
5.1 結論 79
5.2 未來展望 82
第六章 參考文獻 83
第七章 附錄 88
參考文獻 1. Tuerk, C. and L. Gold, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990. 249(4968): p. 505-10.
2. Ellington, A.D. and J.W. Szostak, In vitro selection of RNA molecules that bind specific ligands. nature, 1990. 346(6287): p. 818-822.
3. Breaker, R.R., Natural and engineered nucleic acids as tools to explore biology. Nature, 2004. 432(7019): p. 838-845.
4. Gopinath, S.C.B., Methods developed for SELEX. Analytical and Bioanalytical Chemistry, 2007. 387(1): p. 171-182.
5. Mendonsa, S.D. and M.T. Bowser, In vitro selection of high-affinity DNA ligands for human IgE using capillary electrophoresis. Analytical Chemistry, 2004. 76(18): p. 5387-5392.
6. Breaker, R.R., Molecular biology - Making catalytic DNAs. Science, 2000. 290(5499): p. 2095-2096.
7. Hicke, B.J., et al., Tenascin-C aptamers are generated using tumor cells and purified protein. Journal of Biological Chemistry, 2001. 276(52): p. 48644-48654.
8. Eaton, B.E. and W.A. Pieken, Ribonucleosides and RNA. Annu Rev Biochem, 1995. 64: p. 837-63.
9. Floege, J., et al., Novel approach to specific growth factor inhibition in vivo: antagonism of platelet-derived growth factor in glomerulonephritis by aptamers. Am J Pathol, 1999. 154(1): p. 169-79.
10. Kopylov, A.M. and V.A. Spiridonova, [Combinatorial chemistry of nucleic acids: SELEX]. Mol Biol (Mosk), 2000. 34(6): p. 1097-113.
11. Kusser, W., Chemically modified nucleic acid aptamers for in vitro selections: evolving evolution. J Biotechnol, 2000. 74(1): p. 27-38.
12. Lee, J.F., G.M. Stovall, and A.D. Ellington, Aptamer therapeutics advance. Curr Opin Chem Biol, 2006. 10(3): p. 282-9.
13. Nelson, J.S., et al., Incorporation of a non-nucleotide bridge into hairpin oligonucleotides capable of high-affinity binding to the Rev protein of HIV-1. Biochemistry, 1996. 35(16): p. 5339-44.
14. Zhang, J., T. Lakshmipriya, and S.C.B. Gopinath, Electroanalysis on an Interdigitated Electrode for High-Affinity Cardiac Troponin I Biomarker Detection by Aptamer-Gold Conjugates. ACS Omega, 2020. 5(40): p. 25899-25905.
15. 林世崇, 呂炎原, and 徐漢仲, 心肌梗塞之重新定義與臨床分類. 內科學誌, 2013. 24(1): p. 1-11.
16. Thygesen, K., et al., Fourth universal definition of myocardial infarction (2018). European heart journal, 2019. 40(3): p. 237-269.
17. Thygesen, Fourth Universal Definition of Myocardial Infarction (2018) (vol 138, pg e618, 2018). Circulation, 2018. 138(20): p. E652-E652.
18. Thygesen, K., et al., Universal definition of myocardial infarction: Kristian Thygesen, Joseph S. Alpert and Harvey D. White on behalf of the Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction. European Heart Journal, 2007. 28(20): p. 2525-2538.
19. Tucker, J.F., et al., Early diagnostic efficiency of cardiac troponin I and troponin T for acute myocardial infarction. Academic Emergency Medicine, 1997. 4(1): p. 13-21.
20. Apple, F.S., et al., Predictive value of cardiac troponin I and T for subsequent death in end-stage renal disease. Circulation, 2002. 106(23): p. 2941-2945.
21. Danese, E. and M. Montagnana, An historical approach to the diagnostic biomarkers of acute coronary syndrome. Annals of Translational Medicine, 2016. 4(10).
22. Mahajan, V.S. and P. Jarolim, How to Interpret Elevated Cardiac Troponin Levels. Circulation, 2011. 124(21): p. 2350-2354.
23. Park, K.C., et al., Cardiac troponins: from myocardial infarction to chronic disease. Cardiovascular Research, 2017. 113(14): p. 1708-1718.
24. Nowak, R.M., et al., Performance of Novel High-Sensitivity Cardiac Troponin I Assays for 0/1-Hour and 0/2-to 3-Hour Evaluations for Acute Myocardial Infarction: Results From the HIGH-US Study. Annals of Emergency Medicine, 2020. 76(1): p. 1-13.
25. Boeddinghaus, J., et al., Early Diagnosis of Myocardial Infarction With Point-of-Care High-Sensitivity Cardiac Troponin I. Journal of the American College of Cardiology, 2020. 75(10): p. 1111-1124.
26. Jo, H., et al., Electrochemical Aptasensor of Cardiac Troponin I for the Early Diagnosis of Acute Myocardial Infarction. Analytical Chemistry, 2015. 87(19): p. 9869-9875.
27. Wong, K.-W., et al., Direct immunomagnetic detection of low abundance cardiac biomarker by aptamer DNA nanocomplex. Sensors and Actuators B: Chemical, 2019. 291: p. 200-206.
28. Wang, C., et al., Nanodiamonds and hydrogen-substituted graphdiyne heteronanostructure for the sensitive impedimetric aptasensing of myocardial infarction and cardiac troponin I. Analytica Chimica Acta, 2021. 1141: p. 110-119.
29. Sarangadharan, I., et al., High sensitivity cardiac troponin I detection in physiological environment using AlGaN/GaN High Electron Mobility Transistor (HEMT) Biosensors. Biosensors & Bioelectronics, 2018. 100: p. 282-289.
30. Rodrigues, T., et al., On the detection of cTnI-a comparison of surface-plasmon optical-electrochemical-, and electronic sensing concepts. Annals of Clinical and Medical Case Reports, 2021. 6(2): p. 1-16.
31. Caulum, M.M., et al., Detection of cardiac biomarkers using micellar electrokinetic chromatography and a cleavable tag immunoassay. Analytical chemistry, 2007. 79(14): p. 5249-5256.
32. Yang, X., et al., Electrogenerated chemiluminescence biosensor array for the detection of multiple AMI biomarkers. Sensors and Actuators B: Chemical, 2018. 257: p. 60-67.
33. Kitte, S.A., et al., Plasmon-enhanced quantum dots electrochemiluminescence aptasensor for selective and sensitive detection of cardiac troponin I. Talanta, 2021. 221: p. 121674.
34. Apple, F.S. and P.O. Collinson, Analytical Characteristics of High-Sensitivity Cardiac Troponin Assays (vol 58, pg 54, 2012). Clinical Chemistry, 2012. 58(4): p. 796-796.
35. Bhatia Prerana, M. and B. Daniels Lori, Highly Sensitive Cardiac Troponins: The Evidence Behind Sex‐Specific Cutoffs. Journal of the American Heart Association, 2020. 9(10): p. e015272.
36. Twerenbold, R., et al., Prospective validation of the 0/1-h algorithm for early diagnosis of myocardial infarction. Journal of the American College of Cardiology, 2018. 72(6): p. 620-632.
37. Grabowska, I., et al., Electrochemical Aptamer-Based Biosensors for the Detection of Cardiac Biomarkers. ACS Omega, 2018. 3(9): p. 12010-12018.
38. Cimen, D., et al., Detection of cardiac troponin-I by optic biosensors with immobilized anti-cardiac troponin-I monoclonal antibody. Talanta, 2020. 219: p. 121259.
39. Mi, X., et al., Dual-Modular Aptasensor for Detection of Cardiac Troponin I Based on Mesoporous Silica Films by Electrochemiluminescence/Electrochemical Impedance Spectroscopy. Anal Chem, 2020. 92(21): p. 14640-14647.
40. Ye, J., et al., Dual-Wavelength Ratiometric Electrochemiluminescence Immunosensor for Cardiac Troponin I Detection. Anal Chem, 2019. 91(2): p. 1524-1531.
41. Yan, M., et al., Ultrasensitive Immunosensor for Cardiac Troponin I Detection Based on the Electrochemiluminescence of 2D Ru-MOF Nanosheets. Anal Chem, 2019. 91(15): p. 10156-10163.
42. Pham, X.T., et al., Facile fabrication of a silicon nanowire sensor by two size reduction steps for detection of alpha-fetoprotein biomarker of liver cancer. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2015. 6(4): p. 045001.
43. Lu, N., et al., Ultra-sensitive nucleic acids detection with electrical nanosensors based on CMOS-compatible silicon nanowire field-effect transistors. Methods, 2013. 63(3): p. 212-218.
44. 周韋成, 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性, in 化學工程與材料工程學系. 2018, 國立中央大學: 桃園縣. p. 118.
45. 潘品憲, 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究, in 化學工程與材料工程學系. 2020, 國立中央大學: 桃園縣. p. 112.
46. 陳欣漢, 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定, in 化學工程與材料工程學系. 2020, 國立中央大學: 桃園縣. p. 129.
47. 賴欣瑩, 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究, in 化學工程與材料工程學系. 2020, 國立中央大學: 桃園縣. p. 105.
48. Kind, M. and C. Woll, Organic surfaces exposed by self-assembled organothiol monolayers: Preparation, characterization, and application. Progress in Surface Science, 2009. 84(7-8): p. 230-278.
49. Olah, G., Organized Monolayers by Adsorption, I. Formation and Structure of Oleophobic Mixed Monolayers on Solid Surfaces.
50. Capecchi, G., et al., Adsorption of CH3COOH on TiO2: IR and theoretical investigations. Research on Chemical Intermediates, 2007. 33(3-5): p. 269-284.
51. Wang, G.M., W.C. Sandberg, and S.D. Kenny, Density functional study of a typical thiol tethered on a gold surface: ruptures under normal or parallel stretch. Nanotechnology, 2006. 17(19): p. 4819-4824.
52. Rusmini, F., Z.Y. Zhong, and J. Feijen, Protein immobilization strategies for protein biochips. Biomacromolecules, 2007. 8(6): p. 1775-1789.
53. Chou, W.C., et al., Neutralized chimeric DNA probe for the improvement of GC-rich RNA detection specificity on the nanowire field-effect transistor. Scientific Reports, 2019. 9.
54. Zhu, M.J., M.Z. Lerum, and W. Chen, How To Prepare Reproducible, Homogeneous, and Hydrolytically Stable Aminosilane-Derived Layers on Silica. Langmuir, 2012. 28(1): p. 416-423.
55. Nikonov, A., et al., Surface Preparation as a Step in the Fabrication of Biosensors Based on Silicon Nanowire Field-Effect Transistors. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2020. 14: p. 337-346.
56. Vandenberg, E.T., et al., Structure of 3-Aminopropyl Triethoxy Silane on Silicon-Oxide. Journal of Colloid and Interface Science, 1991. 147(1): p. 103-118.
57. Lee, T.J., L.K. Chau, and C.J. Huang, Controlled Silanization: High Molecular Regularity of Functional Thiol Groups on Siloxane Coatings. Langmuir, 2020. 36(21): p. 5935-5943.
58. Shlyakhtenko, L.S., et al., Silatrane-based surface chemistry for immobilization of DNA, protein-DNA complexes and other biological materials. Ultramicroscopy, 2003. 97(1-4): p. 279-287.
59. Shlyakhtenko, L.S., A.A. Gall, and Y.L. Lyubchenko, Mica functionalization for imaging of DNA and protein-DNA complexes with atomic force microscopy, in Cell Imaging Techniques. 2012, Springer. p. 295-312.
60. Gunda, N.S.K., et al., Optimization and characterization of biomolecule immobilization on silicon substrates using (3-aminopropyl) triethoxysilane (APTES) and glutaraldehyde linker. Applied Surface Science, 2014. 305: p. 522-530.
61. Dieckmann, T., et al., Mutant ATP-binding RNA aptamers reveal the structural basis for ligand binding. J Mol Biol, 1997. 273(2): p. 467-78.
62. Dieckmann, T., et al., Solution structure of an ATP-binding RNA aptamer reveals a novel fold. RNA, 1996. 2(7): p. 628-40.
63. Sassanfar, M. and J.W. Szostak, An Rna Motif That Binds Atp. Nature, 1993. 364(6437): p. 550-553.
64. Lin, P.H., et al., Molecular dynamics simulation of the induced-fit binding process of DNA aptamer and L-argininamide. Biotechnol J, 2012. 7(11): p. 1367-75.
65. Nakatsuka, N., et al., Aptamer-field-effect transistors overcome Debye length limitations for small-molecule sensing. Science, 2018. 362(6412): p. 319-324.
66. Gao, N., et al., General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors. Nano letters, 2015. 15(3): p. 2143-2148.
指導教授 陳文逸(Wen-Yih Chen) 審核日期 2021-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明